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Abstract
Herbivorous insects acquire microorganisms from host plants or soil, but it remains 
unclear how the diversity and functional composition of host plants contribute to 
structuring herbivore microbiomes. Within a controlled tree diversity setting, we 
used DNA metabarcoding of 16S rRNA to assess the contribution of Lepidoptera 
species and their local environment (particularly, tree diversity, host tree species, and 
leaf traits) to the composition of associated bacterial communities. In total, we ob-
tained 7,909 bacterial OTUs from 634 caterpillar individuals comprising 146 species. 
Tree diversity was found to drive the diversity of caterpillar-associated bacteria both 
directly and indirectly via effects on caterpillar communities, and tree diversity was a 
stronger predictor of bacterial diversity than diversity of caterpillars. Leaf toughness 
and dry matter content were important traits of the host plant determining bacte-
rial species composition, while leaf calcium and potassium concentration influenced 
bacterial richness. Our study reveals previously unknown linkages between trees and 
their characteristics, herbivore insects, and their associated microbes, which contrib-
utes to developing a more nuanced understanding of functional dependencies be-
tween herbivores and their environment, and has implications for the consequences 
of plant diversity loss for trophic interactions.
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1  | INTRODUC TION

Insect symbionts comprise of bacteria, fungi, and viruses, and persist 
both in the insects and on the cuticle of their exoskeleton and engage 
in a variety of interactions (Frago et al., 2012; Klepzig & Six, 2004). 
Herbivorous insects can acquire specific symbiont bacterial species 
from host plants or environment, such as the soil in which the host 
plants grow (Kikuchi et al., 2012; Sugio et al., 2015). Many symbionts 
found in the gut of insects are allied to microorganisms of the imme-
diate environment (Frago et al., 2012). In addition to gut symbionts, 
herbivorous insects are known to acquire intra- and extracellular mi-
crobes also from host plants (Caspi et al., 2011; Li et al., 2016).

Studies of bacterial communities of Lepidoptera have increased 
rapidly in past several years, mostly because Lepidoptera possess 
extraordinary species richness and are important forest and ag-
ricultural pests (Belda et  al.,  2011; Broderick et  al.,  2004; Gayatri 
et al., 2012; Xia et al., 2013; Xiang et al., 2006). However, some re-
cent studies reported that caterpillars lack resident gut microbes 
(Hammer et al., 2017; Hammer et al., 2019). Most of the microbes 
found in the Lepidoptera gut were found to be shared with the sur-
rounding leaf surface or with the soil in which the host plant grew, 

and the bacteria seem to have no effects on growth and survival 
of the caterpillar (Hammer et  al.,  2017; Whitaker et  al.,  2016). If 
indeed lacking a persistent microbiome, then any microbial-driven 
processes in caterpillars might be more susceptible to environmental 
influences than would otherwise be.

What kind of environmental factors influence the microbial com-
munity of herbivorous insects? And to what extent did these factors 
influence the herbivore microbes? To answer these questions, we an-
alyze the relationships between the bacterial composition and diver-
sity of host plant and herbivores. This is conducted in the “BEF-China” 
experiment, a large-scale forest biodiversity experiment incorporat-
ing random extinction scenarios of tree species, and used to estimate 
the ecological effects of biodiversity loss (Bruelheide et al., 2014). We 
target microbial symbionts on and in the caterpillar body, using 16S 
rRNA gene sequencing (Figure 1). We hypothesize that the community 
composition of herbivore-associated microbes is driven by specific as-
pects of their surroundings (i.e., leaf traits, host tree species identity, 
and diversity of tree species in the host tree community) and by the 
composition and diversity of the host herbivore species. We aim to 
assess the relative importance of direct host-mediated effects versus 
environmentally mediated effects on the herbivore microbiome.

K E Y W O R D S

16S rRNA, Bacteria, BEF-China, herbivore-associated microbiome, leaf characteristics, 
Lepidoptera, Microbial ecology

F I G U R E  1   Overview of the study; (a) location of the study site; Xin-Gang mountain, Jiangxi Province (29°08′–29°11′N, 
117°90′–117°93′E), southeast China, with a typical subtropical climate; (b) two example plots in the study site, with tree species richness of 
2 & 4; (c) presence / absence of three Lepidoptera species in the two plots; (d) the relationships between trees, lepidopteran samples and 
their associated bacterial OTUs
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2  | MATERIAL S AND METHODS

2.1 | Experimental design for study sites

The study was conducted in the BEF-China forest biodi-
versity experiment, which was established in the southeast 
of China (Xingangshan, Jiangxi Province, 29°08′–29°11′N, 
117°90′–117°93′E) in 2009. The study area has a subtropical mon-
soon climate with an annual mean temperature of 16.7°C and pre-
cipitation of 1,821 mm (Yang et al., 2013). The 38.4 ha study area 
consists of two sites including a total of 566 plots (25.8 *25.8 m/
plot, 271 plots in site “A” and 295 plots in site “B”). In each plot, 400 
trees were planted in 20 rows and 20 columns. The species pool in-
cludes 40 species of trees. Species were selected for each plot ac-
cording to a random broken stick design for extinction scenarios of 
24, 16, 8, 4, and 2 mixtures and monocultures (the 24-species mix-
tures are an additional treatment on top of this design; Bruelheide 
et al., 2014).

