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Abstract

Head movements can greatly affect swallowing accelerometry signals. In this paper, we implement a spline-based approach
to remove low frequency components associated with these motions. Our approach was tested using both synthetic and
real data. Synthetic signals were used to perform a comparative analysis of the spline-based approach with other similar
techniques. Real data, obtained data from 408 healthy participants during various swallowing tasks, was used to analyze the
processing accuracy with and without the spline-based head motions removal scheme. Specifically, we analyzed the
segmentation accuracy and the effects of the scheme on statistical properties of these signals, as measured by the scaling
analysis. The results of the numerical analysis showed that the spline-based technique achieves a superior performance in
comparison to other existing techniques. Additionally, when applied to real data, we improved the accuracy of the
segmentation process by achieving a 27% drop in the number of false negatives and a 30% drop in the number of false
positives. Furthermore, the anthropometric trends in the statistical properties of these signals remained unaltered as shown
by the scaling analysis, but the strength of statistical persistence was significantly reduced. These results clearly indicate that
any future medical devices based on swallowing accelerometry signals should remove head motions from these signals in
order to increase segmentation accuracy.
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Introduction

Patients living with the effects of stroke or neurodegenerative

conditions commonly encounter swallowing difficulties (dysphagia)

[1]. Dysphagia occurs for various reasons in these patients (e.g.,

damage to the cranial nerves associated with the swallowing neural

control centers) [2]–[4]. These patients have an increased risk for

aspiration (the entry of material into the airway below the true

vocal folds), which may cause asphyxiation and other severe

consequences [5], [6]. The videofluoroscopic swallowing study

(VFSS) is the current gold standard for detection and management

of dysphagia [7]. Nevertheless, the VFSS is not suitable for

ongoing monitoring for various reasons including excessive

exposure to radiation, long waiting lists at hospitals and

unavailability of the equipment at every hospital [8], [9]. In

recent years, swallowing accelerometry has emerged as an

alternative approach for the non-invasive assessment of swallowing

function (e.g., [2], [3]) and it involves the measurement of

epidermal vibrations using an accelerometer on the patient’s neck.

Due to the presence of two-dimensional movement of the hyoid

and the larynx during swallowing [10], [11], dual-axis acceler-

ometers provide more accurate results [12], [13] than single-axis

accelerometers [14]–[17].

Previous contributions have observed that swallowing accel-

erometry signals contain low frequency components associated

with head motions (e.g., [12], [13]). Extensive head motions can

severely alter the amplitudes of dual-axis swallowing accelerometry

signals. As a consequence, the accuracy of segmentation process

can be affected by these head motions [12]. Similarly, these

movements also affect the statistical properties of signals (e.g. [18],

[19]). Therefore, there is a growing need for the automatic

removal of these low frequency components associated with head

motions from swallowing accelerometry signals. The goal of this

paper is to develop such a system in order to increase the accuracy

of processing steps of these dual-axis swallowing signals (e.g.,

improved segmentation of swallowing signals).

Methods

Data collection
In this paper, we analyzed the data collected in previous studies

of swallowing accelerometry [12], [20], [21], [22]. The reader

should refer to those publications for full details regarding the

experiment. Here, we only provide the most essential details. We

recruited four hundred and eight (408) participants (aged 18–65)

who provided written consent and had no known prior swallowing

disorders. The study protocol was approved by the research ethics
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boards of the Toronto Rehabilitation Institute and Holland

Bloorview Kids Rehabilitation Hospital, both located in Toronto,

Ontario, Canada. A dual-axis accelerometer (ADXL322, Analog

Devices) was attached to the participant’s neck (anterior to the

cricoid cartilage) using double-sided tape. The axes of acceleration

were aligned to the anterior-posterior and superior-inferior

directions, as shown in Figure 1. Data were band-pass filtered in

hardware with a pass band of 0.1–3000 Hz and sampled at

10 kHz using a custom LabVIEW program running on a laptop

computer. Data were saved for subsequent off-line analysis.

First, each participant was cued to perform 5 saliva swallows.

