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MHC class II molecules expressed by professional antigen presenting cells (pAPCs) such
as macrophages, B cells, and dendritic cells (DCs) play a fundamental role in presenting
peptides to CD4+ T cells. However, to elicit CD4+-T cells immunity, pAPCs need an addi-
tional signal, which can be delivered by toll-like receptors (TLRs) molecules.TLRs recognize
microbial patterns and are critical in initiating immune responses. Proteases, which pro-
vide peptide ligands for the MHC class II antigenic presentation pathway, were recently
shown to cleave and activate intracellular TLRs in endosomal compartments. Here, I give
an overview on the individual roles of the most well studied proteases in both antigen and
TLRs processing.
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MHC CLASS II PATHWAY
A complex series of biosynthetic and proteolytic events must
ensure correct assembly, trafficking, and peptide loading in order
for the MHC class II molecules to efficiently interact with their spe-
cific T-cell Receptor (TCR) expressed on CD4+ helper T cells (1,2).
MHC class II molecules consist of an α and β chain which dimerize
shortly after synthesis in the endoplasmic reticulum (ER) to create
the groove in which antigenic peptides are accommodated. Newly
synthesized αβ dimers assemble with a non-polymorphic glyco-
protein, the invariant chain (Ii), which fills the peptide-binding
groove of αβ dimers and prevent loading of premature peptides
in the ER. In addition, the cytoplasmic tail of Ii contains target-
ing signals that deliver the MHC class II-Ii complexes from the
trans-Golgi network directly into the endocytic pathway (3) where
exogenous antigen are internalized. Ii is then sequentially cleaved
leaving a C-terminal (C-ter) portion: the class II-associated invari-
ant chain peptide or CLIP in the peptide-binding groove. Within
the lysosomes, the chaperone molecule HLA-DM interacts with
MHCII-CLIP and catalyzes the exchange of CLIP for exogenous
peptides. Newly formed MHCII-peptides complexes are then tar-
geted to the plasma membrane where they interact with CD4+ T
cells.

ANTIGEN PROCESSING
The presentation of antigens by MHC class II molecules is strictly
dependent on the action of endocytic proteases. Indeed, these
enzymes not only degrade proteins in order to produce the anti-
genic peptides but they also process the Ii chain. Limited antigen
proteolysis is required for MHC class II-peptide loading and
peptides of 9–16 residues are presented to CD4+ T cells. A bal-
anced proteolytic environment is therefore required to ensure ade-
quate antigen processing while preventing complete destruction.
The three main classes of intracellular proteases residing in the
lysosomal/endosomal compartments and participating in antigen
degradation are cysteine (cathepsin B, F, H, L, S, Z, and AEP, for

asparaginylendopeptidase), aspartate (cathepsin D, E), and serine
(cathepsin A, G) proteases. The protease nomenclature designates
the amino acid of the protease active site that catalyzes hydroly-
sis of the substrate peptide bond. With the exception of AEP, most
endocytic proteases display broad cleavage specificity. Indeed, AEP
cleaves on the carboxyl terminal sides of asparagines residues
whereas other cysteine proteases recognize hydrophobic motifs.

The use of specific protease inhibitors and mice deficient for
murine proteases has helped to identify the key enzymes in Ii pro-
cessing. Indeed, the final steps of Ii degradation are dependent on
cathepsin L or S and in their absence an Ii N-terminal fragment
of approximately of 10 kDa (p10) accumulates on MHC class II
molecules (4–6). However, it is less obvious which enzymes are
involved in antigen processing but a critical role of cathepsin S
and L has been confirmed in the generation of MHC II-peptides
complexes albeit in different cell types (4–8). In addition, cathep-
sin F was reported to compensate for the loss of cathepsins S
and L in macrophages (9). Furthermore, in a recent human study,
cathepsin S expressed in thymic dendritic cells (DCs) was shown
to be responsible for the destruction of a certain number of epi-
topes from two auto-antigens involved in experimental allergic
encephalitis and in diabetes (10).

Concerning serine proteases, a latest study has described the
importance of cathepsin G in generating several proinsulin pep-
tides in vitro and in human cells. Indeed, cathepsin G activity was
found to be elevated in PBMC from diabetic patients and block-
ing its activity resulted in the abrogation of the proliferation of
specific proinsulin T cells (11).

Together the groups of Alan Barrett and Colin Watts described
few years ago a novel lysosomal cysteine protease, AEP. This
asparagine endopeptidase was shown to initiate processing of the
tetanus toxin antigen in human B cells (12, 13), to be capable of
destroying an immunodominant peptide of myelin basic protein
(MBP, 85–99) an auto antigen implicated in the autoimmune dis-
ease multiple sclerosis (14) and to perform the early step of Ii
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chain degradation in human B-EBV cells (15). AEP participation
was clearly demonstrated in processing antigens in human APCs.
However, its role was less clear in mice. Indeed, it was reported
that in AEP-deficient cells, antigen processing of Ii chain and two
other antigens were weakly altered (16, 17).