2.2 | Sample collection of individual caterpillars

We focus on the larval stage, being the primary feeding stage of 
Lepidoptera and typically the focus for studies of herbivory. The 
collection of lepidopteran larvae used herein has been previously 
reported, with focus on tree diversity effects on herbivores them-
selves in Wang et  al.  (2019, 2020); thus, here we focus on the 
microbiomes associated with these herbivores. In October 2018, 
we selected individuals from the caterpillar samples for extraction 
of bacterial DNA. We recognize that DNA contamination could be 
an issue. We therefore took steps to avoid this. Firstly, the cater-
pillar samples were cleaned with sterile water and 75% ethanol 
and then kept in separate tubes with 99.5% ethanol. Secondly, we 
extracted whole lepidopteran larvae, but we broke their bodies 
sufficiently that we can obtain their gut microbiota. All individu-
als were stored in a − 20 ℃ freezer prior to DNA extraction. To 
ensure the comparability of caterpillar-associated bacteria across 
the tree diversity levels, we selected the individual caterpillars 
randomly from different plots based on the BEF-China design 
(118 caterpillars came from monocultures, and 110, 104, 97, 98, 
and 107 came from the mixtures of 2, 4, 8, 16, and 24 species, 
respectively; details see from Table 1). Those Lepidoptera species 
that had the highest abundances in each plot were selected as 
representative for the plot. As the number of caterpillars among 
plots and that of different Lepidoptera species varied greatly, we 
selected the caterpillars to sample as many different tree species 
per plot as possible. Because of tree mortality, the whole sample 
included 37 tree species from 54 plots (Table  1). For each plot, 
all bacterial sequences obtained from the selected caterpillars 
served as the bacterial community of the Lepidoptera larvae from 
the given plot. Totally, this resulted in the selection of 444 trees 
covering the full tree diversity gradient and a total of 634 caterpil-
lar individuals.

As the current strategy for sampling caterpillar-associated bac-
teria at the plot level has some limitations (particularly, the bacterial 
composition of some rare Lepidoptera species was not considered), 
we tested whether the results were affected by sample size. To this 
end, we used additional linear models to check the relationships 
between bacterial and tree species richness at the tree richness 
level (Figure 3a and 3b). We found that the different Lepidoptera 
species feeding on the same tree species showed similar bacterial 
communities (relative abundance of bacterial phyla; Figure S1), and 
there was no significant difference in bacterial diversity (results not 
shown).

2.3 | DNA extraction, amplification, 
quantitation, and sequencing

Total DNA was extracted from the individual caterpillars (because 
many larvae were very small or less than 5 mm) using Qiagen DNeasy 
Tissue Kit (QIAGEN GmbH, Hilden, Germany), following the manu-
facturer's protocol. Samples were processed using sterile tools and 
conditions. The DNA extracts were quantified using the Qubit 4.0 
Fluorometer and stored at −20°C for further processing.

The V3 and V4 regions of the 16S rRNA gene, a fragment 468 bp 
in length, were targeted as it has among the highest taxonomic cov-
erage in bacteria (Klindworth et al., 2012). V3 and V4 were amplified 
using the 16S forward (5′ -ACTCC TACGG GAGGC AGCAG −3′) and 
reverse (5′ - GGACT ACNVG GGTWT CTAAT - 3′; Zeng et al., 2011) 
primers. The reaction system involved 4 μL of 5 × FastPfu Buffer, 
2 μL of 2.5 mM dNTPs, 0.8 μL of forward primer, 0.8 μL of reverse 
primer, 0.4 μL of FastPfu Polymerase, 0.2 μL of BSA, 9.5 μL of water, 
and 10 ng of template DNA. The conditions of the PCR were 3 min 
template denaturation at 95°C, followed by 30 cycles at 95°C for 
30 s per cycle, 30 s annealing at 53°C, elongation at 72°C for 45 s, 
and 10 min extension at 72°C finally. The resulting PCR products 
were extracted from 2% agarose gel and further purified using the 
AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City, 
CA, USA), and quantified using QuantiFluor™-ST (Promega, USA) ac-
cording to the manufacturer's protocol.

Caterpillar-derived amplicons were purified and barcoded (Wang 
et  al.,  2019, 2020). Purified amplicons were quantified, pooled in 
equimolar, and paired-end sequenced using the V2 Illumina chem-
istry (2x300 bp) on an Illumina MiSeq platform (Illumina, San Diego, 
USA; Illumina, Inc. 2015) according to the standard protocols by 
Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China).