Subsequently, the participant completed 5 water swallows by cup

with their chin in the natural position (i.e., perpendicular to the

floor) and 5 water swallows in the chin-tucked position (i.e., as

depicted in Figure 1, with the instruction to look down at the knees

while swallowing). The entire data collection session lasted

15 minutes per participant.

Splines and dual-axis swallowing accelerometry signals
A typical swallowing accelerometry signal, x nð Þ, can be

expressed as:

x nð Þ~f nð Þzw nð ÞzE nð Þ ð1Þ

where 0ƒnƒN{1 and N represents the length of the signal, f nð Þ
is a low-frequency signal associated with head motions, w nð Þ is a

signal associated with swallowing activities of a person, and E nð Þ is

the additive white Gaussian noise with variance s2
E . As pointed out

in previous contributions (e.g., [12], [13]), any head motion can

significantly alter the amplitudes of dual-axis swallowing accel-

erometry signals and hence confound any consequent data

processing steps. Therefore, we need to diminish the effects of

f nð Þ, while not removing any parts of x nð Þ associated with

swallowing, i.e., w nð Þ. A possible approach to achieve this goal is to

obtain samples of x(n) using lower sampling frequencies (i.e., to

resample x nð Þ using lower sampling frequencies) in order to

extract f nð Þ while neglecting components associated with w nð Þ and

E nð Þ. In order to accomplish this goal we implement splines [23],

[24], [25], as they provide the best cost-performance trade-off

among all interpolation/approximation methods [26].

In order to gain a better understanding of our approach, we

outline the basic properties of splines in ‘‘Spline interpolations’’

followed by an explanation how splines can be used for

approximation. Then, in ‘‘Splines as a tool for removal signal

components associated with head movements’’ we describe how

splines can be used for removal of low frequency components

associated with head movements.

Spline interpolations. In simple words, splines of order P

are equal to polynomials of degree p on each interval, and

subsequent intervals are smoothly connected together [24], [25].

The connecting points are called knots [23], [24], [25]. It should

be pointed out that the polynomials are connected in such a way

that the overall function is p{1ð Þ times continuously differentiable

even at the knots [23], [24], [25]. One of the first contributions in

the field showed that discrete samples of a continuous signal, x(t),
can be represented using a pth order spline with equidistant knots

using the following equation [23], [24], [25]:

x kð Þ~
Xz?

i~{?

c ið Þbp
1 k{ið Þ~b

p
1 kð Þ � c kð Þ ð2Þ

where � represents convolution, c kð Þ is an l2 sequence of real

numbers and b
p
1 kð Þ is the finite impulse response of the operator

known as the indirect spline filter of order p, i.e. the discrete B-

spline. In other words, for p,m[N, the discrete B-spline, bp
m kð Þ, is

defined as a sequence of integral samples of the corresponding pth

order continuous B-spline, bp tð Þ, expanded by a factor of m [23],

[24], [25]:

bp
m kð Þ~bp k=mð Þ~ 1

mn

Xpz1

j~0

({1)j

p!

pz1

j

� �
k{jmð Þpm k{jmð Þ ð3Þ

where

Figure 1. A dual-axis accelerometer attached to the participant’s neck.
doi:10.1371/journal.pone.0033464.g001
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m lð Þ~
1 for l§0

0 for lv0

�
ð4Þ

and

pz1

j

� �
~

(pz1)!

pz1{jð Þ!j! ð5Þ

with the following starting condition:

b0
m kð Þ~

1 for{m=2ƒkƒm=2

0 otherwise

�
ð6Þ

The B-splines of order p are compactly supported and

symmetric around zero [23], [25], [27]. Furthermore, they

provide a basis of the subspace of all continuous piecewise

polynomial functions of degree p with derivatives up to order p{1
that are continuous everywhere on the real line [23], [25], [27].

The zeroth order discrete spline, b0
m kð Þ, is a rectangular window of

width m that is centered with respect to the origin when m is odd.