An additional lysosomal processing enzyme, named GILT
or gamma interferon inducible lysosomal thiol reductase, was
described to generate T cell epitopes by reducing proteins disul-
fide bonds. Indeed, by catalyzing the reduction of disulfide bonds,
GILT generates proteins partially denatured more susceptible to
proteolysis. GILT is now reported to be required for the presen-
tation of many peptide ligands of hen egg lysozyme, ribonuclease
A, human IgG, the melanoma differentiation antigens tyrosine
and TRP1, the human immunodeficiency virus-1 envelope pro-
teins and the allergens Derp1 and Blag2 which all contain disulfide
bonds (18–22).

Another important role of AEP and GILT is to regulate the
expression or the maturation of other cysteine proteases. Lysoso-
mal proteases reach the endocytic compartments as proforms or
zymogens where their propeptide is removed by proteolysis. The
resulting single-chain form is then cleaved into a mature form or
a two-chain form (heavy and light chains). For example, GILT has
been described to regulate the expression of cathepsin B specif-
ically in B cells (23) and AEP-deficient mice exhibit a defect in
the maturation of Cat B, Cat D, Cat H, and Cat L in kidney and
bone marrow derived dendritic cells (BMDCs) (16, 24, 25) and
an increase in Cat K expression. How exactly AEP mediates these
events are still unclear.

Acidic pH is a prerequisite for maturation and activity of
most of these intracellular proteases and so their maximal activ-
ity is found in lysosomal compartments. Indeed, chloroquine, a
lysomotropic agent, which was shown to abrogate MHC class II
antigen presentation because of inhibiting enzymatic activities in
lysosomes, also altered intracellular toll-like receptors (TLRs) sig-
naling (26). Accordingly, a new role for the endocytic proteases
was discovered.

TLRs PROCESSING
Toll-like receptors are proteins, which recognize conserved mole-
cules from microorganisms and in DCs, they are crucial in linking
innate to adaptive immunity. TLRs contain several leucine rich
repeats (LRR) in an extracellular loop, a trans-membrane domain,
and a cytosolic domain and are expressed either at the plasma
membrane or in the endosomal/lysosomal organelles. TLR stimu-
lation is linked to MyD88 or TRIF-dependent signaling pathways
that regulate the activation of different transcription factors, such
as NF-κB and IRF (27). Specific interaction between TLRs and
their ligands activates NF-κB resulting in enhanced inflammatory
cytokine responses, induction of DCs maturation and expression
of chemokine receptors. TLRs expressed at the plasma membrane
recognized Gram-negative bacteria and endosomal TLRs sense
viral and bacterial nucleic acids such as double/single-stranded
RNA or double stranded DNA. Endogenous ligands called DAMPs
(for damage associated molecular patterns) may also activate TLRs
during self-tissues or cell damage (28). Several published results
demonstrated that intracellular TLRs require partial proteolysis
in endosomes for full-activation. Indeed, many groups have now

reported that murine TLR9 is non-functional until it is subjected
to proteolytic cleavage in the endosomes (24, 29–31). Upon stim-
ulation, full-length (FL) TLR9 is cleaved into a C-ter fragment
sufficient for signaling. This cleavage is realized by several pro-
teases in different cells. Addition of Z-FA-FMK, a broad inhibitor
of cathepsins, or specific inhibitors of cathepsins B, L, and S par-
tially or completely impaired TLR9 signaling in macrophages and
B cell lines. In primary cells such as BMDCs, deficiency of cathep-
sin L led to partial reduction (about 50%) of TLR9 function. In
cathepsin K deficient DCs, TLR9 signaling was totally abrogated
(32). Moreover, inhibition of cathepsin K activity exerted benefi-
cial effects on collagen-induced arthritis in mice, an autoimmune
disease induced after injection of type II collagen and complete fre-
und adjuvant containing TLR9 agonist such as CpG-ODN (32).
In addition, in DCs and mice lacking AEP, even though TLR9
cleavage in phagosomal compartments was still occurring, CD4+

antigen specific T cell proliferation was greatly reduced upon
CpG and ovalbumin stimulation (24). These results correlated
with some in vitro digestion assays where FL TLR9 was shown
to be proteolyzed into a C-ter fragment by cathepsins K, L, S,
or AEP (24, 29–31). Altogether, these results described clearly
the involvement of several distinct lysosomal proteases for TLR9
function.

