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Abstract

Background: More patient-specific medical care is expected as more is learned about variations in patient responses
to medical treatments. Analytical tools enable insights by linking treatment responses from different types of studies,
such as randomized controlled trials (RCTs) and observational studies. Given the importance of evidence from both
types of studies, our goal was to integrate these types of data into a single predictive platform to help predict
response to pregabalin in individual patients with painful diabetic peripheral neuropathy (pDPN).

Methods: We utilized three pivotal RCTs of pregabalin (398 North American patients) and the largest observational
study of pregabalin (3159 German patients). We implemented a hierarchical cluster analysis to identify patient clusters
in the Observational Study to which RCT patients could be matched using the coarsened exact matching (CEM)
technique, thereby creating a matched dataset. We then developed autoregressive moving average models (ARMAXS)
to estimate weekly pain scores for pregabalin-treated patients in each cluster in the matched dataset using the
maximum likelihood method. Finally, we validated ARMAX models using Observational Study patients who had not
matched with RCT patients, using t tests between observed and predicted pain scores.

Results: Cluster analysis yielded six clusters (287-777 patients each) with the following clustering variables: gender,
age, pDPN duration, body mass index, depression history, pregabalin monotherapy, prior gabapentin use, baseline
pain score, and baseline sleep interference. CEM yielded 1528 unique patients in the matched dataset. The reduction
in global imbalance scores for the clusters after adding the RCT patients (ranging from 6 to 63% depending on the
cluster) demonstrated that the process reduced the bias of covariates in five of the six clusters. ARMAX models of pain
score performed well (R% 0.85-091: root mean square errors: 0.53-0.57). t tests did not show differences between
observed and predicted pain scores in the 1955 patients who had not matched with RCT patients.

Conclusion: The combination of cluster analyses, CEM, and ARMAX modeling enabled strong predictive capabilities

with respect to pain scores. Integrating RCT and Observational Study data using CEM enabled effective use of
Observational Study data to predict patient responses.
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Background

Multiple interacting risk factors and comorbidities make
it difficult to select the right treatment for the right pa-
tient experiencing neuropathic pain, including those
with painful diabetic peripheral neuropathy (pDPN).
pDPN presents in up to 26% of patients with diabetes
mellitus [1], with age, duration of diabetes, and poor gly-
cemic control as major factors in its development [2].
With the global prevalence of diabetes at 8.5% in 2014
[3] and the US prevalence at 9.3% [4], pDPN is a notable
burden in over 2% of the global population. Neuropathic
pain has a large variety of etiologies and many patients
do not receive appropriate treatment for their pain [5],
including those with pDPN. Reasons include shortfalls
in proper patient and pain assessment, insufficient diag-
nostic accuracy, and inadequate knowledge about medi-
cations and their appropriate clinical use, combined with
relatively limited treatment efficacy [5]. Patient, clinician,
and health care system factors interact to affect these
outcomes in pain [6—10].

From the COmbination versus Monotherapy of prega-
Balin and dulOxetine in Diabetic Neuropathy Study
(COMBO-DN) study, Bouhassira et al. [11] analyzed
neuropathic pain sensory phenotypes in patients with
painful diabetic neuropathy. They confirmed the advan-
tages of sensory phenotypes and their predictive value,
and thus concluded that heterogeneity of the patient
populations should be taken into account for delivering
more customized treatment. These results are consistent
with both Freeman et al. [12] in terms of identifying
clusters with distinct pain characteristics independent of
neuropathic pain syndrome and with Baron et al. [13] in
terms of pain-related sensory abnormality-based profiles
as a way of identifying patient subgroups for treatment.

‘Omics’ and other emerging biomarker data combined
with computational tools for exploring large datasets
suggest how much more patient information can be uti-
lized to deliver more customized care in general [14]
and in neuropathic pain in particular [15]. Ongoing ef-
forts strive to identify psychosocial variables that could
be used to identify patient subgroups [16] as well, even
if the end goal of fully personalized or precision medi-
cine cannot be achieved in the short term [5]. Patient-
centered care demands improved alignment of patient
clinical needs with specific treatment strategies. These
needs apply to patients with pDPN because of the dem-
onstrated variability of response [17] and the devastating
impact of insufficient pain relief (e.g., suffering, reduced
physical activity, resultant increase in the risk of obesity
with worsening of diabetes, comorbid cardiovascular
conditions).

Significant resources are being invested to address this
variation in patients’ responses to medical treatments
more effectively [14] to meet expectations for more
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patient-specific care for chronic pain [14]. Health care is
amidst a major transformation regarding how the over-
whelming amount of patient data has become available
via electronic health records and biomarkers, as well as
how healthcare providers and patients may take advan-
tage of social network and media data [18]. Such data
are being used to help achieve “Triple Aim’ goals [19] of
improving the health of populations, improving the pa-
tient experience of care, and reducing the per capita cost
of care [20].

