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Glioblastoma, the most aggressive form of malignant glioma, is very difficult to treat because of its aggressively invasive nature and
high recurrence rates. RAS-selective lethal 3 (RSL3), a well-known inhibitor of glutathione peroxidase 4 (GPX4), could effectively
induce oxidative cell death in glioblastoma cells through ferroptosis, and several signaling pathways are involved in this process.
However, the role of the nuclear factor kappa-B (NF-κB) pathway in glioblastoma cell ferroptosis has not yet been investigated.
Therefore, we aimed to clarify the underlying mechanism of the NF-κB pathway in RSL3-induced ferroptosis in glioblastoma
cells. We found that RSL3 led to an increase in lipid ROS concentration and downregulation of ferroptosis-related proteins
such as GPX4, ATF4, and SLC7A11 (xCT) in glioblastoma cells. Additionally, the NF-κB pathway was activated by RSL3, and
its inhibition by BAY 11-7082 could alleviate ferroptosis. The murine xenograft tumor model indicated that NF-κB pathway
inhibition could mitigate the antitumor effects of RSL3 in vivo. Furthermore, we found that GPX4 knockdown could not
effectively induce ferroptosis. However, NF-κB pathway activation coupled with GPX4 silencing induced ferroptosis.
Additionally, ATF4 and xCT expression might be regulated by the NF-κB pathway. Collectively, our results revealed that the
NF-κB pathway plays a novel role in RSL3-induced ferroptosis in glioblastoma cells and provides a new therapeutic strategy
for glioblastoma treatment.

1. Introduction

Glioblastoma is the most aggressive form of malignant
glioma with high recurrence rates and resistance to
apoptosis [1]. Current therapies for glioblastoma include
surgery, radiotherapy, and chemotherapy with temozolo-
mide (TMZ) [2]. However, high-dose radiotherapy may lead
to severe brain damage, and long-term chemotherapy treat-
ment with TMZ is reported to result in drug resistance [3, 4].
Therefore, more innovative therapeutic strategies for
glioblastoma are urgently needed.

Ferroptosis is a distinct form of regulated cell death that
is largely dissimilar to other types of cell death, including
apoptosis [5, 6]. It is closely related to several metabolic
pathways involving iron, reactive oxygen species (ROS),
and lipid metabolism [7, 8]. Most cancer cells exhibiting
metabolic plasticity should be sensitive to ferroptosis
inducers [9, 10]. Many ferroptosis inducers, such as GPX4-

and system Xc--inhibitors, are under clinical investigation
across various tumor types [11]. The ferroptosis inducer,
RSL3, triggers ferroptosis in various cancers by inhibiting
GPX4 expression [12–14]. RSL3 can effectively induce
ferroptosis in glioblastoma cells both in vivo and in vitro
[13, 14]. However, the mechanism underlying RSL3-
induced ferroptosis is not fully understood.

The NF-κB pathway plays a pivotal role in the regulation
of cell survival and proliferation [15, 16]. NF-κB pathway
inhibition combined with TMZ treatment results in more
obvious apoptosis than TMZ alone in glioblastoma [17].
Additionally, the NF-κB pathway is linked to ferroptosis:
NF-κB p65 phosphorylation suppresses ER stress-mediated
ferroptosis, and p65 deletion contributes to intestinal epithe-
lial cell ferroptosis [18], and NF-κB signaling inhibition
results in human breast cancer cell ferroptosis [19].

Initially, we discovered that the NF-κB pathway was acti-
vated in RSL3-induced ferroptosis in glioblastoma cells, and
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it is fascinating to clarify its role in ferroptosis. RSL3-
induced ferroptosis in glioblastoma cells was characterized
by an increase in lipid ROS and a decrease in GPX4,
ATF4, and xCT expression. Inhibition of the NF-κB pathway
by BAY 11-7082 mitigated RSL3-induced ferroptosis
in vitro. Furthermore, we carried out a xenograft tumor
assay and found that inhibition of the NF-κB pathway also
alleviated the antitumor effects of RSL3 in vivo. In addition,
we observed that activation of the NF-κB pathway combined
with GPX4 depletion contributed to ferroptosis in glioblas-
toma cells. NF-κB pathway activation was negatively related
to the protein levels of ATF4 and xCT. This study reveals the
vital role of the NF-κB pathway in inducing ferroptosis in
glioblastoma cells, and it might serve as a potential target
for glioblastoma therapy.