2.4 | Bioinformatics analyses

We used both VSEARCH v 2.8.1 (Rognes et al., 2016) and USEARCH 
v 11 (Edgar,  2010) to process raw sequences. Firstly, the read 
pairs were merged, primers were trimmed, and quality filtering 
excluded short and low-quality reads (below 25), using VSEARCH. 
Then, we dereplicated the data (retaining abundance information) 
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TA B L E  1   Tree species richness, composition, and caterpillar sample size of the study plots

Site Plot Tree richness Caterpillar number Tree Species Composition

A E31 1 5 Quercus fabri

A E33 1 5 Lithocarpus glaber

A E34 1 5 Castanea henryi

A F21 1 5 Quercus serrata

A G24 1 5 Koelreuteria bipinnata

A I28 1 5 Liquidambar formosana

A K19 1 4 Schima superba

A L11 1 5 Castanopsis sclerophylla

A N11 1 5 Sapindus mukorossi

A N13 1 4 Sapium sebiferum

A O22 1 4 Cyclobalanopsis myrsinifolia

A O27 1 5 Choerospondias axillaris

A R14 1 5 Cyclobalanopsis glauca

A W14 1 5 Nyssa sinensis

A C32 2 9 C. henryi; N. sinensis

A H31 2 10 L. formosana; S. mukorossi

A I27 2 10 C. axillaris; S. sebiferum

A J21 2 10 K. bipinnata; L. glaber

A P23 2 4 S. superba; R. chinensis

A P26 2 7 Q. serrata; C. sclerophylla

A Q21 2 6 Q. fabri; C. glauca

A F27 4 18 Q. serrata; Ch. axillaris; S. sebiferum; C. sclerophylla

A N8 4 19 S. superba; Q. fabri; Rh. chinensis; C. glauca

A P19 4 12 C. henryi; L. formosana; S. mukorossi; N. sinensis

A W/X12 4 10 K. bipinnata; C. myrsinifolia; L. glaber; C. eyrei

A S10 8 29 C. henryi; L. formosana; Q. serrata; C. axillaris; S. mukorossi; N. sinensis; 
S. sebiferum; C. sclerophylla

A T15 8 34 S. superba; K. bipinnata; Q. fabri; R. chinensis; C. glauca; C. myrsinifolia; 
L. glaber; C. eyrei

A L22 16 60 C. henryi; S. superba; L. formosana; Q. serrata; K. bipinnata; Q. fabri; C. 
axillaris; R. chinensis; C. glauca; S. mukorossi; N. sinensis; S. sebiferum; 
C. myrsinifolia; L. glaber; C. eyrei; C. sclerophylla

A N9 24 54 All 16 species + additional 8 species for Site Aa 

B I25 1 4 Manglietia yuyuanensis

B M7 1 5 Betula luminifera

B N28 1 5 Idesia polycarpa

B N5 1 5 Ailanthus altissima

B Q27 1 4 Alniphyllum fortunei

B Q29 1 5 Machilus leptophylla

B R29 1 5 Castanopsis fargesii

B U16 1 5 Elaeocarpus japonicus

B V24 1 5 Elaeocarpus chinensis

B W10 1 5 Phoebe bournei

B W11 1 4 Elaeocarpus glabripetalus

B G28 2 10 B. luminifera; C. fargesii

B M24 2 8 C. biondii; E. glabripetalus

(Continues)
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and generated OTUs through the UNOISE algorithm (≥ 100%) in 
USEARCH (Edgar, 2016). Bacterial abundances are calculated after 
denoising by generating an OTU table with otutab command. Finally, 
the OTUs were assigned taxonomic information using the Silva 138 
SSU database by using the “sintax” command in USEARCH (thresh-
old ≥ 90%), after which nonbacteria OTUs were removed (Pruesse 
et al., 2007). Bacteria were classified at the level of phylum, class, 
order, family, genus, and species.

Phylogenetic diversity (PD) of bacteria was incorporated as re-
sponse variables. To construct the bacterial phylogeny, we used 
MAFFT v 7.0 (Misawa et al., 2002) to align the sequences, trimmed 
the alignment with MEGA v 7.0 (Kumar et al., 2016), and inferred the 
phylogeny using the ML software IQ-TREE v 1 (Nguyen et al., 2015).

2.5 | Leaf traits

We selected 11 morphological and chemical leaf traits which we 
considered prime candidates for determining leaf quality for herbi-
vore insects, and to characterize plot conditions in accordance with 
nutritional quality and potential defense traits of the trees. We used 
leaf area, specific area, dry matter content and toughness as the 
main morphological traits, and leaf potassium, calcium, magnesium, 
sodium, phosphorus, carbon, and nitrogen content, and C: N ratio, 
as the chemical leaf traits (see Table S1 for abbreviations that will be 
used below). All of these traits were measured on sun-exposed, fully 
expanded, undamaged leaves from five to seven individuals per tree 
species according to standard protocols (Kröber et al., 2012; Pérez-
Harguindeguy et al., 2003). More details on trait measurements can 
be found in Kröber et al. (2012).