Realization of the clinical application of these enor-
mous amounts of data will depend on the blending of
evidence-based medicine from traditional clinical study
sources together with ‘big data’ methods [18]. Addition
of classification, data mining, and predictive analytic
techniques have already enabled insights [14, 18], and
additional efforts are required, such as those that can
better link observational data with randomized data.
Cameron et al. (2015) reviewed the advantages, disad-
vantages, and methodological challenges of linking the
two types of studies in network meta-analyses and em-
phasized the importance of such efforts in generating
evidence from across a medication’s lifecycle given the
growth in analyses of post-approval data that needs to
be combined with pre-approval data [21]. While tradi-
tional statistical techniques such as meta-analyses and
network meta-analyses have supported linkage of differ-
ent studies, they still generate population-level results,
which require the clinician to further extrapolate them
to individual patient treatment decisions. Improved
methodological techniques for connecting data at the
patient level are being developed (e.g., Iacus et al. (2012)
on Coarsened Exact Matching (CEM) [22]) and provide
better ways of integrating data from observational stud-
ies and RCTs. This goal of integrating RCT and observa-
tional study data guided our effort, and we started with
the specific case of pain response in pDPN to treatment
with the a2§ ligand, pregabalin, to demonstrate a proof
of concept as to how such data integration could be im-
plemented to improve outcomes. Understanding which
patients are going to have a better-than-average response
to treatment may shed light on the possible improvements
in care that could increase the proportion of good re-
sponders. Efforts have evolved during the past two decades
to predict individual patient responses via predictive ana-
lytics and simulation building on the pioneering work of
David Eddy (2012) [23].

We sought to utilize a variety of these predictive ana-
lytics and simulation methods to link RCT data with
Observational Study real-world data to predict responses
to pregabalin in patients with pDPN. Pregabalin is ap-
proved in the United States for pDPN, among other uses
[24]. Updated recommendations of the Special Interest
Group on Neuropathic Pain (NeuPSIG) of the International
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Association for the Study of Pain included pregabalin,
among other medications, as having a ‘strong’ GRADE rec-
ommendation as first-line therapy for neuropathic pain [5].
Systematic reviews and meta-analyses have noted that
pDPN patient responses to pregabalin can vary [25-28];
less is understood about subgroups of patients in the
studies who are most likely to respond. Our goal was to
identify profiles of patients that reflect integrated RCT and
Observational Study data to help clinicians treat pDPN
more effectively by bridging the two types of evidence in a
single platform to predict the potential level of response to
pregabalin. The focus of the work described in this article is
the generation of patient profiles based upon integration of
RCT and Observational Study data; a follow-up article will
demonstrate how such profiles can be utilized in a
modeling and simulation environment to predict the
probability of individual patients’ responses to drug
therapy over time.

Methods

We sought to use the RCT data to reduce the level of
bias in the covariates’ distributions in the Observational
Study data. A high degree of imbalance occurs more
often in observational studies, which do not have random
assignment to treatments. The reduction of imbalance can
consequently occur when matching observational studies
with RCTs in which the covariates are, in principle, more
highly balanced due to the randomized design. Matching
is intended to identify a better balance in the multidimen-
sional distribution of covariates. Through the matching
process, the matched data results in lower covariate bias
and therefore establishes a basis for more explanatory
models of potential causal relationships among measured
variables [29]. We used CEM to match the RCT data to
the Observational Study data [22]. We chose CEM be-
cause it is more precise than the often-used propensity
score matching (PSM) approach and has a lower root
mean square error [30, 31]. The other advantage is that
CEM fixes imbalance ex ante and attempts to discard as
few observations as possible ex post. This is in contrast to
PSM, which fixes the matched sample size ex ante and at-
tempts to reduce imbalance as a result of the procedure.
This difference means that PSM discards considerable in-
formation ex ante and this PSM inefficiency can be con-
sidered a bias [32]. Moreover, CEM is superior to exact
matching (EM) techniques. CEM overcomes the problem
of limited numbers of matches, which happens quite often
when EM techniques are applied due to the richness of
the covariates in many cases [33]. In contrast to EM,
which simply matches a treated unit to all the control
units with the same covariate values, CEM relaxes these
constraints by introducing classes of the covariates values
to be matched. This matching reduces bias by decreasing
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the degree of dependence of the outcome variable on the
estimation model [29].

For this proof of concept to link RCT data with Obser-
vational Study data, we began with the three pivotal
studies for pregabalin, all of which contained the following
data for patients receiving active treatment: age, gender,
body mass index (BMI), baseline pain score (0-10 scale,
with higher values indicating greater severity), baseline
sleep interference score (0—10 scale, with higher values in-
dicating more sleep disturbance), glycated hemoglobin
(HbAlc) normal or elevated, insulin use, fixed doses of
pregabalin monotherapy, duration of diabetes, allodynia at
baseline, average weekly pain (based on daily scores), and
average weekly sleep interference (based on daily scores).
These studies were conducted in North America and
described in prior publications [34—36]. For all studies,
participants provided written informed consent, and all
related study protocols were approved by the Institu-
tional Review Boards and Ethics Committees of the
investigators.

We also utilized the largest Observational Study of
pregabalin, which contained the following data that
overlapped with the RCT data: age, gender, BMI, base-
line pain score, baseline sleep interference score, HbAlc
(normal or elevated), and insulin use (yes or no). In con-
trast to the RCT dataset, the Observational Study did
not have duration of diabetes and allodynia at baseline,
but it did have flexible dosing of pregabalin monother-
apy; duration of pDPN; prior gabapentin use; prior or
current (at baseline) medical history of depression, sleep
disorder , or anxiety; and general feeling responses to
three questions on a six-point always-to-never scale
(calm and relaxed, full of energy, discouraged) recorded
at baseline and at Weeks 1, 3, and 6. To estimate miss-
ing data at Weeks 2, 4 and 5, we used the EXPAND SAS
procedure that makes second-order interpolation. The
Observational Study also had pain and sleep interference
scores at baseline and at Weeks 1, 3, and 6 (in contrast
to daily diary scores in the RCTs). This study was con-
ducted in Germany and has been described in prior pub-
lications [37].