2. Materials and Methods

2.1. Cell Culture and Reagents. The human glioblastoma cell
lines, U87 and U251, were gifted by the Guangzhou Insti-
tutes of Biomedicine and Health (GIBH). Glioblastoma cell
lines were cultured in Dulbecco’s modified Eagle’s medium
(DMEM; Gibco, Carlsbad, CA, USA) supplemented with
1% streptomycin/puromycin (HyClone, Logan, UT, USA)
and 10% fetal bovine serum (FBS; Gibco). The cells were
maintained in a humidified environment at 37°C and 5%
CO2. RSL3 and BAY 11-7082 were purchased from Selleck
Chemicals (Houston, TX, USA).

2.2. Cell Viability Assay. Cell viability was evaluated using
the Cell Counting Kit-8 (CCK8) assay (Bimake, Houston,
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Figure 1: RSL3 upregulated lipid ROS and downregulated key ferroptosis protein expression in glioblastoma cells. (a) CCK-8 assay
examining U87 and U251 cell viability at different concentrations of RSL3 treatment for 24 h. (b) Lipid peroxidation analysis for U87
and U251 treated with 0.25μM and 0.5 μM RSL3 for 24 h, respectively. (c) Western blot analysis of ATF4, xCT, GPX4, and HO-1
expression in U87 and U251 treated with 0.25μM and 0.5 μM RSL3 for 24 h, respectively. Experiments were repeated thrice, and data is
presented as the mean ± SD. ∗p < 0:05, ∗∗p < 0:01, and∗∗∗p < 0:001.
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TX, USA), according to the manufacturer’s instructions.
Glioblastoma cells were seeded in a 96-well plate at a density
of 8 × 103 cells/well, cultured for 24h, and treated with the
indicated compounds. The optical density (OD) value was
measured at 450 nm using a microplate reader BioTek
ELX800 (Gene Co., Ltd., Shanghai, China).

2.3. Small Interfering RNA (siRNA) Transfection. Confluent
glioblastoma cells were seeded in a 24-well plate at 60%–
80% confluence and transfected with 120nM of the specific
siRNA per well (RiboBio, Guangzhou, China) using the
Lipofectamine® RNAiMAX reagent (Invitrogen; Carlsbad,
CA, USA) according to the manufacturer’s instructions.

Cells were harvested after 72 h of siRNA treatment. The
siRNA sequences used are listed in Supplementary Table 1.

2.4. Western Blot Analysis. Cells were washed, collected, and
centrifuged at 300 × g at 4°C for 5min and lysed with
radioimmunoprecipitation lysis buffer (RIPA; Beyotime,
Shanghai, China). Proteins were separated on 15% poly-
acrylamide gels and transferred to polyvinylidene fluoride
membranes (PVDF; Millipore, Billerica, MA, USA). The
membranes were blocked in 5% nonfat powdered milk
(Beyotime, Shanghai, China) for 1 h at room temperature
and incubated with primary antibodies at 4°C overnight.
After washing the antibody adequately, the membranes were
incubated with horseradish peroxidase- (HRP-) linked
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Figure 2: The NF-κB pathway was activated in RSL3-induced ferroptosis. (a) The protein levels of NF-κB pathway after RSL3 treatment. (b)
Cellular localization of p65 was analyzed by immunofluorescence. Scale bar: 25 μm. The mRNA and protein levels of IL-1β were determined
by RT-qPCR (c) and western blotting (d). U87 and U251 cells were treated with 0.25 μM and 0.5 μM RSL3 for 24 h, respectively.
Experiments were repeated thrice, and data is presented as the mean ± SD. ∗p < 0:05; ∗∗p < 0:01.
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secondary antibodies for 1 h at room temperature. Proteins
were visualized using a MINI CHEN™ 610 chemilumines-
cent imaging system (Beijing Sage Creation Science Co.,
Ltd., Beijing, China). The primary antibodies used in this
study are listed in Supplementary Table 2.