Concerning TLR7, the literature is scarce but it was firstly
reported the generation of a TLR7 proteolytic fragment (33) on a
SDS gel, which by analogy with TLR9 was identified as the TLR7
C-ter fragment. Then, using different wild type or AEP-deficient
primary cells, such as DCs, plasmacytoid dendritic cells (pDCs) or
epithelial cells, it was shown that TLR7 was also subjected to simi-
lar proteolytic maturation than TLR9 and required AEP for proper
signaling. In addition, infected mice lacking AEP with influenza
virus, a single-stranded RNA sensed by TLR7, developed much
less inflammation and exhibited significant reduced CD8+ T cells
priming (34). Recently, it was shown that, in contrast to TLR9,
TLR7 N-terminal fragment (N-Ter) remained linked by a disulfide
bond with TLR7 C-ter. Cysteine 98 in TLR7 N-ter and Cysteine 445
in TLR7 C-ter were required for this disulfide bond and mutating
one of them abrogated TLR proteolytic cleavage and RNA sens-
ing (35). It will be interesting to investigate whether this disulfide
bond in TLR7 is also required for TLR7 signaling in pAPCs such
as DCs and the eventual role of GILT in maintaining or reduc-
ing this disulfide bond. Nevertheless, it still uncertain whether or
not human TLR7 and TLR9 require proteolysis for their function.
Only one report to date has shown that blocking AEP activity in
human pDCs totally abrogate TLR9 signaling (24).

The results concerning TLR3 processing are less obvious. In
the mouse and human system, it was described that Z-FA-FMK
did alter TLR3 processing but not its signaling in a macrophage
cell line and in HEK 293 cells overexpressing TLR3 and UNC93B1
(36). In contrast, inhibition of TLR3 processing into a C-ter frag-
ment and subsequently its signaling was reported by the group of
S. Lebecque in human monocyte derived DCs incubated with Z-
FA-FMK (37). Moreover, the identity of the proteases involved in
TLR3 proteolysis is still a matter of debate. Yet, cathepsins B and H
seem to be good candidates (38) to generate the TLR3 C-terminal
fragment as it was observed that in cells silenced for these two
genes, the generation of the TLR3 C-ter fragment was reduced.
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FIGURE 1 | Endosomal proteases process internalized antigens and
intracellularTLRs. Both intracellular TLRs and MHCII molecules
associate with their specific chaperones proteins in the ER, UNC93B1,
and Ii chains respectively, and traffic toward the endosomes. In the
endosomes, TLRs, Ii chain, and exogenous antigens are cleaved by
proteases. Peptides are loaded on MHCII molecules and the complexes

MHCII-peptides are then target to the plasma membrane to interact
with their specific TCR expressed by CD4+ T cells. Cleaved TLRs
associate with the adaptor molecule MyD88 that trigger either NF-κB or
IRF activation. These two events, formation of MHC II-peptide
complexes and TLRs activation in APCs, are critical for inducing CD4 T
cell responses.

Intracellular TLRs traffic from the ER to lysosomal compart-
ments where they respond to their ligands. UNC93B1, an ER
resident protein, facilitates their trafficking (39, 40). In mice
and cells defective for UNC93B1, harboring a mutation in the
trans-membrane domain, TLR7 and TLR9 remain in the ER
and fail to respond to TLRs stimulation. As a consequence,
mice expressing mutated UNC93B1 (3d mice) are more sus-
ceptible to bacterial and viral infection (41, 42). Beyond the
role of UNC93B1 in intracellular TLRs trafficking, UNC93B1
is also important in the MHC class I cross presentation and
MHC class II pathways (42). Indeed, mice and DCs mutated
for UNC93B1 are unable to present exogenous antigens to
CD4+ and CD8+ T cells. However, despite abundant work on
UNC93B1, little is known about the molecular mechanism lead-
ing to MHC II antigen presentation defect in pAPCs express-
ing a faulty UNC93B1 protein. Interestingly, recently, MHCII
has been shown to promote full-activation of TLR9. Follow-
ing stimulation of TLR3 and 9, MHCII forms a complex with
CD40 and the phosphorylated Bruton tyrosine kinase (Btk)
in lysosomes (43). This prolonged interaction maintains Btk
activated and increases proinflammatory cytokines and type I

interferon secretion by DCs and macrophages following TLRs
stimulation.

In addition to the role of TLRs in DCs activation via the up regu-
lation of costimulatory molecules, TLR7 and 9 stimulation induce
a drop of pH in the early endosomes of DCs (24, 34). This acidic
pH, which boost protease activities, probably also favor processing
of exogenous antigen and MHC class II presentation.

CONCLUSION
The endosomal/phagosomal pathway is a key meeting point
between proteins regulating innate and adaptive immunity
(Figure 1). MHCII, UNC93B1, and proteases have been shown
to regulate both TLRs signaling and MHCII presentation. Under-
standing how proteases are regulated in specific APCs and identify-
ing new components in TLRs activation, especially upon pathogen
infection, will be no doubt important for controlling specific
unwanted immune responses.
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