The first step before matching the two types of data
was to better understand the characteristics of sub-
groups of patients in each dataset. We initiated our ef-
forts with a hierarchical cluster analysis to identify ways
patients might be grouped. Cluster analysis can be used
to detect the presence of subpopulations within a dataset
based on common statistical patterns. Given the vari-
ation in patients with pDPN described above, we
thought the clustering would provide a useful approach.
Clustering is also one way of reducing the chances of
occurrence of Simpson’s paradox, in which a subgroup
relationship differs from an overall population relation-
ship [38]. Cluster analysis assigns individuals to groups
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(‘clusters’) who share certain similarities, in contrast
with factor analysis, which uses inter-correlations
among variables to form a smaller number of factors
[16]. We chose Ward’s minimum variance technique,
because it is considered one of the best methods for ac-
curacy [39], and it also offers several additional advan-
tages such as useful visualizations (dendrograms) that
also guide in the selection of the cutoff point to deter-
mine the number of clusters. It also is a deterministic
technique, thereby enabling results that are reliably re-
producible [40]. We implemented this hierarchical clus-
ter analysis first for patients in the three RCTs alone
and then for patients in the Observational Study alone
so as to better understand independently how patients
from each of the two types of data were clustering be-
fore we matched RCT patients with Observational
Study patients. After completing the clustering, we
matched the RCT patients to the clusters identified in
the Observational Study dataset. We chose this ap-
proach rather than starting with the RCT clusters be-
cause the observational study dataset was larger. The
goal was to maximize the use of RCT patients and re-
duce the bias within each cluster with CEM [22].

This RCT-Observational Study matched dataset with
the lower covariate bias achieved with CEM was then
used for predicting responders. To that end, we imple-
mented AutoRegressive Moving Average models with
eXogenous inputs (ARMAX) to better represent multi-
variate time series analysis of the pain score at a given
time lag in relation to: pain score at antecedent time lags
(autoregressive part of the model); sleep interference
score and other relevant time-dependent variables (e.g.,
general feeling variables) at different time lags (moving
average part of the model); and specific patient demo-
graphic and/or medical history data likely to influence
pain score (the exogenous inputs). ARMAX models are
mathematical models of persistence, or autocorrelation,
in a time series. They are used widely to predict the be-
havior of a time series from past values alone. Such a
prediction can be used as a baseline to evaluate the pos-
sible importance of other variables to the system under
study. We also used cross-correlation analyses to explore
which variables (for which we treated pain score as a con-
tinuous dependent variable) to include in the ARMAX
models for each cluster and retained those with significant
F test values. Candidate variables analyzed in the ARMAX
models included: age cohort, gender, BMI, pDPN dur-
ation, medical history of depression, previous use of gaba-
pentin, history of pregabalin monotherapy, general feeling
(full of energy, calm and relaxed, sad and discouraged) at
Weeks 0, 1, 2, 3, 4, and 5; pain score at Weeks 0, 1, 2, 3, 4,
and 5; sleep interference score at Weeks 0, 1, 2, 3, 4, 5,
and 6; treatment dose at Weeks 0, 1, 2, and 3; and patient
satisfaction at Weeks 0, 1, 2, 3, 4, and 5.
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This matched dataset was used to derive and calibrate
the ARMAX models for each of the clusters (the calibra-
tion dataset). The parameter calibration of the ARMAX
models for each of the matched dataset clusters was im-
plemented using forward and backward techniques to
explore time lags and other variables to be included in
each model for each cluster. A maximum likelihood
method was used for the purpose of best model identifi-
cation [41]. An initial validation of the ARMAX models
was implemented with patients not included in the cali-
bration dataset (i.e., patients in the Observational Study
who did not match with RCT patients). A ¢ test of the
time series of the observed vs. predicted levels of pain
was performed for validation to see if observed pain
outcomes were different from those predicted with the
Observational Study patients who had not matched with
RCT patients.

Results

The hierarchical cluster analysis using Ward’s minimum
variance technique yielded six clusters in the Observa-
tional Study (3159 patients) with the following clustering
variables: gender, age, duration of pDPN, BMI, medical
history of depression, pregabalin monotherapy, prior use
of gabapentin, baseline pain score, and sleep interference
score at baseline. Additional file 1 shows the dendro-
gram and the cutoff used for identifying the six clusters.
We limited the number of clusters based on the semi-
partial R that measures the homogeneity of merged
clusters. This value reflects decreasing homogeneity of
patients in a cluster, because clusters are combined to
make new clusters. As shown in the figure in Additional
file 1, the cutoff at six clusters has the semipartial R*
lower than 0.05, reflecting an appropriate tradeoff of low
semipartial R and not too many fragmented clusters.
Ward’s minimum variance technique yielded four clus-
ters in the RCT data alone (data not shown).