This operator corresponds to a moving average filter of size m that

can be implemented recursively using a standard update

procedure (two operations per sample value). For discrete B-

splines with upsampling integer m greater than 1, a convolution

property can be established [23], [24], [25]:

N m is odd:

bp
m kð Þ~ 1

mp
b0

m kð Þ �
pz1

b0
m kð Þ

� �
� b

p
1 kð Þ ð7Þ

N p odd and m even:

bp
m kð Þ~ 1

mp
d(pz1)=2 � b0

m kð Þ �
pz1

b0
m kð Þ

� �
� b

p
1 kð Þ ð8Þ

where di is a shift operator;

N p even and m even:

bp
m kð Þ~ 1

mp
d(pz2)=2 � b0

m kð Þ �
pz1

b0
m kð Þ

� �
� b

p
1 k{0:5ð Þ ð9Þ

where �
pz1

denotes pz1 consecutive convolutions of a signal

with itself. These equations demonstrate that discrete B-splines of

various widths can be constructed from repeated convolution of

simple moving average filters (b0
m kð Þ) and a correction kernel

(b
p
1 kð Þ). The main advantage is that both the direct spline

transform (the process of determining the expansion coefficients)

and the indirect spline transform (the process of reconstructing the

original sampled values with an optional interpolation) can be

interpreted as simple filtering operations. Therefore, the above

result suggests that that the spline coefficients, c kð Þ, can be

determined simply by inverse filtering [23], [25], [27]. Also, in the

case that one desires to obtain the discrete signal, x kð Þ, at a higher

sampling rate, i.e., using an integral up-sampling factor m, then

the reconstruction given by (2) can be rewritten as [23], [25], [27]:

xm k
0� �

~
X?

i~{?

c ið Þbp
m k

0
{im

� �
ð10Þ

Furthermore, if a basic operation of the up-sampling of a signal

x kð Þf g by a factor m which produces the new sequence

x½ �:m k
0� �n o

defined as

x½ �:m k
0� �

~
x kð Þ for k

0
~mk

0 otherwise

(
ð11Þ

then by substituting c½ �:m k
0� �

in (10), it can be rewritten as [25],

[27]:

xm k
0� �

~bp
m � c½ �:m k

0� �
: ð12Þ

It should be pointed out that the requirement of m being an

integer is not a major limitation since any rational sampling rate

can be obtained from a succession of integral interpolations and

decimations [25], [27].

Spline approximations. The use of B-splines extends

beyond simple interpolation. In particular, we are interested in

obtaining B-spline approximations [27]. They are quite useful in

noise reduction and data compression (e.g., [28]). In our case, we

use them to approximate low frequency components associated

with head movements, which are present in the dual-axis

swallowing accelerometry signals. Such B-splines approximations

can be obtained by imposing smoothness constraints on the

solution (smoothing splines), or by reducing the number of

coefficients (least square approximation) [24], [29]. Nevertheless,

the smoothing spline has as many coefficients as the initial signal,

which is not desired in our case due to computational complexity.

It has been suggested that by implementing the so-called least

square splines we can deal with fewer degrees of freedom [24]. De

Boor described a general method for determining such solutions in

the case of arbitrarily spaced data points that relies on the use of

standard least squares approximation techniques [24]. The

approach used here considers equally spaced nodes since it leads

to substantial computational simplifications. When dealing with

discrete signals, this approximation method involves some form of

decimation of the spline coefficients [24], [29]. This technique is

conceptually similar to resampling a signal at a lower rate which

requires the use of an antialiasing filter for bandlimited

approximation of a signal with minimum error. In this sense,

the present theory of B-splines fitting is an extension of the

conventional sampling theorem for the subspace of piecewise

polynomial functions of class Cn{1 {?,z?ð Þ with equally

spaced nodes [24], [29].

In our case, we wish to determine the least squares spline

coefficients that minimize the approximation error:

Em~
Xz?

k~{?

x kð Þ{bp
m � c½ �:m kð Þ

� �2

ð13Þ

and it has been shown that the expression can be solved by inverse

filtering [25], [27]:

c kð Þ~xp
m � bp

m � x
� 	

:m
kð Þ k[Z ð14Þ
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where the postfilter xp
m kð Þ is defined by

xp
m kð Þ : ~ bp

m � bp
m

� 	
 �{1
kð Þ ð15Þ

These results suggest a simple three step procedure for the

determination of the least square B-spline coefficients [29]. First,

we perform a prefiltering with a B-spline kernel of width m bp
m


 �
.