2.5. Immunofluorescence. Cells were washed and fixed with
4% paraformaldehyde for 30min at room temperature and
permeabilized with 0.3% Triton X-100 for 15min. Thereaf-
ter, cells were blocked in 10% FBS and incubated with a rab-
bit anti-p65 antibody (Cell Signaling Technology, Boston,
MA, USA) at 4°C overnight. The cells were then washed
and labeled with Alexa Fluor® 488 donkey anti-rabbit IgG
(H+L) (Invitrogen) at a dilution of 1 : 2000 for 1 h at room
temperature. Nuclei were stained with 4′,6-diamidino-2-
phenylindole (DAPI; Sigma, St. Louis, MO, USA) for
5min. Images were captured using a DMi8 fluorescence
microscope (Leica Microsystems, Wetzlar, Germany).

2.6. Lipid Peroxidation Detection by Flow Cytometry. Cells
were seeded in a 6-well plate at a density of 2:2 × 105 cells/
well and then treated with the corresponding compounds.
Cells were then collected, washed twice with PBS, and incu-
bated with 5μM BODIPY™ 581/591 C11 (Invitrogen) at

37°C for 30min. Lipid peroxidation in glioblastoma cells
was detected using a BD FACSVerse™ flow cytometer (BD
Biosciences, Franklin Lakes, NJ, USA).

2.7. RT-qPCR. Total RNA was extracted using a TRIzol
reagent (Solarbio, Shanghai, China) according to the manu-
facturer’s instructions. One microgram of total RNA was
reverse-transcribed into cDNA using a ReverTra Ace qPCR
RT Kit (TOYOBO, Osaka, Japan), according to the manu-
facturer’s instructions. RT-qPCR was performed with a
SYBR® Premix Ex Taq™ Kit (Takara Bio, Kusatsu, Japan),
according to the manufacturer’s instructions, on a Quant-
Studio™ 5 Real-Time PCR system (Applied Biosystems,
Carlsbad, CA, USA). Target gene expression was normalized
to GAPDH and calculated using the 2-ΔΔCt method. Primer
sequences used are listed in Supplementary Table 3.

2.8. Murine Xenograft Tumor Model. Female B-NDG mice
(4–6 weeks old, 16–20 g) were purchased from Biocytogen
(Biocytogen Jiangsu Co., Ltd., Jiangsu, China) and housed
under specific pathogen-free conditions. 5 × 106 U87 cells
were resuspended in 200μL PBS buffer and then inoculated
into the left hind limb of each mouse. Once tumor volumes
reached ≥50mm3, the mice were randomly divided into four
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Figure 3: NF-κB pathway activation was not mediated by IL-1β release or GPX4 depletion. (a, b) Western blot analysis of NF-κB pathway-
related proteins and mature IL-1β expression in U87 and U251 cells. (c) Total and phosphorylated p65 expression after GPX4 knockdown.
U87 and U251 cells were treated with 0.25 μM and 0.5μM RSL3 for 24 h, respectively. Experiments were repeated thrice.
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Figure 4: NF-κB pathway inhibition, using BAY 11-7082 (12.5 μM), reduced RSL3-induced ferroptosis in glioblastoma cells. (a) CCK-8
assay examined U87 and U251 cell viability at different concentrations of RSL3 for 24 h. (b) Lipid peroxidation analysis for U87 and
U251 cells treated with 0.25μM and 0.5 μM RSL3 for 24 h, respectively. (c) Western blot analysis of IκBα, p-IκBα, and mature IL-1β
expression in U87 and U251 cells treated with 0.25 μM and 0.5 μM RSL3 for 24 h, respectively (d) Western blot analysis of ATF4, xCT,
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groups (n = 5): the control, RSL3-only, BAY-only, and RSL3
plus BAY groups. Chemicals were administered through
intratumor injection (100mg/kg for RSL3 and 1mg/kg for
BAY 11-7082) biweekly for two weeks. Tumor volumes were
calculated using a Vernier caliper every 3 days using the fol-
lowing formula:

Tumor volume =
length × width2
� �

2
: ð1Þ

At the end of the experiment, all mice were anesthetized
and sacrificed, and the tumors were harvested immediately.
All procedures were performed according to the Animal
Ethics Committee protocol approved for this study by
Southwest Medical University.