We implemented the CEM algorithm using the following
four steps: 1) selected matching variables of every patient
in both the Observational Study and RCT were temporar-
ily coarsened; 2) for each cluster, all the data from the
Observational Study were sorted into strata on the basis of
their coarsened variables; and 3) a CEM was performed be-
tween the subgroup of patients in each cluster and all the
RCT patients (more specifically: each matching variable
was coarsened into substantively meaningful groups, which
were then matched improving the estimation of causal ef-
fects by reducing imbalance in covariates between patients
of the Observational Study belonging to a given cluster
and all the RCT patients); and 4) all the patients of the
Observational Study and those of the RCTs who had a
coarsened exact match were included, while the other data
were excluded.
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There were 1204 patients in the Observational Study
dataset (38%) who matched with 324 patients from the
RCTs (81% of RCT patients) for a total of 1528 unique
patients in the matched dataset. Table 1 highlights the
similarities and differences among the clusters within
this dataset. The clusters were notably distinct in many
respects. For example, Cluster 1 consisted exclusively of
male patients, with the highest proportion of overweight
patients (67%) but low numbers of patients receiving in-
sulin therapy (3%). In contrast, Cluster 4 was almost ex-
clusively female (99%), with a somewhat higher
proportion receiving insulin therapy (17%) and a lower
incidence of overweight patients (38%). Also of note, al-
most all patients in Cluster 2 were on insulin (100%, the
highest among all clusters), while in Cluster 3, 18% of
patients were on insulin (similar to Cluster 4). However,
in Cluster 2, 60% of patients received pregabalin mono-
therapy, compared with 0% in Cluster 3.

Of the 324 patients who matched, 17% of RCT patients
matched to one cluster, 23% to two clusters, and 60% to
three or more clusters. The reduction in the imbalance
scores for the clusters after adding in the RCT patients
(ranging from 6 to 63% depending on the cluster) suggests
that the process reduced the bias of covariates notably in
five of the six clusters with only Cluster 1 retaining a rela-
tively higher imbalance of covariates (see Table 2).

The final ARMAX models estimating weekly pain
scores for the matched data (calibration dataset) are
shown in Table 3. All the models performed well, with
R’ ranging from 0.85 to 0.91 and root mean square
errors ranging from 0.53 to 0.57. We also generated re-
ceiver operating characteristic curves for whether or not
the patient achieved responder status with ‘pain re-
sponder level” defined as: (pain score at baseline — pain
score (t))/pain score at baseline at the 50% threshold.
These results are shown in Fig. 1. The most influential
variables were those associated with time-lagged rela-
tionships: 1) pain (at one and two weeks prior to pre-
dicted pain at a given week); 2) dose (at one and two
weeks prior); and 3) sleep interference (at one week
prior). The following were influential in one or several
clusters: feeling full of energy in the week before, feeling
calm and relaxed in the week before, insulin use (yes or
no), age group, gender, pregabalin (monotherapy or
combination therapy), and dose given.

The results of how well these ARMAX models also
predicted responders in Observational Study patients
who did not match with RCT patients are summarized
in Table 4. We used two-sample ¢ tests in this validation
dataset (7 = 1955) to compare observed pain scores in
the validation dataset with those predicted using the
ARMAX models derived based on the calibration data-
set. The left panels of Additional file 2 show histo-
grams of the percent distribution of patients by pain
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score (0—10) both for observed and ARMAX-predicted
findings for each of the clusters. The right panels show
similar plots for all clusters, but for patient distribu-
tion by percent change in response (10% increments).
All models showed P values indicating no significant
differences (P values ranging from 0.26-0.83) for
Student’s two-sample ¢ tests comparing the observed
and predicted outcomes for the various pain scores
and percent changes in response.

The results of how well the maximum likelihood re-
gressions performed before and after CEM matching are
shown in Additional file 3. The log likelihoods of the re-
gressions for each of the cluster were significantly better
based on the likelihood ratio chi-square test
(P < 0.0001). The improvement in the predictive capabil-
ity of all the clusters after matching with the RCT data-
set also is confirmed by the substantive increase of the
log-likelihood value after CEM (i.e., higher log-likelihood
values mean higher explanatory capability of the match-
ing variables on pain score at baseline). The significance
of this improvement in the log likelihood score after
matching is evidenced by the outcomes of a chi-square
test between the log likelihood of the logit models of
pain at baseline in relation to the matching variables
(ie., sex, age, BMI, sleep interference at baseline) before
and after application of CEM.

Discussion

These findings highlight the complexity of the characteris-
tics that comprise responders to pregabalin. Table 1
showed the similarities and differences among a number
of variables across the clusters; yet these variables com-
bined differently to predict response in the different clus-
ters as seen in the ARMAX results in Table 3 and Fig. 1.
The parameters in the ARMAX models reinforced the re-
ciprocal influences between pain and sleep interference
[42] and dose in previous weeks [43, 44]. They also
showed the relevance of selected psychosocial variables
(e.g., calm and relaxed, full of energy) for certain sub-
groups of patients, but not others, as has been shown in
other studies [8, 17]. Other variables such as age, gender,
pDPN duration, and pregabalin monotherapy were the
only significant predictors in one of the responder sub-
groups, although such characteristics are often used as
a basis for subgroup analyses in clinical studies of pain
(11, 17, 45-48].

