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Glyoxalase-1 (GLO1) is a ubiquitously expressed cytosolic protein which plays a role in

the natural maintenance of cellular health and is abundantly expressed in human skeletal

muscle. A consequence of reduced GLO1 protein expression is cellular dicarbonyl stress,

which is elevated in obesity, insulin resistance and type 2 diabetes (T2DM). Both in vitro

and pre-clinical models suggest dicarbonyl stress per se induces insulin resistance and

is prevented by GLO1 overexpression, implicating a potential role for GLO1 therapy in

insulin resistance and type 2 diabetes (T2DM). Recent work has identified the therapeutic

potential of novel natural agents as a GLO1 inducer, which resulted in improved

whole-body metabolism in obese adults. Given skeletal muscle is a major contributor

to whole-body glucose, lipid, and protein metabolism, such GLO1 inducers may act,

in part, through mechanisms in skeletal muscle. Currently, investigations examining the

specificity of dicarbonyl stress and GLO1 biology in human skeletal muscle are lacking.

Recent work from our lab indicates that dysregulation of GLO1 in skeletal muscle may

underlie human insulin resistance and that exercise training may impart therapeutic

benefits. This minireview will summarize the existing human literature examining skeletal

muscle GLO1 and highlight the emerging therapeutic concepts for GLO1 gain-of-function

in conditions such as insulin resistance and cardiometabolic disease.
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INTRODUCTION

Despite decades of coordinated efforts, T2DM remains a serious public health issue. In the
United States alone, over 30 million adults are suffering from T2DM (1) and ∼86 million are
pre-diabetic and without intervention, may develop overt T2DM as well (2). T2DM is preceded by
progressive skeletal muscle insulin resistance (3). Although the etiology and pathology of skeletal
muscle insulin resistance and progression to T2DM remain multifactorial, emerging research
implicates skeletal muscle dicarbonyl stress as a causative factor. Dicarbonyl stress is described
as abnormally high concentrations of methylglyoxal (MG; a highly reactive dicarbonyl) which
is elevated in diabetes (4). Methylglyoxal (MG) is a potent intracellular glycating agent that
forms advanced glycation endproducts (AGEs). Formed spontaneously from 3-carbon glycolytic
intermediates, MG rapidly glycates proteins and nucleotides, damage mitochondria and directly
increase reactive oxygen species (ROS) production; thus, inducing a pro-oxidant state and

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2018.00117
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2018.00117&domain=pdf&date_stamp=2018-09-10
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jmhaus@umich.edu
https://doi.org/10.3389/fcvm.2018.00117
https://www.frontiersin.org/articles/10.3389/fcvm.2018.00117/full
http://loop.frontiersin.org/people/589595/overview
http://loop.frontiersin.org/people/475522/overview


Mey and Haus Glyoxalase-1 and Methylglyoxal in Muscle

senescent-like condition (4). Drug therapies developed to combat
dicarbonyl stress that function as “MG scavengers” have had little
clinical success; alternate therapies are being developed to utilize
the natural defense against dicarbonyl stress, the glyoxalase
enzymatic defense system.

The glyoxalase enzymatic defense system prevents dicarbonyl
stress and is controlled by the protein expression and enzymatic
activity of glyoxalase 1 (GLO1). GLO1 is a ubiquitously
expressed enzyme that directly detoxifies MG, thus, mitigating
dicarbonyl stress. However, under pathological conditions like
insulin resistance and T2DM, GLO1 is reduced while MG
generation is increased, creating an environment in which
dicarbonyl stress persists. These phenomenon are well known
to contribute to complications associated with diabetes such
as nephropathy (5), neuropathy (6), and retinopathy (7).
To date, much of the MG and GLO1 research has been
directed at insulin-independent tissues (kidney, nervous, retina,
respectively) whereas these tissues do not require insulin
action for glucose disposal through facilitated glucose uptake
via GLUT4 vesicles. However, recent evidence suggests the
dysregulation of the MG-GLO1 axis extends to the highly
metabolic skeletal muscle tissue and may play a causative
role in the development of insulin resistance and overt
T2DM.