2.6 | Community-weighted mean trait values, 
functional and phylogenetic diversity

We used the community-weighted mean (CWM) of each trait as 
well as the functional diversity of selected traits for each tree spe-
cies, which is the mean value of each species’ trait weighted by the 
species contribution to the plot wood volume. The CWM values of 
each trait in each plot were calculated by the following equation: 
CWMtp =

∑

S
i= 1

Vip × ti where Vip is the relative tree wood volume of 
species i in plot p and ti is the mean trait value of species i (Garnier 
et al., 2004). Tree wood volume was estimated from basal area and 
tree height measured on trees in the center of each plot accord-
ing to Fichtner et  al.  (2017). We used species-mean trait values 
as previous studies in BEF-China demonstrated that variability in 
trait–environment relationships was much more pronounced at the 
interspecific than the intraspecific level (Schuldt et al., 2012).

To characterize the plot conditions of the study sites, the follow-
ing metrics were calculated at the plot level. The functional diver-
sity of trees was calculated by the mean pairwise distance of trait 
values among tree species, weighted by relative wood volume, and 
expressed as Rao's Q (Ricotta & Moretti, 2011). We also depicted PD 
of tree communities by wood volume-weighted phylogenetic mean 
pairwise distance (MPD), which in the abundance-weighted case is 
equivalent to Rao's Q (Tucker et al., 2016). In addition, we calculated 
the mean nearest taxon distance (MNTD), a measure of the phyloge-
netic distance to the nearest taxon, which for each taxon quantifies 
the extent of terminal clustering (Webb, 2000; Webb et al., 2002). 
Phylogenetic indices were calculated on a maximum likelihood phy-
logenetic tree of all woody species recorded in all plots (Purschke 
et al., 2017).

Site Plot Tree richness Caterpillar number Tree Species Composition

B M29 2 10 E. japonicus; P. bournei

B O27 2 9 M. yuyuanensis; Q. phillyreoides

B V19 2 9 E. chinensis; M. thunbergii

B V23 2 8 A. fortunei; M. leptophylla

B M22 4 8 A. fortunei; E. chinensis; M. thunbergii; M. leptophylla

B O31 4 14 C. biondii; E. glabripetalus; E. japonicus; P. bournei

B R3 4 14 B. luminifera; C. fargesii; M. yuyuanensis; Q. phillyreoides

B S18 4 7 A. altissima; I. polycarpa; M. flexuosa; M. grijsii

B J29 8 21 A. altissima; C. biondii; E. glabripetalus; E. japonicus; I. polycarpa; M. 
flexuosa; M. grijsii; P. bournei

B Q17 8 13 A. fortunei; B. luminifera; C. fargesii; E. chinensis; M. thunbergii; M. 
leptophylla; M. yuyuanensis; Q. phillyreoides

B S22 16 38 A. altissima; A. fortunei; B. luminifera; C. fargesii; C. biondii; E. chinensis; 
E. glabripetalus; E. japonicus; I. polycarpa; M. flexuosa; M. grijsii; M. 
thunbergii; M. leptophylla; M. yuyuanensis; P. bournei; Q. phillyreoides

B T8 24 54 All 16 species + additional 8 species for Site Bb 

aAdditional species for Site A: Sapium discolor, Castanopsis carlesii, Diospyros glaucifolia, Melia azedarach, Acer davidii, Daphniphyllum oldhamii, Quercus 
acutissima, Cinnamomum camphora 
bAdditional species for Site B: C. eyrei, C. sclerophylla, C. camphora, C. glauca, D. oldhamii, D. glaucifolia, L. glaber, S. superb 

TA B L E  1   (Continued)
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In addition to plants, indices of Lepidoptera diversity were in-
cluded. We incorporated Faith's PD, abundance-weighted phyloge-
netic MPD and MNTD of the lepidopteran communities sampled per 
study plot (Wang et al., 2019) as predictors in our models. The phylo-
genetic data were obtained from a maximum likelihood phylogenetic 
tree based on all lepidopteran samples we collected from 2017 and 
2018 (Wang et al., 2020).

2.7 | Statistical analyses

Statistical analyses were conducted using the packages picante 
(Kembel et  al.,  2010), vegan (Oksanen,  2008), ape (Paradis & 
Schliep, 2019), edgeR (Robinson et al., 2010), phyloseq (McMurdie & 
Holmes, 2013), lavaan (Rosseel, 2012), and lulu (Frøslev et al., 2017) 
in R v 3.5.2 (http://www.R-proje​ct.org). Firstly, to eliminate the 
impacts on differing read numbers across samples, the number of 
sequences of all samples was rarefied to the lowest read number 
by using the “rarefy” function of the vegan package (rarify depth: 
11,000). The bacterial Sobs (observed bacterial richness), Chao1 
(nonparametric estimator for bacterial richness), Shannon diversity, 
and Pielou's evenness were calculated for each plot from bacterial 
abundance using the “diversity” function of the vegan package. To 
improve normality and variance in homogeneity of the model re-
siduals, tree species richness, Lepidoptera richness, abundance, and 
bacterial Sobs were log-transformed, and Chao1, Shannon diversity, 
and Pielou's evenness were square-root transformed. All continuous 
predictors were standardized before the analyses.