The value of creating clusters of patients with similar
characteristics in order to better predict response was
intuitively evident. One possible explanation for the use-
fulness of our combination of clustering and matching
techniques for predicting weekly pain scores over time is
the inclusion of adequate time series dynamics for pain
scores and sleep interference blended with other patient
characteristics. The robustness of the predictions was
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Table 1 Descriptions of the six clusters
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Cluster (N = 1528)?

1 2 3 4 5 6
n 343 306 245 195 237 202
Females (%)° 0.0 30.1 29.8 98.5 31.7 43.1
Age (years), mean (SD) 604 (8.1) 61.0 (7.7) 62.5 (74) 61.2 (7.6) 60.5 (9.0) 61.2 (8.5)
Age group (years), %P

0-44 20 1.6 0.0 0.0 25 1.0

45-64 69.7 634 65.3 703 654 66.3

65-74 26.0 330 29.8 26.7 28.7 27.2

75+ 23 20 49 3.1 34 55
BMI (mg/m?)°

Mean (SD) 288 (34) 305 (44) 30.0 (4.3) 306 (4.8) 309 (5.0) 313 (5.8)

Normal (%) 6.4 33 6.5 6.7 30 64

Overweight (%) 66.8 494 50.2 380 50.2 39.1

Obese (%) 26.8 474 433 554 46.8 545
Baseline pain®

Mean (SD) 63 (1.3) 6.5 (14) 63 (14) 6.5 (1.5) 6.5 (1.3) 70(13)

Pain score (%)

0-3 1.5 1.0 1.6 2.1 13 05

4-5 277 216 306 23.1 20.7 154

6-7 525 543 47.8 508 58.2 46.0

8-10 184 232 20.0 241 19.8 38.1
Baseline sleep interference®

Mean (SD) 54 (2) 572 54 (24) 56(23) 57 (.1) 6.7 (2.2)
Sleep interference score

0-3 222 16.3 220 19.5 144 109

4-5 26.5 30.1 26.1 256 30.0 154

6-7 338 284 294 339 384 34.2

8-10 175 252 225 210 173 396
Cross-correlation between sleep interference and pain®

2 weeks prior based on pain in the current week (lag -2) 0.70 0.70

1 week prior based on pain in the current week (lag -1) 0.75 0.70 0.76 078

Based on pain in the current week (Lag 0) 0.85 0.81 0.77 0.85 0.87 0.81

1 week after based on pain in the current week (lag +1) 071 071 0.73 0.79 0.72

2 weeks after based on Pain in the current week (lag +2) 0.71
Duration of pDPN (years), %°

0to <5 289 219 244 29.6 229 20.8

> 510 <10 18.7 237 204 185 324 216

> 10to <15 289 244 239 259 19.1 232

> 15to <20 124 133 154 185 124 136

> 20 to <25 36 5.7 6.0 3.1 38 48

> 25 7.5 1.1 10.0 43 9.5 16.0

History of depression (%) 0.0 0.0 0.0 0.0 18.1 100.0
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Table 1 Descriptions of the six clusters (Continued)
Prior or current therapy (%)
Pregabalin monotherapy 100.0 59.5 0.0 100.0 58.1 408
Gabapentin 0.0 0.0 0.0 0.0 100.0 0.0
Insulin 32 100.0 18.0 169 781 574
Full of energy at baseline (%)
Always 1.2 0.7 1.5 06 00 00
Mostly 8.1 79 50 3.7 48 4.8
Fairly often 11.1 6.5 11.0 11.7 86 86
Sometimes 328 305 19.9 284 305 305
Seldom 40.1 40.5 56.7 444 39.1 39.1
Never 6.6 133 6.0 105 16.2 16.2
Calm and relaxed at baseline (%)
Always 24 25 20 0.0 29 32
Mostly 13.6 151 164 14.2 124 4.8
Fairly often 18.1 14.7 139 17.3 16.2 7.2
Sometimes 319 308 274 26.5 276 176
Seldom 325 30.5 378 358 324 504
Never 1.5 57 25 56 86 16.8
Sad and discouraged at baseline (%)
Always 12 25 30 3.1 5.7 9.6
Mostly 15.1 14.7 134 16.1 124 424
Fairly often 27.1 290 333 26.5 26.7 288
Sometimes 325 29.1 299 235 276 7.2
Seldom 18.1 169 164 259 229 1.2
Never 6.0 7.2 35 3.7 48 08
Responders at 50% threshold at end (%)" 86.0 769 70.1 78.1 523 59.7
Daily treatment dose (mg)
75 9.0 14.1 155 10.8 16.0 134
150 79.6 748 65.3 728 56.1 619
300 55 56 12.2 9.7 14.8 16.8
600 03 1.3 29 36 11.0 35
Other (30-500 mg, excluding doses above) 55 43 4.1 3.1 2.1 4.5

Abbreviations: SD standard deviation, BMI body mass index, pDPN painful diabetic peripheral neuropathy
®Each cluster analysis was derived from the Ward’s minimum variance technique that grouped patients in such a way that patients in the same group (called a

cluster) were more similar to each other than to those in other clusters
PVariables used to create the clusters