We have recently published human data describing a
dysregulation of dicarbonyl stress concomitant with reduced
GLO1 protein expression in skeletal muscle of individuals
with T2DM (8). Further, in vitro, pre-clinical evidence shows
GLO1 overexpression protects against insulin resistance and
T2DM. Clinically, two promising human therapies have arisen:
nutraceutical GLO1 inducer therapy and aerobic exercise
training. This minireview will summarize the physiologic impact
of dicarbonyl stress and GLO1 in skeletal muscle metabolism
and highlight the emerging therapeutic concepts for combating
dicarbonyl stress.

IMPORTANCE OF SKELETAL MUSCLE

Skeletal muscles are one of the most metabolically important
tissues in the body. Striated muscle tissue accounts for >33%
total body mass (9), >40% total body protein (10) and plays a
major role in glucose disposal, accounting for >80% of insulin
stimulated glucose uptake (11). Skeletal muscle insulin resistance
is defined as reduced glucose uptake in response to insulin
and is implicated in the pathogenesis of many diseases, most
prominently T2DM.

Although multiple etiologies of T2DM exist, including ß-
cell dysfunction, dysregulated fatty acid metabolism, and hepatic
insulin resistance (12), the primary defect remains skeletal
muscle insulin resistance (13–15), often as a consequence
of a sedentary lifestyle combined with excessive kilocalorie
consumption (16). Hyperinsulinemic-euglycemic clamp data has
shown that individuals with T2DM have a >50% reduction
in insulin stimulated glucose disposal compared to healthy
individuals (17), primarily due to reductions in skeletal muscle
glucose uptake.

Despite reductions in glucose disposal, even insulin-resistant
skeletal muscle is exposed to a significant amount of glucose
flux. For example, glucose disposal rates of insulin-resistant
individuals measured during the hyperinsulinemic-euglycemic
clamp, although reduced compared to insulin-sensitive
individuals, remain at ∼2–3mg of glucose/kg body
weight/minute (18). Improper handling of this glucose flux
can have deleterious effects (19) which occur prior to the onset of
overt T2DM (20); for example, the generation of methylglyoxal
(MG) and dicarbonyl stress.

MG AND DICARBONYL STRESS IN
SKELETAL MUSCLE AND INSULIN
RESISTANCE

Methylglyoxal is a 3-carbon, highly reactive α-oxoaldehyde,
or “dicarbonyl” that modifies proteins via covalent bonding.
MG-modification may induce protein changes including, loss
of side chain charge, alter structure and function (21, 22),
signal proteolytic degradation (23) or AGE formation (24). MG-
modifications are commonly directed at arginine residues and
form methylglyoxal-derived hydroimidazolone adducts (MG-
H1) (25). MG-H1 adducts are particularly deleterious due to the
high probability of arginine residues to be located at functional
sites of proteins (26). Proteins with altered function after MG-
modification are known as the dicarbonyl proteome, which is
an area of active research investigation. MG and MG-H1 are
elevated in plasma and tissues of individuals with T2DM and
are well-known to contribute to diabetic complications such as
diabetic nephropathy (5), neuropathy (6), retinopathy (7), and
early cardiovascular disease (27–29).

The majority of MG formation is spontaneously produced in
vivo during glycolysis from the 3-carbon glycolytic intermediates,
dihydroxy-acetone-phosphate (DHAP) and glyceraldehyde-3-
phosphate (G3P). Spontaneous MG formation from DHAP and
G3P occurs at a constant rate of ∼0.05–0.1% of glycolytic
flux (30). In T2DM, a dysregulation of glycolysis leads to a
buildup of 3-carbon intermediates and subsequent increased
generation of MG (28). Alternatively, MG can form from
lipid peroxidation mechanisms, known to be exacerbated with
oxidative stress, a common characteristic of insulin resistance
and T2DM (13). MG induces pathways known to contribute
to insulin resistance including: (1) oxidative stress caused
by damage to mitochondria (31) and mitochondrial DNA
(32), (2) generation of AGEs [for more information on
the independent effects of AGEs in diabetes and diabetic
complications, the reader is directed to a recent review by Brings
et al. (33)] and (3) inflammation mediated through the Receptor
for Advanced Glycation Endproducts (RAGE) signaling (34–36).
RAGE is highly expressed in skeletal muscle (37, 38) and upon
binding of a RAGE-ligands (i.e., MG-H1) a well characterized
inflammatory signaling cascade ensues (39–41). Further, in vitro
experiments in L6 myotubes treated with MG or MG-modified
proteins, inhibit insulin-stimulated glucose uptake via impaired
phosphorylation of phosphatidylinositol-4,5-bisphosphate 3-
kinase (P13K) and extracellular-signal-regulated kinase 1 and
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2 (ERK1/2) (42–44). This induction of insulin resistance was
independent of MG-generated oxidative stress and likely due to
direct binding of MG to the important insulin signaling protein,
IRS-1.