To avoid multicollinearity affecting our statistical analyses, we 
tested correlations among all predictors through the Pearson's cor-
relation coefficients (r > 0.7 interpreted as a strong correlation) and 
examined variance inflation factors (VIF) in statistical models. Single 
regression analyses were first used to assess the relationships be-
tween species richness, herbivory, phylogenetic metrics of the di-
versity of trees/lepidopteran larvae (PD, MPD, and MNTD) and alpha 
diversity of the bacterial community. Then, we used linear models 
to test the potential effects of tree species richness, Lepidoptera 
richness, leaf traits, and plot covariables on caterpillar-associated 
bacteria. We used bacterial richness (Sobs and Chao1), bacterial PD, 
Shannon diversity, and Pielou's evenness as response variables. For 
predictors, we included tree species richness, MPD, MNTD, tree 
functional diversity, CWMs of the selected leaf traits and woody 
volume, Lepidoptera richness, abundance, MPD, and MNTD. We 
did not include Lepidoptera richness and phylogenetic diversity 
in the same models because of their strong collinearity (Pearson's 
r > 0.9, p <.001). The same applied to tree species richness and MPD 
(Pearson's r > 0.7, p <.001). In addition, we used the interaction be-
tween site and tree species richness/tree functional diversity in our 
models. The linear models were simplified in a stepwise procedure 
until we obtained the model with the lowest AICc.

Path analyses were conducted to explore the potential causal re-
lationships among tree species richness, Lepidoptera richness, leaf 

traits, plot covariables, and richness of caterpillar-associated bacte-
ria. Based on prior and theoretical knowledge, we hypothesized that 
species richness of trees and Lepidoptera might directly influence 
bacterial communities. In addition, tree species richness could also 
indirectly influence bacterial communities via Lepidoptera richness. 
Concurrently, leaf traits may have direct or indirect effects on bacte-
rial communities. Nonsignificant pathways were gradually removed 
if their removal improved model fit (Scherber et al., 2010). The model 
fit was assessed by comparative p value, fit index value (CFI), Akaike 
Information Criteria (AIC), and root mean square errors of approxi-
mation (RMSEA). Adequate model fits are indicated by high CFI, low 
AIC, and low RMSEA.

As for bacterial Beta diversity, we defined it as Arrhenius ex-
ponent “z” (calculated with “betadiver” function) in our study and 
compared the variances of dissimilarities using the “adonis” function 
in vegan (Anderson, 2006), with a p value obtained from 9,999 per-
mutations. Moreover, we used a Mantel test to check whether bac-
terial composition was influenced by spatial location. Differentially 
abundant bacterial OTUs were detected using edgeR’s generalized 
linear model (GLM) approach. This method allows for testing differ-
ential bacterial abundance between different levels of factors by 
employing a design matrix to account for complex experimental de-
signs. We fitted a generalized linear model with a negative binomial 
distribution to the normalized values for each of the bacterial OTUs. 
Differential abundance was tested using a likelihood ratio test, using 
an adjusted P value cutoff of 0.01. The bacterial OTUs that were 
enriched in mixtures were compared with bacterial counts from the 
monoculture plots as reference, and in addition, for higher species 
richness, also with the bacterial counts from 2, 4, and 8 species mix-
tures. Distance-based redundancy analysis (db-RDA analysis) based 
on Bray–Curtis distances was performed using the function “cap-
scale” from the R Package vegan. To determine whether plot covari-
ables and CWM of leaf traits contribute to explaining the microbial 
community structure of lepidopteran samples, we applied variance 
partitioning, based on the db-RDA analysis.

3  | RESULTS

After merging reads and filtering for quality, we obtained 16,490,248 
reads (out of 20,466,051 raw reads) in total from 634 caterpillar indi-
viduals, delineated to 7,909 bacterial OTUs. There were minor shifts 
in bacterial phyla among tree genera of plots (Figure 2 and Table S2). 
The three most abundant bacterial phyla were Proteobacteria, 
Firmicutes, and Actinobacteria. Among classes, Alpha- and Gamma-
proteobacteria classes predominated. We found six core OTUs (pre-
sent in more than 90% of the samples), which belong to four phyla 
(Proteobacteria, Actinobacteria, Firmicutes, Deinococcus-Thermus). 
Based on information of the taxonomic assignment, two of them 
belong to the genus Enterococcus, one was Enterococcus sp. and 
the other was Enterococcus faecalis, and the remains were common 
species exist in the environment. We chose the four most abundant 

http://www.R-project.org
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Lepidoptera species (> 24 individuals and observed at all tree di-
versity levels) to examine distribution patterns of their bacterial 
phyla (Figure S2). We found that the bacteria of a given Lepidoptera 
species varied greatly in composition among tree diversity levels, 
and the bacteria of different Lepidoptera species often varied sub-
stantially within a given tree diversity level. Further, based on the 
assigned taxonomic information, we inferred that only two of the 
core species are likely to have been derived from the gut of caterpil-
lars, the remainder likely from the leaf surface or elsewhere in the 
environment.