“Other variables not used for creating the clusters

9Only cross-correlations >0.70 are shown

confirmed by the strong performance of the ARMAX
models in the validation dataset summarized in Table 4
because these Observational Study patients had not
matched with any RCT patients and were consequently
different. The strong predictive capability of the ARMAX
models in each cluster suggests that it is feasible to predict
the magnitude of the response to pregabalin when useful
subgroups (clusters) of patients are created first. Moreover,
because we predict weekly pain scores with the

ARMAXs, we are not limited to a specific threshold for
percent change in pain response with the models devel-
oped for each of these clusters (see Additional file 2).
Finally, using Ward’s minimum variance as a clustering
technique offered a reasonable tradeoff between the
number of observations in each cluster and the homo-
geneity of the patients in a specific cluster as measured
by traditional cluster analyses performance measures
(see Additional file 1).
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Table 2 CEM results

Cluster Patients by cluster, n Global imbalance® Reduction in global
imbalance® After CEM (%)
Observational Study Alone Observational Study + RCT in
matched dataset After CEM, n
Before CEM After CEM Before CEM After CEM
1 696 332 343 0.72 0.68 6
2 777 279 306 0.70 0.26 63
3 542 201 245 0.72 0.27 63
4 556 162 195 0.84 033 61
5 287 105 237 0.74 0.30 59
6 301 125 202 0.71 030 58
Total 3159 1204° 1528

Abbreviations: CEM coarsened exact matching, RCT randomized controlled trial

*The degree of imbalance represents level of bias in the covariates’ distributions for a given sample. According to lacus et al. (2008) [56], ‘the key goal of matching
is to prune observations from the data so that the remaining data have better balance between the control and the treated groups’ (e.g., the observational study
dataset of each cluster and RCT data). ‘Exactly balanced data [i.e, global imbalance score = 0] means that controlling further for X is unnecessary (since it is unrelated
to the treatment variable), and so a simple difference in means on matched data can estimate the causal effect; approximately balanced data requires controlling for X
with a model (e.g.,, the same model that would have been used without matching), but the only inferences necessary are those relatively close to the data, leading to
less model dependence and reduced statistical bias than without matching.” (See: 1) Imbens GW, Rubin DB. Causal inference in statistics, social, and biomedical
sciences. Cambridge, UK: Cambridge University Press; 2015 [57]. 2) King G, Lucas C, Nielsen R. The balance-sample size frontier in matching methods for causal in-
ference. Am J Poli Sci. doi:10.1111/ajps.12272 [58]. 3) Stuart EA. Matching methods for causal inference: a review and a look forward. Stat Sci. 2010;25:1-21 [59].)
Therefore, in our case, an imbalance of 0 means that the empirical distribution of the covariates of the Observational Study dataset in a given cluster is equivalent
to in the RCT data; an imbalance of 1 means that the empirical distribution is completely different

POne hundred sixty-two of them were excluded from the ARMAX model calibration because they lacked pain and sleep interference data for the full six weeks;

hence there were 1042 observational study patients in the calibration dataset for developing the ARMAX models

Integration of RCT and Observational Study data

A related justification for why the ARMAX models
were able to predict pain responses was because of the
use of RCT data to reduce covariate bias in the Obser-
vational Study dataset after it was separated into pa-
tient clusters. The reduction in the imbalance scores
for the clusters after adding in the RCT patients (ran-
ging from 6 to 63% depending on the cluster, as shown
in Table 2) suggests that the process reduced the bias
of covariates notably in five of the six clusters, with
only Cluster 1 retaining a relatively higher imbalance
of covariates. This interpretation also is confirmed by
both the increase and the statistical significance of the
log-likelihood values after CEM of the logit model of
pain score (see Additional file 3).

The relevance and importance of both RCT and
Observational Study data in their utility for predicting
patient outcomes was affirmed. The cluster analysis en-
abled matching of 81% of the RCT patients, suggesting
notable overlap of most RCT patients with Observa-
tional Study patients, despite the geographic differences
in the location of the patients in these studies. Since
over 60% of the RCT patients matched to three or more
clusters and only 17% matched to one cluster, we
effectively weighted the randomized patients by allowing
the multiple matches. These findings also supported
starting with the Observational Study data and matching
RCT patients to it, because a greater number of RCT pa-
tients had multiple matches than if we had started with

the RCT and matched Observational Study patients
(2154 vs 1823 total, non-unique patients, an 18.4% in-
crease). The results also confirm that the expected
broader spectrum of patients does exist in the Observa-
tional Study because only 38% of the Observational
Study patients matched with these RCT patients. How-
ever, these other 62% of Observational Study patients’
responses could be predicted with our cluster-based
ARMAX models, suggesting that, while they are dif-
ferent on matching variables, the predictive relation-
ships for outcomes are present. One possible
explanation for this finding is the reduction of covari-
ate bias that was achieved with CEM. The differences
in the imbalance of covariates, however, did not fully
align with predictive capabilities. While performance
in all clusters improved after CEM, the ARMAX
models performed better for four of the five clusters
with lower global imbalances (Clusters 2, 4, 5, 6). The
exception was Cluster 3 that, although having one of
the lower global imbalance scores, had a predictive
capability in the validation dataset that was not as
good as the other clusters’ ARMAXs.