This operation is equivalent to an indirect B-spline transform.

Second, a decimation by a factor of m is carried out. This step

samples the signal at the position of the knots of the expanded B-

spline basis functions. Third, we conduct a postfiltering of a

decimated sequence with the least squares operator.

Splines as a tool for removal signal components

associated with head movements. Our approach is based

on the idea of approximating f nð Þ and removing it from x(n).
However, since we only have access to x(n), our algorithm

approximates f nð Þ using the least squares spline approximation of

f nð Þ and removes it from x nð Þ with following steps:

N Using M%N knots, determine a least square approximation of

the expansion coefficients using

capp kð Þ~ bp
m � bp

m

� 	
 �{1� bp
m � x

� 	
:m

kð Þ ð16Þ

N Using the approximated expansion coefficients, reconstruct

f nð Þ using the B-spline indirect transformations:

bff kð Þ~bp
m � capp

� 	
:m

kð Þ ð17Þ

N We remove the low frequency components associated with

head movements using bff nð Þ:

bxx nð Þ~x nð Þ{bff nð Þ ð18Þ

An important question here is how do we choose M? First, let’s

consider the meaning of M. Essentially, M represents the number

of knots, that is, the number of samples that we will use to

approximate these low frequency components. Hence, M is

proportional to the number of samples, N, and to this new

(re)sampling frequency. The frequency has to be sufficiently small

in order to avoid sampling vibrations associated with swallowing.

On the hand, it has to be sufficiently high to appropriately sample

the low frequency vibrations associated with the head movements.

The question is how do we choose this new (re)sampling

frequency? There is no fundamental difference between the

process of performing a least-square spline approximation of a

signal and obtaining its band-limited representation using the

standard sampling procedure dictated by Shannon’s theory [25].

However, is there any equivalent of the sampling theorem that tells

us that the signal can be reconstructed exactly if it is sampled at a

frequency 1=T that is at least twice the Nyquist rate? In principle,

one should expect a similar result, at least for higher-order splines

[25]. Because we are performing an orthogonal projection, the

approximation error will be generally non-zero unless the signal is

already included in the approximation space [25]. However, we

can hope to control this error by choosing a sampling step T that is

sufficiently small. To analyze this situation, which is more

complicated that the traditional band-limited case, we turn to

approximation theory. A fundamental result is that that the rate of

decay L of the error as a function of T depends on the ability of

the representation to reproduce polynomials of degree p~L{1.

The approximation error also depends on the bandwidth of the

signal [25]. The relevant measure in this context is [25]:

x(L)
�� ��~ 1

2p

ðz?

{?
v2L X vð Þj j2dv

� �1
2

ð19Þ

where X vð Þ denotes the Fourier transform of x; this is nothing but

the norm of the Lth derivative of x. The key result from the

Strang-Fix theory of approximation is the following error bound

[25]:

x{PT xk kƒCLTL x(L)
�� �� Vx[W L

2 ð20Þ

where PT x is the least-squares spline approximation of f at

sampling step T and CL is a known constant. W L
2 denotes the

space of functions that are L times differentiable in the finite-

energy sense. In other words, the error will decay like O TLð Þ,
where the order L~pz1 is one more than the degree p [25].

Hence, using these previous findings, we used M~q
Nfl

fs

r, where

qar~min b[ b§ajf g, fs is the original sampling frequency and fl is

the lower sampling frequency. Specifically, this fl is proportional to

the frequency associate with head motions. A recent contribution

showed that the frequencies associated with head motions are

given by the following interval 0:55+0:18 Hz in the A-P

direction, and 0:64+0:28 Hz in the S-I direction [30]. Therefore,

we expect that fl is at least twice the highest frequency in each

direction. However, a numerical analysis, as described in Section

‘‘Data analysis’’, will be carried out to determine a precise value of

fl for the A-P and S-I directions.

Due to the fact that the approximation error decreases

proportionally to the order of the approximating polynomial, we

used fourth order splines in our research. Specifically, we choose a

fourth order, since it has been shown that there are no significant

gains in performance between the fourth and higher order

polynomials (e.g., fifth and sixth orders), while schemes based on

higher order polynomials take longer time to execute [26].