Bacterial richness (both Sobs and Chao1) and Shannon diversity 
differed across the study plots, and both were significantly cor-
related with tree species richness (Figure  3c–3f, Table  2). These 
results were confirmed when analyzing the relationship between 
tree species richness and bacterial diversity at the tree richness 
level (i.e., based on similar numbers of caterpillars in each richness 
level; Figure 3a and 3b). Furthermore, estimated bacterial richness 
(Chao1) at the plot level was also affected by Lepidoptera abun-
dance, Lepidoptera richness, and the interaction of tree species rich-
ness and Lepidoptera richness (Table 2). Tree species richness also 
corresponded to the caterpillar microbiomes when using Pielou's 
evenness. Moreover, bacterial richness (both Sobs and Chao1) were 
positively correlated with CWMs of several leaf traits of tree com-
munities, especially LDMC and leaf K content. Shannon diversity 
was correlated with tree species richness and the CWMs of LT, leaf 
Ca content, and K content (Table 2). Pielou's evenness was also posi-
tively correlated with CWMs of Ca content and K content.

The path analyses (Figure 4; Table S3) showed that tree species 
richness directly influenced Lepidoptera richness, which in turn af-
fected the bacterial richness. At the same time, bacterial richness 

was driven by tree species richness both independently and directly, 
and this influence was far greater than that of Lepidoptera richness 
on bacterial richness. Moreover, leaf traits also negatively affected 
bacterial richness and had an indirect influence through effects on 
Lepidoptera richness. The CWM of LDMC had a positive effect on 
bacterial richness both directly and indirectly, through Lepidoptera 
richness.

The bacterial Beta diversity among different tree diversity gra-
dients was significantly different (Jaccard dissimilarity, F  =  1.946, 
p  =.001; Morisita dissimilarity: F  =  2.245, p  =.04; Horn–Morisita 
dissimilarity: F = 2.237, p =.03; Bray–Curtis dissimilarity: F = 2.004, 
p =.004; Chao dissimilarity: F = 0.316, p =.007). Mantel test indi-
cated that there was no significant relationship between bacterial 
composition and spatial location (r  =  0.07, p  =.14). db-RDA anal-
ysis was performed to determine whether plot covariables and 
CWM of leaf traits affected the bacterial community structure of 
lepidopteran samples. The bacterial community structure differed 
across the study plots but was not significantly affected by species 
richness of Lepidoptera. However, it was influenced by tree richness 
(db-RDA pseudo-F = 1.41, Padj < 0.05; Figure 5), CWM LDMC (db-
RDA pseudo-F  =  2.51, Padj  <  0.01), and CWM LT (db-RDA pseu-
do-F = 1.88, Padj < 0.01).

The analyses of differentially abundant bacterial OTUs between 
tree richness levels were conducted by fitting a generalized linear 
model with a negative binomial distribution to normalized values for 
each of the 7,909 bacterial OTUs, and testing for differential abun-
dance using a likelihood ratio test. We first used bacterial counts 
from monoculture plots as a control and an adjusted P value cutoff 
of 0.01, and compared it with the bacterial counts from 2, 4, 8, 16, 
and 24 species mixed plots separately. As shown in Figure  6, the 

F I G U R E  2   Bacterial phyla present in 
each tree genus, with relative abundances 
averaged across tree individuals of the 
same genus. The bacterial phyla are listed 
in the legend. Analysis is limited to phyla 
with site relative abundance >= 0.1%
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enriched bacterial counts were always greater than depleted counts 
in comparison with the control. Then, we used the counts from 2, 
4, 8, and 16 tree species mixtures as a control and compared suc-
cessively with higher diversity mixtures. We found that the counts 
of the enriched species were higher than that of depleted species 
with increasing diversity when using monocultures and 2 species 
mixtures as controls. Although when using the 4-species mixtures 
as a control, the counts of depleted bacteria exceeded the enriched, 
and the counts of both reduced significantly. In addition, Figure S3 
shows the numbers of differentially enriched and depleted bacte-
rial OTUs between each tree richness level compared with different 
controls.

4  | DISCUSSION

This study highlights the impacts of tree diversity on the diversity 
and community composition of herbivore-associated bacteria, and 
shows they are influenced by tree diversity and characteristics of 
the leaf, in what is both a direct and indirect interaction. The direct 
effect of tree diversity on bacterial diversity was found to predomi-
nate, whereas the composition of bacterial communities was to a 
large part determined by tree diversity and leaf functional traits, es-
pecially LDMC and LT, but also chemical leaf traits such as calcium 
and potassium concentrations. Considering that there is an increas-
ing number of studies reporting that the larva of Lepidoptera recruit 
microbes from the environment, and that they lack a persistent gut 
microbiome (Hammer et al., 2017; Hammer et al., 2019), these are 
key findings that help to better understand which environmental 
factors determine these microbial communities and how such envi-
ronmental effects may influence herbivore functioning.