We pursued this overall methodological approach in
order to benefit from the advantages of both RCTs and
observational studies and have now demonstrated a
proof of concept regarding a predictive analytical ap-
proach to the integration of observational study and
RCT patient data (that offers a step toward the ultimate
goal of precision medicine [14]. We rely on evidence
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Table 3 ARMAX model input variables and regression coefficients by cluster for the calibration dataset

ARMAX model input variables

Final ARMAX output regression coefficients, by cluster®

1 2 3 4 5 6
y-intercepts for regression models, not variables —0.0409 —-0.1447 —0.0604 —-0.0826 0.0789 -0.2732
Age cohort (x10) - - - - 0.0465 -
Gender (x9) - - - - —-0.0496 -
Pregabalin monotherapy (x8) - - - - -0.1107 -
pDPN duration (years) (x11) 0.0179 - - - - -
Insulin use (x7) - - - - - 0.0276
Pain score (t-1)° (x1) 0.7180 0.8749 0.7865 0.8341 0.9011 0.8919
Pain score (t-2)° (x2) 0.0436 0.0196 0.0164 0.0451 0.0107 -0.0103
Sleep interference score t1)° (x3) 0.0949 - 0.0374 - - -
Dose (1) (x4) - ~0.0006 - - ~0.0011 -
Dose (t-1)° (x5) -0.0012 —-0.0007 —-0.0009 -0.0012 - —-0.0004
Dose (t-2)° (x6) 0.0015 0.0015 0.0012 0.0017 0.0012 0.0007
General feeling: full of energy 1P (x13) - 0.0250 0.0425 - - -
General feeling: calm and relaxed 1P (x12) - - - -0.0109 - 0.0655

Model performance measures applied

Performance, by cluster

1 2 3 4 5 6
Likelihood ratio P value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
R 0.86 0.89 0.85 0.87 091 0.89
Root mean square error 0.54 0.55 0.55 053 053 0.57
Observed vs. estimated responder level (Student's t test P value)® 0.95 1.00 0.95 0.97 092 0.96

Abbreviations: ARMAX autoregressive moving average model, pDPN painful diabetic peripheral neuropathy
“The first number in each column is the regression intercept value. Blank spaces in columns indicate that the associated row variable was not a predictor in the

final model for that cluster

b(t-1) indicates one week before prediction
(t-2) indicates two weeks before prediction
d(t) indicates the same week of the prediction

Given the time series of pain scores, ARMAX is essentially a linear regression model for understanding future values of pain scores in the series. The ARMAX
model inputs were assigned unique variable names, x1x13, and are represented in the cluster-specific ARMAX equations below

Equations for the ARMAX models (where 'y’ is pain score, treated as a continuous variable)

CLUSTER 1: y = —0.0409 + 0.7180 x 1 + 0.0436 x 2 + 0.0949 x 3-0.0012 X 5 + 0.0015 X 6 + 0.0179 x 11

CLUSTER 2:y = —0.1447 + 0.8749 X 1 4+ 0.0196 x 2-0.0006 x 4-0.0007 X 5 + 0.0015 x 6 + 0.0250 x 13

CLUSTER 3:y = —0.0604 + 0.7865 x 1 + 0.0164 x 2 + 0.0374 x 3-0.0009 x 5 + 0.0012 x 6 + 0.0425 x 13

CLUSTER 4: y = —0.0826 + 0.8341 x 1 + 0.0451 x 2-0.0012 X 5 + 0.0017 X 6-0.0109 X 12

CLUSTER 5:y = 0.0789 + 0.9011 x 1 + 0.0107 x 2-0.0011 X 4 + 0.0012 X 6-0.1107 x 8-0.0496 x 9 + 0.0465 x 10

CLUSTER 6: y = —0.2732 + 0.8919 x 1-0.0103 X 2-0.0004 X 5 + 0.0007 X 6 + 0.0276 X 7 + 0.0655 X 12

“The ARMAXs estimate pain score, but we also want to be able to identify whether that patient is a responder at different thresholds (e.g., 50% reduction in pain
or 30% reduction in pain). Hence, we sought to confirm estimation of responder level based on the ARMAXs for pain score

from randomized clinical research and observational
real-world investigations to make medication treatment
choices. These choices require clinicians to blend evidence
derived from research focused on internal validity to as-
sess cause and effect together with research focused on
external validity to evaluate relevance to a specific treat-
ment decision. Concato et al. (2000) compared RCTs and
observational studies on the same topic (99 studies in five
topics) and found that well-designed observational studies
do not systematically over/underestimate the magnitude
of the effects of treatment as compared with those in
RCTS on the same topic, and that each are valuable in de-
livering evidence helpful to patient care [49]. Benson et al.
(2000) analyzed 136 reports about 19 diverse treatments

and concluded similarly that there is little evidence that
estimates of treatment effects in observational studies are
either consistently larger than or qualitatively different
from those obtained in RCTs [50]. Given the importance
of both types of studies, efforts to directly link them by re-
ducing potential covariate biases in observational studies
can improve treatment choices and patient outcomes.
Others have used CEM in other disease areas to reduce
multivariate imbalance and thereby improve regression
model estimates [51-54].