THE GLYOXALASE ENZYMATIC DEFENSE
SYSTEM

The biological natural defense against dicarbonyl stress is the
glyoxalase enzymatic defense system which detoxifies MG by
converting it to a stable byproduct (D-Lactate). This enzymatic
system is controlled by the protein expression and enzymatic
activity of GLO1. GLO1 is ubiquitously expressed in all cells and
catalyzes the first step in the glutathione-dependent sequestration
of MG at an astounding (>99%) efficiency (45). For further
information on the glyoxalase detoxificationmechanism, we refer
the reader to literature and reviews by Thornalley et al. (46–49).
GLO1 is essential to protecting cells from dicarbonyl stress and is
highly expressed in skeletal muscle (50–55).

Human, animal and in vitro studies describe GLO1 as the
primary regulator of dicarbonyl stress in tissues (48), including
skeletal muscle (56). The importance of GLO1 in preventing
dicarbonyl stress in human physiology is evidenced by its
ubiquitously expressed nature, as it is present in the cytosol
of all cells, and its abundance, remaining in the top 13% of
human proteins with a concentration of ∼0.2 µg of GLO1 per 1
milligram of human tissue (57). Additionally, a rare mutation in
humanGLO1 gene that produces a non-functional GLO1 protein
is embryonically lethal due to an inability to prevent dicarbonyl
stress (58). Gene deletion of GLO1 is also embryonically lethal
in mice (59) whereas in Drosophila, GLO1 knockout animals
displayed increased MG and recapitulated the progression of
T2DM with obesity, insulin resistance and hyperglycemia (60).
Mechanistic evidence from in vitro studies using the GLO1
inhibitor, Staltil, resulted in loss of GLO1 function and MG
accumulation in a variety of tissues including skeletal muscle
(61, 62). Further, silencing of GLO1 also increases MG and
contributes to the development of multiple disease conditions
(63).

In metabolically healthy muscle cells, transient increases in
MG stimulate GLO1 protein expression resulting in efficient
detoxification ofMG despite increasedMG flux (64). However, in
metabolically compromised muscle (as seen in insulin resistance
and T2DM), reduced efficiency of the glyoxalase system leads
to MG accumulation (8, 61, 62). This increase in intracellular
MG results in inhibition of insulin signaling (42–44, 65),
damage to mitochondria (31) and mitochondrial DNA (32)
increased ROS production (35), inflammation related to the
accumulation of MG-H1 (34) and structural changes to skeletal
muscle proteins (56). The causes of reduced GLO1 in skeletal
muscle is largely unknown however, we recently described
concomitant reductions in GLO1 and NRF2 protein expression,
the transcriptional regulator of GLO1 in T2DM subjects (8).
NRF2 is highly sensitive to REDOX perturbations and hypoxia
suggesting that adequate tissue blood flow may also play a role
in GLO1 biology. Recent murine data has also provided evidence

for reduced GLO1 protein expression with diet induced obesity
(66).

In contrast to the theory that MG is causative to skeletal
muscle insulin resistance, Gawlowski et al. (67) recorded
increased glucose uptake in L6 myoblasts with siRNA GLO1
knockdown and reported altered GLUT4 trafficking mediated
by MG accumulation. This discrepancy is likely due, in part,
to MG-mediated oxidative stress. MG is known to increase
mitochondrial reactive oxygen species (ROS) generation, which
increases glucose uptake and stimulates GLUT4 translocation in
muscle cells (68, 69). The increased glucose uptake observed by
Gawlowski et al. may be an artifact of mitochondrial ROS rather
than from the MG accumulation per se, which would agree with
the findings of others (42–44). Future studies should continue
to differentiate the effects of MG-mediated ROS production and
independent effects of MG.