Data analysis
Our data analysis was a three-part process. The first two parts

involved the analysis of the proposed approach using synthetic

signals, while the third part involved the analysis of real dual-axis

swallowing accelerometry signals that were acquired as described

in Section ‘‘Data collection’’.

In the first part, we simulated swallowing signals to analyze the

effects of varying signal-to-noise ratio (SNR) on the value of fl .

Our goal was to systematically analyze whether or not statistically

equivalent values of fl were obtained under various noise

conditions. To ensure that the test signals mimicked the dual-

axis swallowing accelerometry signals (i.e. the signal model

depicted by eqn. (1)), we split the modeling into two parts. The

model for f nð Þ is given by:

f nð Þ~
X3

h~1

Ah sin(2pfhnT) ð21Þ

where T~0:0001 seconds; 1ƒnƒN and N*N (300000,

(50000)2) with a constraint that Nw150000. Ah is uniformly

drawn from ½0,0:1� for the A-P direction and from ½0,3� for the S-I

B-Splines and Swallowing Accelerometry Signals
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direction. Similarly, fh is uniformly drawn from ½0:37,0:73� Hz for

the vibrations in the A-P direction, and from ½0:36,0:92�Hz for the

vibrations in the S-I direction, where these frequency bands were

based on the results of a spectral analysis of data from [30]. To

model the combined effects of w nð Þ and E nð Þ, we implemented a

model used in [12], which mandated that there should be five

distinct intervals where the variance of the signals increase above

the baseline variance and each of the five intervals should have

random duration and random frequency components to mimic

intersubject variations. E nð Þ was represented by additive white

Gaussian noise with variance s2. The synthetic swallowing signals

are given by:

w nð Þ~

P8
w~1

0:2 sin(2pfjwnT) n1ƒnƒn2

P8
w~1

0:2 sin(2pfjwnT) n3ƒnƒn4

P8
w~1

0:2 sin(2pfjwnT) n5ƒnƒn6

P8
w~1

0:2 sin(2pfjwnT) n7ƒnƒn8

P8
w~1

0:2 sin(2pfjwnT) n9ƒnƒn10

0 otherwise

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

ð22Þ

where Nwn10wn9w . . . wn1; n2q{n2q{1



 

*N (150000,(2500)2)

for 1ƒqƒ5 with a constraint that n2q{nq



 

w5000; n2kz1{

n2k{1~tN=5s where 1ƒkƒ4; and fj*N (10,(10)2). It should be

noted that the models for low-frequency components associated

with head motions given by eqn. (21) and dual-axis swallowing

accelerometry signals given by eqn. (22) do not necessarily

represent realistic signals, since the physiological characteristics of

such signals are still largely unknown. The proposed model rather

depicts statistical behaviour of those signals, i.e. the activity

regions have higher variances than the baseline regions, and is

only used for an accuracy analysis of the proposed algorithm.

Also, for the purpose of notational simplicity we only discuss

vibrations in one direction. Nevertheless, these equations apply to

both directions.

Using these simulated signals, our goal was to investigate the

optimal value of fl in each direction, i.e., the value of fl providing

us with the smallest error. Specifically, we varied the value of SNR

between 0 dB and 30 dB in 5-dB increments and calculated the

mean square error (MSE) using 100 realizations of

x(n)~f nð Þzw nð ÞzE nð Þ ð23Þ

as follows:

MSE~
1

N

XN

n~1

f nð Þ{fapp nð Þ

 �2 ð24Þ

where fapp nð Þ represents the approximated low frequency

oscillations.

In the second part of the analysis we compared performances of

our approach against well known approaches based on empirical

mode decomposition (EMD) [31], the smoothness priors method

(SPM) [32], and piecewise polynomial fitting (PPF) [33].

Specifically, for SPM we divided signals into 1000 subintervals,

while for PPF signals were divided into 5000 subintervals. Also, we

used second-order polynomials for PPF. We compared these four

methods for various levels of SNR ranging from 0 to 30 dB in

1 dB increments. For each SNR value, we calculated the

normalized MSE (NMSE) as:

NMSE~

PN
n~1

f nð Þ{fapp nð Þ

 �2

PN
n~1

x nð Þð Þ2
ð25Þ

NMSE was calculated using 500 realizations of (23) under two

different conditions. One condition implied that we generated new

versions of f nð Þ, w nð Þ, and E nð Þ with each new realization of (23).

