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Quantized topological pumping of solitons
in nonlinear photonics and ultracold atomic
mixtures

Nader Mostaan 1,2,3 , Fabian Grusdt1,2 & Nathan Goldman 3

Exploring the interplay between topological band structures and tunable
nonlinearities has become possible with the development of synthetic lattice
systems. In this emerging field of nonlinear topological physics, an experiment
revealed the quantized motion of solitons in Thouless pumps and suggested
that this phenomenon was dictated by the Chern number of the band from
which solitons emanate. Here, we elucidate the origin of this nonlinear topo-
logical effect, by showing that the motion of solitons is established by the
quantized displacement of the underlying Wannier functions. Our general
theoretical approach, which fully clarifies the central role of the Chern number
in solitonic pumps, provides a framework for describing the topological
transport of nonlinear excitations in a broad class of physical systems.
Exploiting this interdisciplinarity, we introduce an interaction-induced topo-
logical pump for ultracold atomic mixtures, where solitons of impurity atoms
experience a quantized drift resulting fromgenuine interaction processeswith
their environment.

Quantized responses have been a central theme throughout the realm
of topological physics, which was initiated with the discovery of the
quantum Hall effects in two-dimensional electron gases1,2. A wide
variety of topological band structures have been revealed over the last
decades, leading to the identification of various forms of quantized
responses, from quantized Faraday and Kerr rotations in three-
dimensional topological insulators3 to quantized circular dichroism4

and topological Bloch oscillations5,6 in two-dimensional ultracold
atomic gases. An emblematic and minimal instance of quantized
topological transport concerns the adiabatic motion of a quantum
particlemoving in a slowly-varying periodic potential, an effect known
as the Thouless pump7. In this setting, the center-of-mass motion is
quantized according to the Chern number of the underlying band
structure, as defined over a hybrid momentum-time space8. The rea-
lization of synthetic lattice systems has allowed for the experimental
implementation of Thouless pumps and for the observation of the
related quantized motion, in both photonics9–14 and ultracold gases
setups15,16.

Interestingly, synthetic topological systems17,18 can operate
beyond the linear regime of the Schrödinger equation, hence opening
the door to nonlinear topological physics19. In this emerging frame-
work, a central topic concerns the possible interplay between non-
linear excitations, known as solitons, and the underlying topological
band structure20–31. Interestingly, exact correspondences between
topological indices and nonlinear modes have been identified in
mechanical systems32 and for the Korteweg-de-Vries equation of fluid
dynamics33, hence allowing for a formal topological classification of
nonlinear excitations in certain special cases. In the context of non-
linear topological photonics, a recent experimental study reported on
the quantized motion of solitons in a lattice system undergoing a
Thouless pump sequence34. Despite the presence of considerable
nonlinearity, these observations suggest that the quantization of the
solitons displacement is dictated by the Chern numbers of the
underlying band structure. This nonlinear topological effect is parti-
cularly intriguing: On the one hand, the soliton is associated with a
non-uniformoccupation of a Bloch band, hence violating the standard
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condition for quantized motion in conventional (linear) Thouless
pumps7,8. On the other hand, the nonlinearity prevents the dispersive
evolution of a localized wave packet through the formation of a soli-
ton. As already pointed out in ref. 34, these facts highlight the crucial
role of nonlinearities in this emerging context of soliton
Thouless pumps.

In this work, we elucidate and explore the quantized transport of
solitons in nonlinear topological Thouless pumps. Inspired by the
experiment of ref. 34, we address this topic by considering a general
class of one-dimensional systems described by the discrete nonlinear
Schrödinger equation (DNLS)35,36. Following ref. 37, we represent the
solitons in terms of maximally localized Wannier functions of the
corresponding Bloch band fromwhich the soliton bifurcates. In the so
obtained Wannier representation, the adiabatic motion of the soliton
can be deduced from an ordinary (scalar) DNLS; from this, we show
that the quantized motion of the soliton is directly related to the
quantized displacement ofWannier functions upon pumping, which is
known to be set by the Chern number of the band15,38,39. This general
approach allows us to mathematically demonstrate the topological
nature of nonlinear Thouless pumps, by relating the quantizedmotion
of solitons to the Chern number of the underlying Bloch band. More
generally, these developments introduce a theoretical framework by
which a broad class of nonlinear topological phenomena can be for-
mulated in terms of topological band indices. We then broaden the
scopeby applying this nonlinear topological framework to the realmof
quantum gases. By considering an instructive mapping to a Bose-Bose
atomic mixture on a lattice40–42, which encompasses the aforemen-
tionedDNLS as its semiclassical limit, we identify a scenario by which a
topological pump emerges from inter-particle interaction processes: a
soliton of impurity atoms is dragged by the driven majority atoms,
hence leading to interaction-induced topological transport.

Results
Topological pumps of solitons: General theory
The theoretical description of soliton pumping relies on the topolo-
gical character of Wannier functions, namely, the displacement of
Wannier centers per pump cycle by the Chern number of the asso-
ciated Bloch band, see Fig. 1a. An intuitive reason for soliton pumping
then is solitons are dragged by Wannier functions, resulting in their
topologically quantized motion, see Fig. 1b. Interestingly, non-
linearities can induce this drag effect in topologically trivial systems.
Todemonstrate this effect, we consider a 1D atomicBose-Bosemixture
in a species-selective optical lattice, where the majority (minority)
atoms experience a topological (trivial) lattice. We show that a soliton
of minority atoms undergoes quantized displacement by activating a
Thouless pump sequence for the majority atoms; see Fig. 1c. In the
following, we elaborate on the theoretical description of soliton
motion in nonlinear Thouless pumps and the interaction-induced
topological pumps for atomic mixtures.