Although GLO1 is highly expressed in skeletal muscle tissue in
humans (50–55), information on GLO1 protein expression and
activity as it pertains to insulin resistance and T2DM is lacking.
To date, there are limited investigations in the area of GLO1
and skeletal muscle. Table 1 highlights these studies and their
major findings. In muscular dystrophy [a disease characterized
by skeletal muscle insulin resistance (70)] GLO1 protein was
reduced. Similarly, observations from our lab showGLO1 protein
expression and enzyme activity is reduced in obese insulin
resistant individuals and GLO1 activity was strongly correlated
with insulin sensitivity, and VO2max but inversely correlated with
chronological age and percentage body fat (73). Moreover, we
recently reported marked reduction in skeletal muscle GLO1
protein expression in individuals with T2DM compared to
lean healthy control subjects (8). Of note, shotgun proteomic
approaches have yielded conflicting reports with regard to GLO1
(53–55, 72). Despite the current state of the literature, we cannot
differentiate independent effects of obesity, insulin resistance or
clinical T2DMonGLO1 protein expression or enzymatic activity;
nor can it be determined if reductions in GLO1 are causative or
a consequence of metabolic pathologies. Future studies should
utilize clinical-translational approaches to better elucidate the
role of skeletal muscle GLO1 protein expression and enzymatic
activity in metabolic pathologies.

Collectively, increasing GLO1 expression may play a
protective role when MG generation becomes exacerbated.
The protective role of GLO1 to attenuate dicarbonyl stress
has potential in maintaining metabolic homeostasis in skeletal
muscle. Further clarification of GLO1’s role in metabolically
compromised cells and elucidation of its regulatory proteins and
their stimuli may lead to better avenues for T2DM treatment and
prevention. A schematic summary of skeletal muscle MGGLO1
physiology in health and disease is presented in Figure 1.

THERAPEUTIC STRATEGIES FOR THE
PREVENTION OF DICARBONYL STRESS

Scavenging MG and MG-Modified Proteins
Drugs of the guanidine family are known to function as MG
scavengers and bind to the highly reactive MG, preventing
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TABLE 1 | Studies Investigating Glo1 In Human Skeletal Muscle.

Publication Measurement Population Intervention Timepoint Outcome

Kar and Pearson (70) GLO1 activity Muscular dystrophy

(n = 24), controls (n = 6)

n/a Basal Reduced in muscular dystrophy

Haralambie and

Mossinger (50)

GLO1 activity LHC, trained cyclists (n = 7

each)

n/a Basal Trend of 21% increase in trained

cyclists

Radom-Aizik et al. (71) Broad-scale genome

profiling (gene microarray)

Elderly, sedentary men

(n = 6)

12-week aerobic exercise

training

Pre/post exercise

(chronic)

Gene expression increased after AE

Hwang et al. (53) Broad-scale proteomic

profiling (HPLC-MS/MS)

LHC, Obese, T2DM (n = 8

each)

n/a Basal No significant difference between

groups

Hussey et al. (72) Broad-scale proteomic

profiling (HPLC-MS/MS)

T2DM (n = 6), controls

(n = 6)

4 weeks, 5 days/week,

aerobic training and HIIT,

T2DM only

Pre/post exercise

(chronic)

No effect of T2DM, decreased post

exercise in T2DM

Hoffman et al. (51) Broad-scale proteomic

profiling (TMT-MS/MS)

LHC (n = 4) Single bout (high-intensity

cycle exercise)

Pre/post exercise

(acute)

Nonsignificant 21% increase

Mey et al. (8) Qualitative proteomic

characterization (Western

Blot)

LHC (n = 10), T2DM (n = 5) Hyperinsulinemic-

euglycemic

clamp

Basal and Insulin Reduced in T2DM, no effect of insulin

The current state of the literature suggests GLO1 protein expression and enzymatic activity is reduced in skeletal muscle in insulin resistance and T2DM. Further, aerobic exercise may

provide a therapeutic effect by increasing skeletal muscle GLO1. Additional research is warranted to corroborate these findings. LHC, lean healthy control subjects; T2DM, individuals

with Type 2 Diabetes; GLO1, glyoxlase-1; AE, aerobic exercise; HPLC-MS/MS, high performance liquid chromatography tandem mass spectrometry; TMT, tandem mass tags; HIIT,

high intensity interval training.