2.9. Statistical Analyses. Experiments were performed thrice,
and values are presented as the mean ± SD. Statistical differ-
ences were determined using unpaired two-tailed Student’s t
-tests. Statistical significance was set at p < 0:05.

3. Results

3.1. RSL3 Treatment Increased Lipid ROS and Decreased Key
Ferroptosis-Related Protein Expression in Glioblastoma Cells.

Wefirstmeasured the sensitivityof glioblastomacells todifferent
drugs (Supplementary Figure 1). TMZ, one of the most
commonly used clinical drugs for glioblastoma treatment, had
poor inhibitory effects on U87 cell proliferation. However,
RSL3, an inhibitor of GPX4, could severely hinder glioblastoma
cell proliferation. Other ferroptosis-induced compounds such
as Erastin or FIN56 could hardly induce apparent cell death.
Therefore, we tried to explore the mechanism of RSL3-induced
ferroptosis in U87 glioblastoma cells.

Two human glioblastoma cell lines, U87 and U251, were
treated with RSL3 at the indicated concentrations for 24 h,
respectively. We found that RSL3 induced cell death in a
dose-dependent manner and U87 was more sensitive to
RSL3 than U251 (Figure 1(a)). Additionally, lipid peroxida-
tion, a typical feature of ferroptosis, was detected after RSL3
treatment (Figure 1(b)). Ferroptosis-related protein expres-
sion was examined by western blotting (Figure 1(c)). GPX4
expression was reduced after RSL3 treatment in both U87
and U251 cells, corresponding to results obtained by other
studies [12]. Moreover, RSL3 treatment reduced ATF4 and
xCT expression. HO-1 expression was upregulated in
RSL3-treated cells; however, it is considered to play a dual
role in ferroptosis promotion/inhibition [20]. However, the
mRNA levels of ATF4, xCT, and HO-1 remained unchanged
in U87 and U251 cells after RSL3 treatment (Supplementary
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Figure 5: BAY 11-7082 (1mg/kg) mitigates the antitumor effects of RSL3 (100mg/kg) in a U87 xenograft model. (a) Representative images
of tumors obtained from different groups at the termination of the xenograft assay. (b) Tumor weights from B-NDG mice injected with U87
cells and treated with different conditions. (c) Tumor volume growth curves of B-NDG mice in different treatment groups. Data are
represented as the mean ± SD. ∗∗p < 0:01 ; ∗∗∗p < 0:001.
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Figure 2). Therefore, RSL3 treatment could effectively
induce ferroptosis in glioblastoma cells.

3.2. NF-κB Pathway Was Activated in RSL3-Treated
Glioblastoma Cells. To examine whether the NF-κB pathway
is involved in RSL3-induced ferroptosis, the expression of
NF-κB pathway-related proteins was investigated. Phos-
phorylated p65 and IκBα levels increased after RSL3 treat-
ment (Figure 2(a)). Additionally, nuclear localization of
p65 was observed in RSL3-treated glioblastoma cells by
immunofluorescence (Figure 2(b)). Therefore, the NF-κB
pathway was activated in RSL3-induced ferroptosis.

Since NF-κB pathway activation could be mediated by
several inflammation-related factors, including IL-1β, IL-6,
and TNFα, we further investigated the expression of these
cytokines. IL-1β expression was significantly increased by
RSL3 treatment, but IL-6 or TNFα expression was not
increased (Figure 2(c)). Moreover, pro-IL-1β and mature
IL-1β protein levels simultaneously increased in glioblas-
toma cells (Figure 2(d)).