Our theoretical framework concerns a generic class of lattice
models governed by the DNLS,

i∂tϕi,α =
X
j,β

Hαβ
ij ðtÞϕj,β � g ∣ϕi,α ∣

2ϕi,α , ð1Þ

where the fieldϕi,α is defined at the lattice site α of the ith unit cell;H(t)
is a time-dependent Hamiltonian matrix, which includes a Thouless
pump sequence7,38; and g >0 is the (onsite) nonlinearity strength.
Equation (1) preserves the norm of the field, which we set to
∑α,i ∣ϕi,α∣2 = 1, without loss of generality.

An illustrative model, used below to validate the general the-
ory, is provided by the two-band Rice-Mele model15: a 1D chain with
alternating couplings J1,2(t) and staggered potential ±Δ(t)

(Methods). Considering the nonlinear Rice-Melemodel, Eq. (1) takes
the more explicit form

i∂tϕi,1 = J1ðtÞϕi,2 + J2ðtÞϕi�1,2 +ΔðtÞϕi,1 � g ∣ϕi,1∣
2ϕi,1,

i∂tϕi,2 = J1ðtÞϕi,1 + J2ðtÞϕi + 1,1 � ΔðtÞϕi,2 � g ∣ϕi,2∣
2ϕi,2:

ð2Þ

Here, the Thouless pump cycle corresponds to a loop in the
parameter space spanned by (J2 − J1) and Δ, which encircles the origin
(J1 = J2, Δ =0); see Methods. When g =0, the Bloch bands defined in
momentum-time space are associated with a Chern number C = ±1.
This topological invariant is known to determine the quantized
displacement for a filled band upon each cycle of the pump38.

Our analysis starts by studying the adiabatic evolution associated
to thegeneral Eq. (1),which is characterizedby theperiodof thepumpT
(exceeding all other time scales). To simplify notations, we use the
multi-index i= (i, α) and write Hij � Hαβ

ij ðtÞ. Introducing the adiabatic
time s = t/T, Eq. (1) takes the form iε∂sϕi =∑jHij(s)ϕj − g∣ϕi∣2ϕi, where
ε = 1/T. The solutions to the adiabaticDNLScanbewell approximatedby
stationary states of the formϕi / e�iθs φi, where θs is a time-dependent
phase factor and φi is an instantaneous solution to the stationary non-
linear Schrödinger equation (see Methods and refs. 43, 44)

μs φi =
X
j

HijðsÞφj � g ∣φi∣
2φi, ð3Þ

where the instantaneous eigenvalue μs explicitly depends on the
adiabatic time s.

Equation (3) admits (bright) solitons as stationary state solutions,
which are stable localized structures in the bulk. For sufficiently weak
nonlinearity, solitons predominantly occupy the band fromwhich they
bifurcate45, while increasing nonlinearity leads to band mixing. In real
space, solitons are immobile without external forcing, and are
degenerate modulo a lattice translation set by the translational

Wannier states

pump cycle

soliton

~ Chern

~ Chern

~ Chern

impurity atoms

(a)

(b)

(c)

Bose gas (majority)

Fig. 1 | Schematics of the soliton pumping mechanism and nonlinearity-
induced pumping in ultracold mixtures. a In a Thouless pump, the Wannier
functions perform a quantized drift established by the Chern number of the cor-
responding band. b In a nonlinear setting, the motion of a soliton follows the
quantized Wannier drift. c In a Bose-Bose atomic mixture, quantized pumping can
be induced by interactions: a soliton of impurity atoms is dragged by the driven
majority atoms, leading to interaction-induced topological transport.
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symmetry of the system. By adiabatically changing the Hamiltonian
Hij(s), a single soliton undergoes smooth deformation, and after one
period, it is mapped to the manifold of initial solutions, implying
translation by an integer multiple of the unit cell. The observations of
ref. 34 suggest that solitons bifurcating from a single Bloch band
undergo a quantized displacement dictated by the Chern number of
the band7 over each pump cycle. Demonstrating this intriguing rela-
tion between the transport of nonlinear excitations and topological
band indices is at the core of the present work.

To elucidate the topological natureof nonlinear pumps,we follow
ref. 37 and represent the solitons of Eq. (3) in the basis of maximally
localized Wannier states,

φi =
X
n

φðnÞ
i , φðnÞ

i =
X
l

aðnÞ
l wðnÞ

i ðlÞ, ð4Þ

where the superscript n denotes the occupied band; the index l labels
the unit cell onwhich theWannier state is localized; and all dependence
on the adiabatic time s is henceforth implicit. The coefficients aðnÞ

l obey
the analogue of Eq. (3) in the Wannier representation (Methods)

μs a
ðnÞ
l =

X
l1

ωðnÞ
l�l1

aðnÞ
l1

� g
X

n1 ,n2,n3

X
l1 ,l2,l3

W ðnÞ
l aðn1Þ*

l1
aðn2Þ
l2

aðn3Þ
l3

,
ð5Þ

whereωðnÞ
l = 1=N

PN�1
k =0 expði ð2π=NÞ k lÞ ϵðnÞk is the Fourier transformof

the nth Bloch band ϵðnÞk associated with Hij(s); N is the number of unit
cells; n = ðn,n1,n2,n3Þ, l = ðl, l1, l2, l3Þ; and W ðnÞ

ðlÞ are the following Wan-
nier overlaps

W ðnÞ
ðlÞ =

X
j

wðnÞ*
j ðlÞwðn1Þ*

j ðl1Þwðn2Þ
j ðl2Þwðn3Þ

j ðl3Þ: ð6Þ

TheWannier states of a Blochband are not unique, as theydepend
on the gauge choice for the Bloch functions46. Nevertheless, a unique
set of maximally localized Wannier functions is provided by the
eigenstates of the position operator’s projection onto the associated
band. Since such Wannier functions are exponentially localized, the
contribution to theWannier overlaps in Eq. (6) fromWannier functions
corresponding to different unit cells are negligible. The Wannier
overlaps can thus be simplified as W ðnÞ

l =W ðnÞ δll1
δl1l2

δl2l3
, where

W ðnÞ =
P

j w
ðnÞ*
j ðlÞwðn1Þ*

j ðlÞwðn2Þ
j ðlÞwðn3Þ

j ðlÞ; we point out that W ðnÞ does
not depend on the index l, because of translational invariance.