MG-induced protein modifications, like MG-H1, in plasma
and tissues. The pharmacologic agent, Aminoguanidine, showed
much promise, improving laboratory measures predictive of
diabetic complications (74). However, lack of clinical outcomes
(75) and serious side effects (76) limit its therapeutic application
in diabetes. Metformin is the most commonly prescribed
medication for T2DM and functions as an MG-scavenger due
to its biguanidine structure. Conceptually, MG scavengers may
be flawed for applications in skeletal muscle, as MG scavengers
require an increase in stoichiometric proportion to MG
production; this would require supraphysiologic concentrations
of MG-scavengers to scale with the high glucose flux and MG
generation within skeletal muscle.

GLO1 Inducer Therapy—Nutraceutical
GLO1 inducer therapy increases GLO1 protein expression by
stimulating Nuclear factor-erythroid 2 p45 subunit-related factor
2 (NRF2). NRF2 is a transcription factor that promotes basal
and inducible expression of GLO1 (77, 78) and is implicated
in T2DM in both animals and humans (79–81). Recent human
trials have shown the effectiveness of trans-resveratrol and
hesperetin (tRES/HESP) to increase GLO1 protein expression
and activity concomitant with reductions in plasma MG and
MG-directed protein modifications (82) via NRF2 signaling (83).
This recent work has achieved effective pharmacologic targeting
of the NRF2-GLO1-MG axis in human plasma concomitant
with clinically relevant improvements in whole body glucose
metabolism. This profound effect on glucose control elicited
by tRES/HESP therapy are suggestive of effects on highly
metabolic tissues, like the liver and skeletal muscle. Future
research should investigate the liver and skeletal muscle effects of
tRES/HESP therapy on the tissue specific NRF2-GLO1-MG axis.
For information on other GLO1 inducer formulations, the reader
is directed to a recent review by Rabbani and Thornalley (84).

GLO1 Inducer Therapy—Aerobic Exercise
The relationship between physical activity and T2DM is well
known. A sedentary lifestyle contributes to insulin resistance,
while increased physical activity improves insulin sensitivity and
whole-body glucose and lipid metabolism (85, 86). Chronic
aerobic exercise has been shown to have robust benefits on
insulin sensitivity, glucose disposal, glycogen content, fatty acid
oxidation and metabolic flexibility (87–102). Both acute (103,
104) and chronic aerobic exercise (92, 99, 100) provide these
benefits which are driven by adaptations in skeletal muscle
(105, 106). Furthermore, individuals at risk for developing T2DM
(obese, insulin-resistant individuals) can reduce the risk of
progression to T2DM by over 50% with a lifestyle intervention
that focuses on reducing calorie intake and increasing exercise
(2). At this time, the signaling mechanisms that underline
these metabolic improvements are not well understood but may
involve regulation of GLO1 such as exercise-induced stimuli
increase NRF2 (64), including oxidative stress (107) and AMPK
signaling (108). It is reasonable to infer that NRF2 directs
upregulation of skeletal muscle GLO1 gene in response to these
or other exercise-mediated skeletal muscle stimuli.

Microarray studies with exercise have reported mixed results
where one study found no differences in GLO1 when comparing
three groups of young healthy men; untrained, aerobically
trained and resistance trained (109). Yet another genemicroarray
showed skeletal muscle GLO1 mRNA increases with chronic
aerobic exercise training in older men (71). Given the known
relationship between increasing chronologic age and reductions
in GLO1, it is reasonable to assume these older men had
reduced GLO1 mRNA, however, there was no comparative lean
healthy control group in this study. Together, this implicates
a potential ceiling effect for aerobic exercise to increase GLO1
gene expression. Similar results were found measuring GLO1
enzymatic activity with exercise training. Haralambie et al. (50)

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 September 2018 | Volume 5 | Article 117

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Mey and Haus Glyoxalase-1 and Methylglyoxal in Muscle

FIGURE 1 | Skeletal muscle MG-GLO1 physiology in the context of health and disease. During healthy physiology (Blue Lines), methyglyoxal (MG) is generated in the

skeletal muscle as a spontaneous byproduct from the 3-carbon intermediates (dihydroxyacetone phosphate, DHAP; glyceraldehyde-3-phosphate, G3P) of glycolysis.