Limitations
One limitation is that the ARMAX models are based on
only three RCTs (combined N = 398) and one large
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Cluster 1 Cluster 2 Cluster 3
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— Model (0.9185) — Pain at Week 1 (0.9109) — Model (0.9333) — Dose at Week 1 (0.5686) — Model (0.8970) — Dose at Week 1 (0.5527)
— Pain at Week 2 (0.8552) — Sleep 1 at Week 1 (0.8410) — Pain at Week 1 (0.9265) Dose at Week 2 (0.6164) — Pain at Week 1 (0.8832) Dose at Week 2 (0.5754)
— Dose at Week 1 (0.5826) Dose at Week 2 (0.6158) — Pain at Week 2 (0.8790) — Gen feel full of energy — Pain at Week 2 (0.8148) — Gen feel full of energy
— pDPN duration (0.5827) — Dose at same week (0.4952)  at work (0.7245) — Dose at same week (0.7826)  at work (0.7108)
Cluster 4 Cluster 5 Cluster 6
1.00 1.00 1.00
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at work (0.6922) — Dose at Week 2 (0.5644) — Pregabalin monotherapy (0.6484) — Dose at Week 1 (0.5446) at work (0.7453)
Fig. 1 ARMAX model ROC curves for 50% responder levels the six clusters®. “Attaining the responder level of 50% is the dependent variable for
these models in contrast to pain score, which is the dependent variable in the models in Table 3. ROC receiver operating characteristic

Observational Study (N = 3159 patients) that were eval-
uated for this initial proof of concept. As with any study,
bias from omitted covariates cannot be eliminated.
Based on our encouraging findings, we have launched
ongoing work to expand the datasets. Another possible
consideration is that we might be able to predict out-
comes even better if the differences between clusters
produced with Ward’s minimum variance technique
were more distinct from one another. Ongoing work
with other clustering and machine learning techniques
will enable us to see the relative importance of the spe-
cific clustering methods for our predictions.

Another limitation is that we decided up front to focus
on predicting responders who completed the studies
(and thus tolerated side effects). Those who experienced
adverse events and discontinued the studies were ex-
cluded. This was a logical starting place for the proof of
concept; subsequent analyses can focus on identifying
those who would likely discontinue for safety or

tolerability reasons as well as incorporating statistical
techniques for handling missing data.

Another limitation is the extent to which we may cur-
rently extend and apply implications of our findings to
novel patients at clinical presentation. Additional work is
ongoing to extend the predictive capabilities of ARMAX
models using agent-based modeling and simulation tech-
niques [55]. This work has focused on predicting response
to pregabalin using baseline values of the patient variables
in the ARMAX models in order to assign novel patients
to particular clusters. The work also includes predicting
outcomes based on changes after 1 week or several weeks
of treatment and dose adjustments to discern how to im-
plement prediction in a practical way in a clinical setting
with an accessible user interface.

These findings are specific to patients with pDPN,
which is another limitation. Other clinical circumstances
may require less or more complex approaches to enable
prediction. While our results are specific to patients

Table 4 ARMAX model predictive capability for pain and responder status in the validation dataset

Clusters® Observed vs. estimated, P value
Pain level for responders Responder status achieved
At 50% threshold At 30% threshold At 50% threshold At 30% threshold
1 0.52 0.31 0.50 0.20
2 0.78 0.16 0.65 011
3 0.29 0.22 0.26 0.14
4 0.71 032 0.83 0.28
5 0.66 042 0.73 0.25
6 0.76 030 0.79 0.25

Abbreviations: ARMAX autoregressive moving average model, RCT randomized controlled trial

“Observational study dataset of patients not matched with RCT patients
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with pDPN, they suggest that these techniques should
be explored with larger datasets of both RCTs and ob-
servational studies, and with different clustering and
matching techniques, in order to better understand
when clustering and matching can help us predict
medication responders more effectively.

Conclusions

The six clusters identified were distinct, but with many
similarities and specific differences. Though often used
as a basis for prospective subgroup analyses in clinical
studies in neuropathic pain, exogenous variables such
as age, gender, pDPN duration, and pregabalin as
monotherapy or as concomitant therapy were rarely
predictive in and of themselves. It was their different
combinations in concert with reciprocal influences be-
tween pain and sleep interference that predicted re-
sponse. These relationships help explain why it is
challenging to predict consistently the right treatment
for the right patient. The ARMAX models also
highlighted the importance of pregabalin dose in the
prior weeks and its role in conjunction with these vari-
ables in predicting responders.

The other important consideration in effective predic-
tion of responders that was seen in these analyses related
to the improved performance of the models based on
blending of randomized and observational data to re-
duce the covariate biases in observational studies. The
CEM technique enabled use of the advantages of
randomization to enrich the patient data collected to
identify responders in a more real world setting by
affording reductions in the inherent biases that occur
from covariates in observational data. The use of
combined data from a large German Observational
Study and three pivotal North American RCTs to gener-
ate these clusters suggests that implementation of time
series—based multivariable models at the patient sub-
group level (clusters) offers a way to put similar patients
together. The finding that RCT-derived data could be
used to develop better models that predict patient out-
comes in a broader spectrum of Observational Study pa-
tients with different characteristics than those in the
RCTs supports the potential practical aspects of this
approach, pending confirmation with more studies and
applications beyond pDPN. Possible other advanced
modeling and machine learning techniques also could be
useful in these efforts because of their ability effectively
to handle complex relationships among variables chan-
ging over time.
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