Moreover, in the regime of weak nonlinearity, the initial state
soliton occupies a single band34,37,47, which allows us to neglect inter-
band contributions to Eq. (5). We note that this simplification holds
throughout the evolution of the pump, during which the soliton
adiabatically follows the same band.

Under those realistic assumptions, the Wannier representation of
the DNLS reduces to the form

μs a
ðnÞ
l =

X
l1

ωðnÞ
l�l1

aðnÞ
l1

� gW ðnÞ∣aðnÞ
l ∣2aðnÞ

l , ð7Þ

whereW ðnÞ =
P

j ∣w
ðnÞ
j ðlÞ∣4. Equation (7) has the formof a scalar DNLSon

a simple lattice with one degree of freedom per unit cell labeled by
Wannier indices l, with hopping terms involving nearest and beyond-
nearest neighbors. The properties of such scalar DNLS are well
established36,48,49: Equation (7) admits inter-site solitons, with maxima
on two adjacent sites, and on-site solitons, with their maximum on a
single site. The inter-site solitons are known to be unstable against
small perturbations, we thus restrict ourselves to the stable on-site
solitons. Crucially, on-site solitons are always peaked around a single

site (l) throughout the pumping cycle, as there is a finite energy
(Peierls-Naborro) barrier for delocalization36,49. Interestingly, the
Peierls-Naborro barrier plays a role analogous to the “gap condition”
of conventional topological physics, by forbidding transitions to other
stable states during the adiabatic time evolution (Methods). This
observation suggests that solitons are dragged byWannier states upon
pumping, hence exhibiting a quantized displacement in real space
established by the Chern number15,38,39; see Fig. 1a, b.

To firmly prove the topological nature of the nonlinear Thouless
pump, we evaluate the solitons center-of-mass displacement after one
period s = 1 (Methods)

ΔhφðnÞ,XφðnÞi=ΔhwðnÞð0Þ,XwðnÞð0Þi
+Δ

X
l≠l0

aðnÞ*
l0 aðnÞ

l hwðnÞðl0Þ,XwðnÞðlÞi, ð8Þ

where X is the position operator of the lattice; h f , gi �Pi f
*
ig i is the

inner product of fields on the lattice; and Δ(⋅) ≡ (⋅)s=1 − (⋅)s=0. The first
term in Eq. (8) reflects the displacement of Wannier functions upon
one pump cycle, which is known to correspond to the Chern number
of the band15,38,39; the additional terms displayed on the second line are
possible corrections due to the finite overlap of different Wannier
states. Importantly, we find that these small interference effects are
periodic in time (Methods), such that these correction terms in Eq. (8)
do not contribute to the solitons center-of-mass displacement over a
pump cycle. Altogether, this completes the proof: the displacement of
solitons is indeed quantized according to the Chern number of the
band from which they emanate.

Numerical validation
We now demonstrate the validity of our assumptions by solving the
nonlinear Rice-Melemodel [Eq. (2)]. In Fig. 2a, b, we compare the on-site
soliton solution of the simplified Eq. (7), which emerges from the lowest
band, with theWannier representation of the exact soliton obtained by

Fig. 2 | Numerical validation of the simplified theoretical scheme. a, bWannier
representation of a soliton in the lowest band (n =0) of the nonlinear Rice-Mele
model (blue solid line), compared with the soliton obtained from the simplified
DNLS Eq. (7) (dashed red line), for g = J0 and g = 2 J0 and time s =0.12. Here, J0 is a
characteristic hopping strength (Methods). Note how increasing the nonlinearity
further localizes the soliton. c, d Same comparison in real space.
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solving the full DNLS in Eq. (3).We thenperforma similar comparison in
real space, by convolving the soliton of Eq. (7) with the corresponding
Wannier states, and by comparing this result to the exact soliton of the
original nonlinear Rice-Mele model; see Fig. 2c, d. The perfect agree-
ment validates the description of the soliton in Wannier representation
using the ordinary nonlinear Schrödinger Eq. (7).

We depict the motion of the exact soliton in Fig. 3, as obtained by
solving Eq. (3) over two pump cycles s∈ [0, 2], and we compare this
trajectory with the drift of its underlying Wannier function, i.e., the
Wannier state that contributes the most to the expansion (4). In order
to obtain a contiguous path for the Wannier center, we relabeled the
Wannier functions whenever the Wannier centers met discontinuities;
this smoothing corresponds to a singular gauge transformation of the
corresponding Bloch states, and has no physical implication. Figure 3
indicates that the trajectories of the soliton and Wannier center differ
at intermediate times (s ≠ integer), which we attribute to the afore-
mentioned interference effects involving different Wannier states
(Methods); however, in agreement with our theoretical predictions,
this deviation remains small and time-periodic over the whole pump
cycle, anddoes not introduce any (integer) correction to the quantized
center-of-mass displacement.

An interaction-induced topological pump for ultracold atomic
mixtures
The theoretical framework presented in this work is based on the
general DNLS in Eq. (1), and hence, it applies to a broad range of non-
linear lattice systems. In particular, this equation corresponds to the
Gross-Pitaevskii equation describing a weakly-interacting Bose gas
evolving on amoving lattice potential. In this section, we propose to go
beyond the paradigm of nonlinear pumps for single-component boso-
nic systems, by introducing a mapping to an imbalanced Bose-Bose
atomic mixture, which encompasses the DNLS in Eq. (1) as its semi-
classical limit (within the Thomas-Fermi approximation). As we explain
below, this original approach reveals an interaction-induced topological
pump, where solitons of impurity atoms undergo a quantized drift
resulting from genuine interaction processes with their environment.