Next, we silenced IL-1β with siRNA transfection to
explore its regulatory role in the NF-κB pathway
(Figures 3(a) and 3(b)). IL-1β knockdown slightly increased

phosphorylated IκBα protein levels in RSL3-treated glioblas-
toma cells. However, p65 silencing did not upregulate
mature IL-1β levels, indicating that increased IL-1β might
not be related to NF-κB pathway activation. We then
silenced GPX4 by siRNA transfection to explore its influence
on the NF-κB pathway (Figure 3(c)). The intensity of phos-
phorylated p65 normalized to total p65 exhibited no signifi-
cant difference between the siNC and siGPX4 groups (data
not shown). Therefore, GPX4 depletion did not contribute
to NF-κB pathway activation.

3.3. NF-κB Pathway Inhibition Reduced RSL3-Induced
Ferroptosis in Glioblastoma Cells. To clarify whether the
NF-κB pathway activation is vital to RSL3-induced
ferroptosis, we obstructed the NF-κB pathway by its specific
inhibitor BAY 11-7082 (BAY) and examined the effect on
ferroptosis. RSL3-induced ferroptosis was inhibited by
NF-κB pathway inhibition (Figure 4(a)). In RSL3-treated
glioblastoma cells, lipid ROS production was severely
reduced by the addition of BAY-inhibitor (Figure 4(b)). Fur-
thermore, phosphorylated IκBα and mature IL-1β were
expression markedly reduced (Figure 4(c)). However,
ferroptosis-related protein expression, such as ATF4, xCT,
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and HO-1, increased (Figure 4(d) and Supplementary
Figure 3). These results indicated that the inhibition of the
NF-κB pathway suppressed RSL3-induced ferroptosis in
glioblastoma cells.

3.4. NF-κB Pathway Inhibition Alleviated RSL3 Antitumor
Effects in a Murine U87 Xenograft Model. We conducted a
murine U87 xenograft assay to verify the results obtained
in vitro. Tumor growth was strongly inhibited by RSL3 treat-
ment, but NF-κB pathway suppression by BAY 11-7082 par-
tially alleviated RSL3 antitumor effects (Figure 5(a)). The
weights of RSL3-treated tumors were approximately one-
quarter of that in the control group, but cotreatment of
RSL3 and BAY 11-7082 resulted in a significant increase in
tumor weights (Figure 5(b)). The tumor growth curves cor-
related with the abovementioned results (Figure 5(c)).

3.5. GPX4 Silencing Did Not Trigger Ferroptosis in
Glioblastoma Cells unless the NF-κB Pathway Was Activated
Simultaneously. RSL3 is known to induce ferroptosis by
directly inhibiting GPX4 [12]. To verify whether GPX4 deple-
tion alone would result in ferroptosis, we silenced GPX4
expression and examined the viability of glioblastoma cells.
GPX4 silencing had a moderate effect on cell proliferation,
but NF-κB pathway activation by NFKBIA (IKBα) knock-
down resulted in significant growth inhibition (Figure 6(a)).

Next, we examined ferroptosis-related protein expres-
sion (Figure 6(b)). ATF4 and xCT protein levels remained
the same in GPX4-depleted cells, but their expression was
downregulated in RSL3-treated glioblastoma cells. Addition-

ally, NF-κB pathway activation decreased ATF4 and xCT
expression in GPX4-depleted cells. Therefore, NF-κB path-
way activation was essential for glioblastoma cell ferroptosis
and might mediate ATF4 and xCT expression (Figure 7).

4. Discussion

Unlike other types of regulated cell death, ferroptosis is
mainly driven by lipid peroxidation [5, 6, 21]. GPX4 is an
essential glutathione peroxidase that reduces lipid peroxida-
tion [6, 12]. RSL3, an inhibitor of GPX4, has been reported
to induce ferroptosis in various cancers such as glioblastoma
[13, 14, 22]; however, the underlying mechanism is not yet
fully understood.