This MG is efficiently detoxified by glyoxalase-1 (GLO1) to D-lactate. However, GLO1 protein expression is reduced in metabolically impaired states, such as insulin

resistance, type 2 diabetes mellitus (T2DM) and during high-fat diet feeding. In concert, MG is generated from glycolysis at an increased rate (Red Lines) and

contributes to poor skeletal muscle metabolic health through multiple pathways. Excessive MG modifies mitochondria, contributing to oxidative stress, lipid

peroxidation and further generation of MG. Excessive MG also directly inhibits insulin signaling by binding to IRS-1 within the skeletal muscle and by binding to

circulating insulin. Further, excessive MG can bind to proteins, presenting in circulation as MG-H1 adducts or MG-modified proteins, which activate the RAGE

(receptor for advanced glycation endproducts)-mediated inflammatory signaling cascade. Together, this creates a viscous cycle of MG generation. A potential route to

combat dicarbonyl stress is through increasing GLO1 protein expression with targeted therapeutic strategies, such as exercise, metformin and GLO1-inducers. We

thank Brandon Stelter and the Center for Medical Art and Photography at the Cleveland Clinic for generating the figure.

performed a cross-sectional investigation of GLO1 activity in
untrained and trained individuals, showing a trend for a 21%
increase in GLO1 activity in the trained cohort. Importantly, the
untrained cohort was young, and fit (VO2max: c.a. 46ml/kg/min),
and may have had optimal levels of GLO1, again providing
evidence of a ceiling for GLO1.

Few studies in human skeletal muscle have investigated
the effect of exercise on GLO1 protein expression (8, 51, 72,
82). Hoffman et al. showed acute exercise produces a non-
significant 21% increase in GLO1 protein expression using
large-scale proteomic profiling (51). Using a similar approach,
Hussey et al. showed reduced GLO1 protein expression after
4 weeks of exercise training [3 days per week of aerobic
training and 2 days per week of high-intensity interval training
(HIIT)] in individuals with T2DM (72). The effect of long-
term interventions or different training modalities (continuous
aerobic vs. HIIT) is still under investigation. Additional research
is needed to corroborate these findings that aerobic exercise

confers a therapeutic benefit in individuals with reduced skeletal
muscle GLO1 gene expression, protein expression, or enzymatic
activity.

Other Considerations for Future Research
• Skeletal muscle GLO1 protein or gene expression data alone

may not offer a complete picture without concomitant
measures of GLO1 activity and dicarbonyl stress (i.e., MG-
modified proteins and AGEs).

• Many MG-modifications on protein may be inert.
Understanding which specific proteins acquire altered
function and compose the skeletal muscle dicarbonyl
proteome will advance the field greatly.

• Skeletal muscle GLO1 is reduced in mice fed a high-fat diet
(66), but whether diet or obesity has independent effects on
skeletal muscle GLO1 in humans has yet to be determined.

• Much is still unknown about GLO1 regulation. For
example, GLO1 can undergo four unique post-translational
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modifications that inhibit GLO1 activity (110). Future
research should aim to elucidate the independent importance
of these modifications.

• With regard to exercise, dose response and time course studies
in all modes of exercise (aerobic, resistance, interval, etc.)
remain to be empirically tested.

SUMMARY

Elevated dicarbonyl stress is characteristic of T2DM and
associated with the development of diabetic complications.
Recent research suggests dicarbonyl stress in skeletal muscle may
play a causative role the development of insulin resistance and the
onset of T2DM. The primary cellular defense against dicarbonyl
stress is the glyoxalase enzymatic defense systems controlled
by the protein expression and enzymatic activity of GLO1.
Novel therapies targeted at inducing GLO1 improve whole body
glucose control, indicative of effects in skeletal muscle, and may
represent the next line of adjuvant therapy for T2DM. We have

recently described aberrant dicarbonyl stress and GLO1 protein
expression in the skeletal muscle of individuals with T2DM.
Further, we postulate that aerobic exercise training will result

in GLO1 gain-of-function through NRF2 mediated pathways.
Additional research is warranted to determine the physiologic
impact of targeting skeletal muscle GLO1 and dicarbonyl stress
for the prevention and treatment of skeletal muscle insulin
resistance and T2DM.
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