TA B L E  2   Summary results of linear models for observed 
bacterial richness, estimated bacterial richness (Chao1 estimator), 
Shannon diversity, and Pielou's evenness of bacterial communities 
across a tree species richness gradient. Standardized parameter 
estimates (with standard errors, t and p values) are shown for the 
variables retained in the minimal models

Est ± SE t p

Observed bacterial richness (Sobs)

(Intercept) 6.963 ± 0.056 125.067 <0.001

Lepidoptera 
abundance (log)

0.181 ± 0.178 1.017 0.315

Lepidoptera 
richness (log)

−0.186 ± 0.174 −1.068 0.291

Tree richness (log) 0.205 ± 0.040 5.094 <0.001

SiteB 0.149 ± 0.098 1.514 0.137

CWM LDMC 0.140 ± 0.054 2.588 0.013

CWM LA 0.087 ± 0.043 2.034 0.048

CWM K −0.134 ± 0.038 −3.484 0.001

Lepidoptera 
abundance: SiteB

−0.341 ± 0.207 −1.649 0.106

Lepidoptera 
richness: SiteB

0.430 ± 0.200 2.152 0.037

Estimated bacterial richness (Chao1)

(Intercept) 7.340 ± 0.043 170.524 <0.001

Lepidoptera 
abundance (log)

−0.203 ± 0.090 −2.256 0.028

Lepidoptera 
richness (log)

0.276 ± 0.097 2.839 0.007

Tree richness (log) 0.220 ± 0.060 3.790 <0.001

CWM SLA −0.075 ± 0.041 −1.856 0.069

CWM K −0.157 ± 0.039 −4.041 <0.001

CWM Mg 0.083 ± 0.039 2.127 0.038

Lepidoptera 
richness: Tree 
richness

0.101 ± 0.054 1.863 0.069

Shannon diversity

(Intercept) 1.517 ± 0.036 41.686 <0.001

Lepidoptera 
abundance (log)

−0.136 ± 0.063 −2.179 0.034

Lepidoptera 
richness (log)

0.156 ± 0.067 2.341 0.023

Tree richness (log) 0.062 ± 0.027 2.283 0.027

SiteB 0.194 ± 0.060 3.239 0.002

CWM K −0.141 ± 0.031 −4.582 <0.001

CWM Ca 0.105 ± 0.033 3.209 0.002

CWM LT −0.072 ± 0.027 −2.625 0.012

Pielou's evenness

(Intercept) −0.412 ± 0.033 −12.348 <0.001

Lepidoptera 
abundance (log)

−0.117 ± 0.056 −2.076 0.044

(Continues)

Est ± SE t p

Lepidoptera 
richness (log)

0.065 ± 0.061 1.068 0.291

Tree richness (log) 0.079 ± 0.032 2.462 0.018

SiteB 0.175 ± 0.055 3.153 0.003

CWM K −0.108 ± 0.028 −3.883 <0.001

CWM Ca 0.088 ± 0.029 3.071 0.004

Lepidoptera 
richness: SiteB

0.087 ± 0.049 1.752 0.086

Tree richness: 
SiteB

−0.081 ± 0.049 −1.644 0.107

Abbreviations: CWM Ca, Community-weighted mean value of leaf 
Calcium concentration; CWM K, Community-weighted mean value 
of leaf potassium concentration; CWM Mg, Community-weighted 
mean value of leaf magnesium concentration; CWM LDMC, 
Community-weighted mean value of leaf dry matter content; CWM 
LT, Community-weighted mean value of leaf toughness; CWM SLA, 
Community-weighted mean value of specific leaf area; CWM LA, 
Community-weighted mean value of leaf area; FD, Functional diversity.
Bold values mean the corresponding predictors that had a significant 
effect on certain variable.

TA B L E  2   (Continued)
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Tree diversity affected the diversity of caterpillar-associated 
bacteria through influencing the abundance and diversity of lepi-
dopteran larvae. Wang et al. (2019) reported that the impact of tree 
diversity on herbivore diversity is generally indirect, as tree diversity 
had strong effects on herbivore abundances, which in turn can af-
fect herbivore diversity. The increase in bacterial diversity that fol-
lows increasing Lepidoptera diversity at the plot level is consistent 
with the expectation that more Lepidoptera individuals and species 
provide more niche opportunities for bacteria (Akiko et al., 2015). 
Thus, diversity at one trophic level begets biodiversity at other 
trophic levels. Moreover, tree diversity was found to also directly 
influence the diversity of caterpillar-associated bacteria. The most 
common bacterial groups of the phyllosphere are Acidobacteria, 
Actinomycetes, Bacteroidetes, Firmicutes, and Proteobacteria 
(Bodenhausen et  al.,  2013; Bulgarelli et  al.,  2013), the latter both 

the most abundant taxonomic group observed in our study as well 
as generally associated with the phyllosphere reported by others 
(Humphrey et al., 2014). This suggests that the phyllosphere is one of 
the main sources of the herbivore microbiome (Hammer et al., 2017; 
Whitaker et  al.,  2016). Kembel et  al.  (2014) reported that phyllo-
sphere microbial composition differs according to position and height 
of tree leaves, and physiological and biochemical features such as 
water content, leaf mass, nitrogen and phosphorus concentrations, 
leaf surface structure, and thickness. Moreover, both bacterial and 
fungal communities of the phyllosphere are seasonally dynamic 
(Jumpponen & Jones, 2010; Rastogi et al., 2012). We suspect that 
diversity in environmental drivers is one of the main reasons for the 
very high bacterial compositional dissimilarity observed between 
caterpillars in this study site, with merely 6 bacteria OTU of 7,909 
that were commonly observed. Further, taxonomic analysis showed 