Here, we aimed to investigate the underlying mecha-
nisms of RSL3-induced ferroptosis in glioblastoma cells.
We found that the NF-κB pathway was activated in RSL3-
treated glioblastoma cells, and NF-κB pathway inhibition
could prevent RSL3-induced ferroptosis; however, GPX4
silencing alone did not induce ferroptosis, but combining
NF-κB pathway activation with GPX4 depletion induced fer-
roptosis. Thus, we concluded that NF-κB pathway activation
is vital for inducing ferroptosis in glioblastoma cells.

NF-κB pathway activation is critical for tumor survival
[23]. When the NF-κB pathway is obstructed, glioblastoma
cells undergo apoptosis [16] and breast cancer cells experi-
ence ferroptosis [19]. In contrast, we observed that NF-κB
pathway activation contributes to RSL3-induced ferroptosis,
and NF-κB pathway inhibition by BAY 11-7082 prevents
glioblastoma cell ferroptosis. Furthermore, we found that
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Figure 7: The possible mechanism of RSL3-induced ferroptosis in glioblastoma cells.
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decreased ATF4 and xCT expression in RSL3-treated cells
could be prevented by NF-κB pathway inhibition, and
NF-κB pathway activation in GPX4-depleted glioblastoma
cells reduced ATF4 and xCT expression. ATF4 activation
has been reported to increase xCT expression in glioblas-
toma cells, and ATF4 silencing renders tumor cells suscep-
tible to RSL3-induced ferroptosis [13]. Therefore, we
concluded that the NF-κB pathway facilitates ferroptosis
by downregulating ATF4 and xCT in glioblastoma cells.

NF-κB pathway activation results in the upregulation of
inflammation-related factors, such as IL-1β, IL-6, and TNFα,
which could further activate NF-κB signaling [24, 25]. We
examined the mRNA levels of IL-1β, IL-6, and TNFα. IL-1β
expression increased after RSL3 treatment. NF-κB pathway
inhibition by BAY 11-7082 resulted in a decrease in mature
IL-1β. IL-1β silencing, however, did not increase the phosphor-
ylated IκBα levels in RSL3-treated glioblastoma cells, implying
that IL-1β expression is regulated by the NF-κB pathway, the
activation of which is independent of IL-1β (Figure 2(c)).

GPX4 overexpression disturbs NF-κB pathway activa-
tion [26], but the effects of GPX4 depletion on the NF-κB
pathway remain unknown. We observe that GPX4 knock-
down did not activate the NF-κB pathway, suggesting that
GPX4 inhibition does not activate the NF-κB pathway in
RSL3-induced ferroptosis. ROS [27] and the products of
lipid peroxidation, such as 4-hydroxynonenal (4HNE) [28],
could facilitate NF-κB pathway activation; thus, we pre-
sumed that NF-κB pathway activation might be attributed
to the increased lipid ROS induced by RSL3.

GPX4 knockdown alone can trigger ferroptosis in
human fibrosarcoma [12], but our results indicate that
GPX4 depletion is not sufficient to induce ferroptosis in glio-
blastoma, unless the NF-κB pathway is activated simulta-
neously. These contradictory results may be partly due to
the different cancer types. Moreover, we found that
increased ATF4 and xCT expression correlates with GPX4
knockdown, while ATF4 and xCT are considered to play a
protective role against ferroptosis in glioblastoma cells
[13]. Thus, we conclude that ATF4 and xCT upregulation
disrupts ferroptosis induced by RNAi-mediated GPX4
knockdown, and NF-κB pathway activation inhibits ATF4
and xCT expression and promotes ferroptosis.

5. Conclusions

NF-κB pathway activation is vital for RSL3-induced ferrop-
tosis in glioblastoma cells both in vitro and in vivo. Further-
more, RNAi-mediated GPX4 silencing cannot trigger
ferroptosis in glioblastoma cells unless the NF-κB pathway
is activated simultaneously. Finally, NF-κB pathway activa-
tion promotes ferroptosis by downregulating the expression
of ATF4 and xCT. Therefore, we propose that the NF-κB
pathway might serve as a potential target when combined
with radio- or chemotherapy in clinical treatment.
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