We start from a microscopic theory for an imbalanced Bose-Bose
atomicmixture on a 1D lattice42, as described by the second-quantized

Hamiltonian

Ĥ =
X
hi,ji

ϕ̂
y
i H

ðϕÞ
ij ϕ̂j +

X
i

Uϕϕ

2
ϕ̂

y
i ϕ̂

y
i ϕ̂iϕ̂i

+
X
hi,ji

σ̂y
i H

ðσÞ
ij σ̂j +

X
i

Uσσ

2
σ̂y
i σ̂

y
i σ̂i σ̂i

+
X
i

Uϕσ ϕ̂
y
i ϕ̂i σ̂

y
i σ̂i,

ð9Þ

where ϕ̂i and σ̂i are bosonic field operators on the lattice; note that
we use the same conventions for indices i = (i, α) as before. Speci-
fically, the first line describes single-body processes (i.e., nearest-
neighbor hopping and onsite potentials) and intra-species contact
interaction processes for the majority atoms, which are described
by the field operator ϕ̂i; the second line describes single-body
processes and intra-species contact interactions for impurity
atoms, represented by the field operator σ̂i; and the third line
describes inter-species interaction processes. We assume that the
intra-species interaction strengths are both repulsive, (Uσσ,
Uϕϕ > 0), whereas the inter-species interaction strength is attractive
(Uϕσ < 0).

In the semi-classical limit, where quantum fluctuations are sup-
pressed for both species, this Bose-Bose mixture setting is well
described by two coupled nonlinear Schrödinger equations (Methods
and ref. 42)

ðω0 +μϕÞϕi �
P
j
HðϕÞ

ij ϕj � gϕϕ∣ϕi∣
2 + gϕσ ∣σi∣

2
� �

ϕi =0,

ðω0 +μσÞσi �
P
j
HðσÞ

ij σj � gϕσ ∣ϕi∣
2 + gσσ ∣σi∣

2
� �

σi =0,
ð10Þ

where ϕi and σi denote classical fields satisfying the constraints
∑i ∣ϕi∣2 =Nϕ/(Nϕ +Nσ) and ∑i ∣σi∣2 =Nσ/(Nϕ +Nσ), with Nϕ and Nσ the
particle number of majority and impurity species, respectively; the
interaction parameters are defined as gαβ =Uαβ(Nϕ +Nσ), with α, β = (ϕ,
σ); μϕ,σ denote the chemical potentials; and ω0 is the eigenvalue of the
nonlinear Eqs. (10).

Considering the case of heavy impurities, we neglect their kinetic-
energy contributions (HðσÞ

ij ) to Eq. (10), the so-called Thomas-Fermi
approximation. In this regime, one can relate the impurity mean-field
profile to the majority profile as

∣σi∣
2 = � ðgϕσ=gσσÞ ∣ϕi∣

2, ð11Þ

and Eq. (10) simplifies to the DNLS (Methods)

ðω0 +μϕÞϕi =
X
j

HðϕÞ
ij � uMF

i

0
@

1
Aϕi, uMF

i = g∣ϕi∣
2, ð12Þ

where g = �gϕϕ + g2
ϕσ=gσσ . Interestingly, Eq. (12) is formally equivalent

to the DNLS in Eq. (3): the majority atoms described by the field ϕi can
forma soliton andundergo aquantizedmotionupondriving aThouless
pump sequence in the corresponding lattice Hamiltonian, i.e., HðϕÞ

ij ðsÞ.
Importantly, according to Eq. (11), the impurity atoms also form a soli-
ton and undergo a quantizedmotion: the impurities exhibit topological
pumping from genuine interaction processes with the majority atoms.
In particular, this interaction-induced topological pumping occurs even
when the lattice felt by the impurities HðσÞ

ij is associated with a trivial
(non-topological) band structure. This intriguing phenomenon, which
could be implemented in ultracold atomic mixtures in optical
lattices40–42, is reminiscent of topological polarons50–55, in the sense that
impurities inherit the topological properties of their environment
through genuine interaction processes.
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We first analyze this interaction-induced topological effect by
considering the Thomas-Fermi approximation. It appears from Eq. (12)
that uMF acts as an effective potential for the majority atoms; a soliton
then emerges as the bound state of the impurity field. In the context of
highly-imbalanced mixtures with strong impurity-majority coupling,
i.e., in the strong-coupling Bose polaron regime, it is customary to
assume a variational ansatz describing the profile of the impurity and
majority fields56; the majority field is then found as the bound state of
the impurity potential uMF using the first relation in Eq. (12). Here, the
variational problem for obtaining uMF reduces to one for ϕ, because of
the constraint uMF = g∣ϕ∣2. As before, we expressϕ in theWannier basis,
and the variational problem is then solved simultaneously for both uMF

and ϕ using the ansatz al =η sechðξ ðl� l0ÞÞ for the Wannier coeffi-
cients of ϕ. The bound state of the resulting impurity potential uMF =
g∣ϕ∣2 then corresponds to the soliton (Methods).

Figure 4 a, b show the adiabatic evolution of the amplitude η and
width ξ of the variational solution al = η sechðξ ðl� l0ÞÞ used for the
Wannier coefficients of ϕ. We compare these results with the ampli-
tude and width extracted from the bound-state solution associated
with the impurity potential uMF = g∣ϕ∣2, as well as to those extracted
from the exact soliton of Eq. (3) expressed in Wannier representation.
We also show the dependence of these parameters on the nonlinearity
g in Fig. 4c, for both the exact soliton and the variational solution.
These results validate our variational approach, as well as the bound-
state picture of our soliton.

The minimum-energy solutions obtained from the variational
ansatz are realized for integer values of the Wannier index l0, and thus
correspond to stable on-site solitons. Moreover, this Wannier index l0
remains constant over a pump cycle. Hence, this again suggests that the
real-space motion of the soliton should follow the quantized Wannier
drift, as established by the Chern number. This is verified in Fig. 4d,
where the center-of-mass displacement of the calculated bound state is
shown to be quantized over a pump cycle (compare with Fig. 3).