F I G U R E  3   Relationships between 
(a) tree species richness and bacterial 
richness, (b) tree species richness and 
bacterial Shannon diversity (at richness 
level), (c) tree species richness and 
observed bacterial richness, (d) tree 
species richness and bacterial Shannon 
diversity, (e) tree species richness 
and bacterial Pielou's evenness, (f) 
Lepidoptera richness and observed 
bacterial richness. Regression lines (with 
95% confidence bands) show significant 
(p ≤ .05) relationships. The axis values are 
on a log-scale for tree species richness, 
Lepidoptera richness and richness of 
bacteria. Note: Both of observed bacterial 
richness and estimated bacterial richness 
were positively correlated with tree 
species richness, only the former was 
shown here
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that only two of these core species originate from the caterpillar gut, 
the remainder presumably from the leaf surface or elsewhere in the 
environment. This result is generally consistent with the finding re-
ported by Hammer et al. (2017), Hammer et al. (2019), that resident 
microbial symbionts are generally absent, or present in low numbers, 
in the caterpillar gut. Our result implies a correspondence between 
herbivore-associated microbes and their host plants. Another ques-
tion which remains to be tested is the long-term stability of phyllo-
sphere to herbivore microbial interaction, and to what degree they 

are altered upon herbivores encountering new host plants through 
movement or feeding.

It is important to note the effect of leaf traits on the diversity 
and distribution of caterpillar-associated bacteria. As mentioned 
above, the phyllosphere appears to be a key source for herbi-
vore microbiomes and is moderated by tree characteristics such 
as leaf structure (also, LDMC is directly affected by leaf thick-
ness, structure, and specific leaf area and reflects the ability of 
plants to obtain resources). LDMC and LT are usually expected 
to negatively associate with herbivory because structurally ro-
bust leaves are relatively difficult to consume (Pérez et al., 2003). 
However, both the results herein and some previous reports sug-
gest a positive relationship between LDMC and leaf herbivory 
(Lepidoptera richness in this study; Schuldt et al., 2012), probably 
because there are herbivores specifically adapted to tough leaves 
(Pérez et al., 2003) and herbivores have to consume more of less 
nutritious foliage to gain the same nitrogen accumulation rates 
(Scriber & Slansky, 1981).

In addition to the two leaf traits (LDMC and LT) mentioned 
above, we also found that leaf potassium (K) content, calcium (Ca) 
content, and magnesium (Mg) content can affect bacterial richness, 
Shannon diversity, or Pielou's evenness of the bacteria community; 
thus, there are potential links between leaf traits, herbivores, and 
their associated microbes. Compared to other leaf traits, potassium 
(K) content, calcium (Ca) content, and magnesium (Mg) content have 
received little attention with respect to herbivory, but some studies 
have shown that they can have either positive or negative impacts 
on herbivore insects (e.g., fecundity; Awmack & Leather,  2002). 
There is, however, considerable variation in mineral requirements of 
herbivore insects.

Tree species richness was found to be an important factor that 
affected caterpillar-associated bacteria community composition. 
A remarkable result was that certain bacterial OTUs were more 
abundant in tree species mixtures compared to monoculture plots. 
However, the accumulation rate of bacterial taxa in more species-
rich mixtures gradually decreased. That the increase of tree diversity 
might have a certain stabilizing effect on the herbivore-associated 
bacterial community was also supported by our finding that the 
bacterial species composition became more homogenous with 
tree species richness. From this, we would conclude that more tree 
species-rich forests might have richer but more stable and homoge-
neous bacterial communities.

We conclude that tree diversity and leaf traits of the tree com-
munity are strong drivers of the caterpillar-associated bacteria com-
munities in our subtropical forest. Our study revealed the linkages 
between tree (leaves), herbivore insects, and herbivore-associated 
microbes, which contributes to develop a more comprehensive 
understanding of relationship between herbivores and their envi-
ronment. Moreover, the driving and stabilizing effects of tree diver-
sity on herbivore-associated bacteria suggest that future research 
should take effects of plants on herbivore-associated microbes into 
consideration, when studying the relationships between plants and 
herbivores.

F I G U R E  5   Distance-based redundancy analysis plot showing 
the relationships of CWM LDMC, CWM LT, and tree richness 
to the bacterial community structure. The plot represents db-
RDA analysis based on Bray–Curtis distance with all of the plot 
covariables and CWM of leaf traits as explanatory variables. 
CWM LDMC, CWM LT, and tree richness were three significant 
explanatory variables (p < .05)

F I G U R E  4   Path model of the effects of tree species richness 
(direct effect and indirect effects through Lepidoptera abundance 
and Lepidoptera richness), Lepidoptera richness, CWM LT (direct 
effect and indirect effect through Lepidoptera richness), CWM 
LDMC (indirect effect through Lepidoptera richness) on richness 
of bacterial community. The path coefficients next to the arrows 
represent the strength of the positive or negative effects of one 
variable on another (**p < 0.001; *p < 0.05). See Table S1 and S3 for 
abbreviations and statistical values
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