In order to demonstrate the validity of our results, in particular,
the robustness of the interaction-induced topological pump away
from the Thomas-Fermi limit, we solve Eq. (10) numerically for a mass-
balanced mixture, thus including the effects of the impurities’ kinetic
energy. We again use the Rice-Mele model, but consider two different
pump sequences for the majority and impurity species: the majority
feels the same (topological) pump sequence as in Fig. 3, while we apply
a trivial sequence for the impurity species. We obtain the steady state
solution of Eq. (10) over two pump cycles, where themajority particles
predominantly occupy the lowest Bloch band. The corresponding
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trajectories of the CM of both species are depicted in Fig. 5, where the
impurity CM is shown to be dragged by the majority particles. While
the exact form of the CM trajectories depend on the details of the
model and pumping sequence, the CM displacement after one pump
cycle is dictated by the Chern number of the topological band occu-
pied by themajority species (C = −1 in this case). Although the impurity
atoms experience a topologically trivial lattice, they are shown to
undergo topological pumping through genuine interaction effects
with their environment.

Implementation in ultracold atoms
The interaction-induced topological pump introduced above could be
experimentally implemented in ultracold atomic gases involving two
bosonic species. In fact, the parameters values incorporated in our
numerical simulations of Eq. (10), and displayed in Fig. 5, are compa-
tible with an experimental realization based on bosonic 7Li − 7Li mix-
tures, with two different hyperfine states of 7Li as “majority” and
“impurity” atoms; we note that the formation of solitons in Lithium
gases was previously investigated, both theoretically and
experimentally57,58. Following ref. 59, the scattering lengths between
atoms in state (F = 1,mF = 1)–“impurity” atoms–and (F = 1,mF =0)–“
majority” atoms–can be set to aϕϕ≃0.154 a0, aϕσ≃ −7.57a0, aσσ≃
1.514 a0, at a magnetic field B≃ 575G, where a0 is the Bohr radius
(a0 = 0.0529 nm); we note that these scattering lengths are highly
tunable thanks to a broad Feshbach resonance. As further discussed
below, this configuration is compatible with the interaction para-
meters (gϕϕ, gσσ, gϕσ) used in our numerics.

The lattice structure andpump sequence can bedesignedwithin a
time-dependent optical lattice. For instance, following ref. 16, the
atoms can be loaded in a potential landscape comprised of two
superimposed optical lattices, with a long-wavelength lattice (λl =
1064 nm) and a shorter lattice (λs = λl/2), with different amplitudes
(Vl = 3.0 ER and Vs = 1.0 ER, with ER = h2

=ð2m λ2l Þ the recoil energy of the
long lattice). Such an optical lattice potential takes the form
V ðx,ϕÞ= � Vl cos

2ð2πx=λl � ϕÞ � Vs cos
2ð2πx=λsÞ, and it implements

the Rice-Mele lattice considered in our numerics: the Thouless pump
sequence is simply realized by sweeping the phaseϕ from0 to 2π. The
relevant parameters of the Rice-Mele model can be extracted from a
tight-binding analysis of theoptical lattice potential16, and the resulting
pumpsequence is describedby the following ellipticpath inparameter
space: ððJ1 � J2Þ=aÞ2 + ðΔ=bÞ2 = 1, with a≃0.19 ER and b≃0.475 ER. In
our numerics, we choose a closely related pumping sequence with
a =0.15 ER and b =0.5 ER; this choice does not affect our final conclu-
sions, since topological pumping is robust against smooth deforma-
tions of the pumping sequence. Finally, to reveal the interaction-
induced topological transport for impurities, we propose to imple-
ment a trivial pump sequence for that species only [see Fig. 5]; this
could be realized by designing a state-dependent optical lattice60, for
instance, using the Floquet-engineering scheme of ref. 61.

The particle numbers of the two species can be set to Nϕ≃ 150062

and Nσ/Nϕ≃ 1/30. With this choice, we obtain the interaction para-
meters according to the relation gαβ=ER = ðNσ +NϕÞ

ffiffiffiffiffiffiffiffiffi
8=π

p
kl

aαβðVs=ERÞ3=440, where α, β = (ϕ, σ) and kl = 2π/λl. Setting the pump
parameter J0 =0.5ER, the numerical values for the interaction para-
meters are obtained as gϕϕ≃0.226 J0, gϕσ≃−11.32 J0 and gσσ≃ 2.26 J0,
which are the values used in our numerical simulations [Fig. 5].

Discussion
In this work, we outlined a general theoretical framework that connects
Bloch band’s topology to nonlinear excitations, hence elucidating the
topological transport of solitons in the context of nonlinear Thouless
pumps. Solitons are stable states of nonlinear lattice systems described
by the paradigmatic discrete nonlinear Schrödinger equation (DNLS),
which is central in describing nonlinear phenomena in a wide range of
physical settings, from nonlinear optics and photonics, to ultracold

quantum matter, fluid dynamics and plasma physics. In this sense,
characterizing the influence of Bloch band’s topology on the behavior
of the stable states of DNLS is of prime importance. This program is
particularly challenging due to the lack of generic theoretical approa-
ches connecting notions of topological physics to nonlinear systems
and vice versa. Furthermore, introducing nonlinearities in more
sophisticated topological systems, such as higher-dimensional settings,
or lattices exhibiting higher-order topology and symmetry-protected
features, could lead to exotic phenomena exhibited by the nonlinear
modes of the system; see ref. 63 and references therein. By providing a
scheme that naturally connects topological indices of band structures
to nonlinear excitations, our work opens the door to the exploration of
novel nonlinear topological phenomena.

We also illustrated the universality of our approach, by introdu-
cing a topological pump for Bose-Bose atomic mixtures, where one
species (impurity atoms) experiencea quantizeddrift throughgenuine
interaction processes with the other species (the surroundingmajority
atoms). Importantly, the impurity atoms inherit the topological
properties of their environment through inter-species interactions.We
note that such interaction-induced topology has been previously stu-
died in the context of topological polarons, namely, in mixtures with
strong population imbalance, where individual topological excitations
can bind to mobile impurities50,51,53,55. The present scheme extends
those concepts to more complex majority-impurity states, such as
coupled coherent states within a superfluid phase. We also point out
that the proposed scheme can be implemented using available cold-
atom technologies, and the quantized transport of impurities can be
measured in-situ, using state-selective imaging techniques64. Besides,
the Chern number characterizing the interaction-induced topological
pump could also be directly extracted by interferometry51.

During the preparation of this manuscript, the authors became
aware of a related work by M. Jürgensen and M. C. Rechtsman47, and
also ref. 65.

Methods
Adiabatic theorem for NLS
The adiabatic theorem for NLS (both continuous and discrete forms),
follows closely the formulation of its linear counterpart43,44. For a sys-
tem with a time-dependent Hamiltonian H(t), which varies on a time
scale T much larger than all the time scales in the problem, the time-
dependent NLS takes the following form (see main text)

iε ∂sϕ= HðsÞϕ� g∣ϕ∣2ϕ, ð13Þ

where s = t/T is the adiabatic time and ε = 1/T the rate of change. The
stationary state solutions of Eq. (13) are of the form

ϕs = e
�iθs φs + δ φs

� �
, ð14Þ

where φs is the instantaneous solution of the stationary NLS,

μs φs = HðsÞφs � g ∣φs∣
2φs, ð15Þ

and θs = 1=ε
R s
0 ds

0 μs0 � γs
� �

is a global phase factor consisting of a
dynamical contribution and a Berry phase, and it can be ignored. The
correction term δφs accounts for non-adiabatic variations, and for
ε→0, it behaves as ∣∣δφ∣∣ ~ ε, hence vanishes in the adiabatic limit ε→0.
The relevant dynamical information is therefore encoded in the
instantaneous solutions of Eq. (15).

The Rice-Mele model and pump sequence
Throughout this work, we illustrate the general concepts and results
using the Rice-Mele model, with periodic boundary conditions. This
simple two-band model, which is reviewed in some detail below, is
known to exhibit a topological (Thouless) pump sequence.
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The Rice-Mele model is a 1D tight-binding model with alternating
nearest-neighbor tunneling matrix elements (J1, J2, J1, J2,…), and a
staggered on-site potential. We denote the two sites within each unit
cell byα =A, B and the unit cells by i, 0 ≤ i ≤N − 1, whereN is the number
of unit cells. The hoppingmatrix element between sites A and Bwithin
each unit cell (resp. between adjacent unit cells) is written as J1 = −
J(1 + δ) (resp. J2 = −J(1− δ)) and the magnitude of the staggered poten-
tial on site A (resp. B) equals Δ (resp. −Δ). The Hamiltonian of the Rice-
Mele model thus reads

H = �
XN�1

i=0

Jð1 +δÞ ∣i,Ai i,Bh ∣½

+ Jð1� δÞ∣i,Ai i� 1,Bh ∣ �
ð16Þ

+
Δ

2

XN�1

i=0

∣i,Ai i,Ah ∣� ∣i,Bi i,Bh ∣½ �+h:c: ð17Þ

The simulations shown in the main text were performed on a
lattice with N = 100 unit cells, and using the following pump sequence

JðsÞ= J0 1 + 1=2 cosð2πsÞ� �
,

δðsÞ= δ0 cosð2πsÞ=ð2+ cosð2πsÞÞ,
ΔðsÞ= J0 sinð2πsÞ,

ð18Þ

with J0 = 0.5 and δ0 = 0.6, corresponding to a topological pump with
Chern number C = −1. The nonlinear Rice-Melemodel, which is used in
our simulations, is obtained by adding an on-site nonlinearity to this
lattice model; see Eq. (2).

In order to demonstrate the interaction-induced topological
pumping in the Bose-Bose mixture setting, we assume that the two
species experience the same Rice-Mele lattice described above, but
with different pump sequences: the majority atoms experience the
topological pumping sequence in Eq. (18), while the impurity atoms
experience a trivial sequencewith Jδ = Δ = 0. The resulting center-of-
mass displacement of both species are depicted in Fig. 5 of the
main text.

Derivation of the scalar DNLS
We outline the derivation of the simplified scalar DNLS from the ori-
ginal lattice DNLS,

μϕi =
X
j

Hij ϕj � g ∣ϕi∣
2 ϕi: ð19Þ

The Wannier functions are related to the Bloch waves of the
Hamiltonian by the following relations:

wðnÞ
j ðlÞ= 1ffiffiffiffi

N
p

XN�1

k =0

eið2π=NÞkð�lÞ ψðnÞ
j ðkÞ

=
1ffiffiffiffi
N

p
XN�1

k =0

eið2π=NÞkðj�lÞ uðnÞ
j ðkÞ,

ð20Þ

where ψðnÞ
j ðkÞ= eið2π=NÞkðjÞ uðnÞ

j ðkÞ is the Bloch wave of band n with
momentum k and uðnÞ

j ðkÞ is the corresponding Bloch function, which is
periodic over the unit cells and does not depend on j. To represent the
Hamiltonian part in Wannier basis, we evaluate the matrix elements of
the Hamiltonian over the Wannier states

hwðn0 Þðl0Þ,HwðnÞðlÞi= 1
N

XN�1

k,k0 =0

eið2π=NÞðk
0l0�klÞ hψðn0 Þðk0Þ,H ψðnÞðkÞi

= δnn0 � 1
N

XN�1

k =0

eið2π=NÞkðl
0�lÞ ϵðnÞk = δnn0 � ωðnÞ

l0�l ,

ð21Þ

where ωðnÞ
l = 1=N

PN�1
k =0 eið2π=NÞkðlÞ ϵðnÞk is the Fourier transform of the

Bloch band ϵðnÞk ; see main text.
Next, we express the nonlinearity in terms of Wannier functions,

hwðnÞðlÞ, ∣ϕ∣2 ϕi=
X

n1 ,n2,n3

X
l1 ,l2,l3

X
i

wðnÞ*
i ðlÞwðn1Þ*

i ðl1Þwðn2Þ
i ðl2Þwðn3Þ

i ðl3Þ
 !

×aðn1Þ*
l1

aðn2Þ
l2

aðn3Þ
l3

:

ð22Þ

Taking the inner product of Eq. (19) with wðnÞ
l and using Eqs. (21)

and (22), we obtain the following DNLS

μs a
ðnÞ
l =

X
l1

ωðnÞ
l�l1

aðnÞ
l1

�g
X

n1 ,n2,n3

X
l1 ,l2,l3

W ðnÞ
l aðn1Þ*

l1
aðn2Þ
l2

aðn3Þ
l3

:
ð23Þ

Derivation of the soliton center-of-mass displacement
Here, we prove that the quantized displacement of the solitons center-
of-mass is determined by the Chern number of the related Bloch band.
For later convenience, we derive the following identity for matrix
elements of position operator over the Wannier functions,

hwðnÞðl0Þ,XwðnÞðlÞi= hwðnÞðl0 � lÞ, ðTy
l X TlÞwðnÞð0Þi

= hwðnÞðl0 � lÞ,X wðnÞð0Þi+ l hwðnÞðl0 � lÞ,wðnÞð0Þi
= hwðnÞðl0 � lÞ,X wðnÞð0Þi+ l δll0

ð24Þ

where Tl is the translation operator by l unit cells. In deriving Eq. (24)
we used the relation Ty

l XTl =X + l together with the orthogonality of
Wannier functions. The soliton center-of-mass then reads

hφðnÞ,XφðnÞis =
X
l,l0

aðnÞ*
l0 aðnÞ

l hwðnÞðl0Þ,XwðnÞðlÞis

=
X
l

∣aðnÞ
l ∣2 hwðnÞðlÞ,XwðnÞðlÞis

+
X
l≠l0

aðnÞ*
l0 aðnÞ

l hwðnÞðl0Þ,XwðnÞðlÞis

=
X
l

∣aðnÞ
l ∣2

 !
hwðnÞð0Þ,XwðnÞð0Þis

+
X
l

∣aðnÞ
l ∣2 l

 !
hwðnÞð0Þ,wðnÞð0Þis

+
X
δl≠0

X
l

aðnÞ*
l + δl a

ðnÞ
l

 !
hwðnÞðδlÞ,XwðnÞð0Þis,

ð25Þ

where we used Eq. (24) in the last equality. The first term in the last
equality of Eq. (25) reduces to hwðnÞð0Þ,XwðnÞð0Þis since we normalized
the soliton intensity to unity,Nϕ =

P
l ∣a

ðnÞ
l ∣2 = 1. The second term in the

last expression is the mean value of the position of the Wannier
functions indices, which is constant since the on-site solution is always
peaked around a Wannier label and remains symmetric around
it. Its contribution to the displacement over a pump cycle thus
vanishes. The third term contains products of the formP

l a
ðnÞ*
l + δl a

ðnÞ
l

� �
hwðnÞðδlÞ,XwðnÞð0Þis and its treatment requires more

care. The coefficient
P

l a
ðnÞ*
l + δl a

ðnÞ
l

� �
is time-periodic, since aðnÞ

l is, by
assumption, the solution of the scalar DNLS in Eq. (7), in themain text.
To investigate the behavior of hwðnÞðδlÞ,XwðnÞð0Þis, we note that after a
pump cycle, the Wannier functions are displaced by the Chern
number, wðnÞðlÞ∣s = 1 =wðnÞðl + CnÞ∣s =0, with Cn the Chern number of
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band n. Thus, after a pump cycle, we have

hwðnÞðδlÞ,XwðnÞð0Þi∣s = 1
= hwðnÞðδl + CnÞ,XwðnÞðCnÞi∣s =0
= hwðnÞðδlÞ,XwðnÞð0Þi∣s =0,

ð26Þ

where we used Eq. (24) in the last step. This proves that the quantity
〈w(n)(δl), Xw(n)(0)〉∣s, in the last equality of Eq. (25), is a time-periodic
quantity.

Altogether, the third term in Eq. (25) is also time-periodic, and the
soliton’s center-of-mass displacement over a pump cycle is given by

ΔhφðnÞ,XφðnÞi=Δ hwðnÞð0Þ,XwðnÞð0Þi: ð27Þ

This result directly relates the soliton’s displacement to the dis-
placement of Wannier functions upon one pump cycle, as dictated by
the Chern number of the band15,38,39. This proves the quantized
pumping of the soliton according to the Chern number.

Derivation of the Bose-Bose mixture equations
In order to derive the equations governing the coherent state profiles
of the two species in the mixture, we start from the microscopic
Hamiltonian in Eq. (9). The coherent-state action of the system takes
the following form (ℏ = 1),

S½�ϕ,ϕ; �σ,σ�=
Z tf

ti

dt L½�ϕ,ϕ; �σ,σ�, ð28Þ

with the Lagrangian

L½�ϕ,ϕ; �σ,σ�

=
X
i

�ϕi i∂t +μϕ

h i
ϕi �

X
hi,ji

�ϕi tϕH
ðϕÞ
ij ϕj �

X
i

gϕϕ

2
∣ϕi∣

4

+
X
i

�σi i∂t +μσ

� �
σi �

X
hi,ji

�σi H
ðσÞ
ij σj �

X
i

gσσ

2
∣σi∣

4

�
X
i

gϕσ ∣σi∣
2∣ϕi∣

2:

ð29Þ

To proceed, we seek stationary state solutions for the coherent
state fields of the form ϕðssÞ

i ðtÞ= e�iω0t ϕi and σðssÞ
i ðtÞ= e�iω0t σi, which

minimize L½�ϕ,ϕ; �σ,σ�. Such solutions are the saddle-point solutions of
the quantum mechanical action, giving the mean-field stable states of
the system. The Lagrangian then takes the time-independent form

L½�ϕ,ϕ; �σ,σ�

=
X
i

�ϕi ω0 +μϕ

h i
ϕi �

X
hi,ji

�ϕi H
ðϕÞ
ij ϕj �

X
i

gϕϕ

2
∣ϕi∣

4

+
X
i

�σi ω0 +μσ

� �
σi �

X
hi,ji

�σi H
ðσÞ
ij σj �

X
i

gσσ

2
∣σi∣

4

�
X
i

gϕσ ∣σi∣
2 ∣ϕi∣

2:

ð30Þ

To minimize the Lagrangian, the corresponding Euler-Lagrange
equations are derived from δL=δ �ϕi =0 and δL=δ �σi =0 ,which leads to
the two coupled equations in Eq. (10) in the main text.

In the limiting case of heavy impurities, we neglect their kinetic-
energy contributions (HðσÞ

ij ) to Eq. (10), the so-called Thomas-Fermi
approximation. In this case, the second equation in Eq. (10) reduces to
(ω0 + μσ) = gϕσ∣ϕi∣2 + gσσ∣σi∣2. For the bright soliton solutions of Eq. (10),
ϕi and σi decay exponentially away from the soliton center, thus, to
zeroth order in the impurities hopping strength, ω0 + μσ =0. Eq. (10)

then reduce to

ðω0 +μϕÞϕi =
X
j

HðϕÞ
ij ϕj + gϕϕ∣ϕi∣

2 + gϕσ ∣σi∣
2

� �
ϕi, ð31Þ

∣σi∣
2 = � gϕσ=gσσ ∣ϕi∣

2: ð32Þ

Inserting Eq. (32) into Eq. (31), we obtain an effective DNLS for ϕi,

ðω0 +μϕÞϕi =
X
j

HðϕÞ
ij ϕj + gϕϕ � g2

ϕσ=gσσ

� �
∣ϕi∣

2ϕi, ð33Þ

with the effective nonlinearity strength g = �gϕϕ + g2
ϕσ=gσσ , which for

gϕϕgσσ< g
2
ϕσ corresponds to a defocusing nonlinearity.

Variational ansatz for the state of Bose-Bose mixture in the
Thomas-Fermi limit
The variational treatment of Eqs. (11) and (12) accounts to minimizing
the following energy functional for the field ϕ

H½�ϕ,ϕ�=
X
i,j

�ϕi H
ðϕÞ
ij ϕj �

g
2

X
i

∣ϕi∣
2

�μϕ

X
i

∣ϕi∣
2 � Nϕ

 !
:

ð34Þ

From the knowledge obtained from the soliton solutions of the
DNLS in the main text, we assume that ϕi belongs to a single band and
expand it in terms of the Wannier functions of the corresponding
band, ϕi =

P
l a

ðnÞ
l wðnÞðlÞ. We then use a sech variational ansatz for the

coefficient amplitudes, aðnÞ
l = η= sech ξðl� l0Þ

� �
. The variational

energy functional takes the following form:

H=η2 =ωðnÞ
0 Nϕ=η

2 +
X1
m= 1

4m
sinhðξmÞω

ðnÞ
m

� 2 gW ðnÞ

3
η2 1

ξ
+
X1
m= 1

2π2

ξ2
1 +

π2m2

ξ2

 !
m cosð2πml0Þ

sinhðπ2m
ξ Þ

" #
,

ð35Þ

subject to the constraint Nϕ = const:, where

Nϕ=η
2 =

2
ξ
+
X1
m= 1

4π2

ξ2
m cosð2πml0Þ

sinhðπ2m
ξ Þ : ð36Þ

For the simulations presented in the main text [Fig. 4], we assume
that Nϕ = 1 ; see refs. 36, 48 for more details on variational ansätze for
DNLS. From the solution of Eqs. (35) and (36)we then obtain the boson
field, ϕi, which is then used to obtain the effective attractive potential
uMF
i = g∣ϕi∣

2 ; see Eq. (12).

Potential barrier preventing soliton delocalization
The nonlinear term in Eq. (1) [resp. in Eq. (7)] leads to the formation of
localized soliton solutions, which do not satisfy the lattice (resp.
Wannier lattice) translational symmetry.While the stable-state solitons
are not translationally invariant, they can be mapped to one another
through lattice translations. It is known that an effective potential
barrier exists for continuous deformations of each stable-state soliton
to a neighboring one. This potential barrier is reminiscent of the
Peierls-Naborro barrier (PNB) known in the theory of dislocation
dynamics in crystals66. Under adiabatic evolution, a soliton in Wannier
representation will always remain peaked on a single Wannier index
since the potential barrier rules out the existence of solutions that
interpolate continuously between two on-site solitons. The strength of
this potential barrier can be estimated in terms of the model
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parameters using the variational ansatz aðnÞ
l = η=sech ξðl� l0Þ

� �
for the

Wannier soliton in band n, and the corresponding energy functional in
Eq. (35),

ΔBarrier ’Hðη0, ξ0, l0 = 1=2Þ � Hðη0, ξ0, l0 =0Þ

’
X1
m= 1

4π2ωðnÞ
0 η2

0

ξ20
� 4π2 g

3ξ20
η4
0 1 +

π2m2

ξ20

 !" #

×
m ð1� ð�1ÞmÞ
sinh π2m

ξ0

� � ,

ð37Þ

where

Hðη0, ξ0, l0 =0Þ= min
η,ξ

Hðη, ξ , l0 =0Þ: ð38Þ

The estimated ΔBarrier depends on the model parameters via the
Fourier transform of the dispersion relation at l =0,
ωðnÞ

0 = 1=N
PN�1

k =0 ϵðnÞk , and the interaction parameter g. We verified that
the expression in Eq. (37) is in agreement with a result found in ref. 36
for DNLS equations with nearest-neighbor hopping.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
The code that supports the plots within this paper are available from
the corresponding author upon reasonable request.
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