The second condition involved keeping f nð Þ, w nð Þ constant, while

obtaining a new version of E nð Þ for each new realization.

The third part of our experiment involved the analysis of real

swallowing signals as described in Section ‘‘Data collection’’.

Specifically, we examined the effect of removing low frequency

components associated with head movements on segmentation

accuracy and statistical persistence observed in these signals. To

investigate the effects on the segmentation accuracy, we initially

segmented recordings containing head movements using the

procedure described in [12]. For each recording, we denoted the

number of swallows present, the number of correctly segmented

swallows (CSS), the number of false positives (NFP) and the number

of false negatives (NFN). A swallow was considered correctly

identified only when more than 90% of the swallow duration was

captured by the segmentation process. As the second step of this

analysis, the recordings were pre-processed using the proposed

approach and segmented as outlined in [12]. CSS, NFP and NFN

were subsequently computed and compared to values obtained

without head movement removal. To investigate the effects of head

movement removal on statistical persistence, our last step of data

analysis involved detrended fluctuation analysis (DFA) of dual-axis

swallowing accelerometry signals. Specifically, we followed the steps

outlined in [18], [19]. Our goal was to compare the strength of the

statistical persistence (reflected through the so-called scaling

exponent, a) before and after removal of low frequency compo-

nents. In other words, we examined whether previously reported

trends in statistical persistence were observed even when we

removed these components.

Table 1. Values of fl in both directions providing the smallest MSE.

0 db 5 dB 10 dB 15 dB 20 dB 25 dB 30 dB

A-P 1:60+0:39 1:67+0:45 1:69+0:43 1:72+0:48 1:67+0:44 1:61+0:42 1:73+0:41

S-I 3:73+0:91 3:89+0:94 3:95+0:78 3:65+0:95 3:68+0:95 3:98+0:78 3:51+1:01

doi:10.1371/journal.pone.0033464.t001

B-Splines and Swallowing Accelerometry Signals
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In order to establish statistical significance of our results, a non-

parametric inferential statistical method known as the Mann-

Whitney test was used [34], which asssses whether observed

samples are drawn from a single population (i.e., the null

hypothesis). For multi-group testing, the extension of the Mann-

Whitney test known as the Kruskal-Wallis was used [35]. A 5%

significance was used.

Results and Discussion

Table 1 summarizes the results of the first part of the analysis.

From these results, it is obvious that the sampling frequency in

either direction remains equal regardless of the noise level

(Kruskall-Wallis, pA{P~0:38, pS{I~0:06). Therefore, the aver-

age sampling frequency in the A-P direction is 1:67 Hz, while the

average sampling frequency in the S-I direction is 3:77 Hz. These

average values will be used in further analysis of the simulated and

real data. As described in Section ‘‘Splines as a tool for removal

signal components associated with head movements’’, it is rather

clear that we can find an approximate value of the lower sampling

frequency that will be consistent in terms of the error.

Figure 2 depicts the results of the comparison analysis. The

proposed method (solid line) achieves the smallest MSE regardless

of the condition, followed by the EMD approach in the A-P

Figure 2. A comparison of accuracies for the proposed method (solid line), SPM (dashed line), PPF (dash-dotted line) and EMD
(dotted line). (a) and (b) represent NMSE in the A-P and S-I directions, respectively, while generating new versions of f nð Þ, w nð Þ, and E nð Þ with each
new realization of eqn. (23). (c) and (d) represent NMSE in the A-P and S-I directions, respectively, while keeping f nð Þ, w nð Þ constant and obtaining a
new version of E nð Þ for each new realization of eqn. (23).
doi:10.1371/journal.pone.0033464.g002

Table 2. Segmentation accuracy before and after removing low-frequency components.

Before removal After removal

Swallowing type TNS CSS NFP NFN CSS NFP NFN

Dry swallows 1819 95:7 8:30 4:40 97:0 6:76 3:08

Wet swallows 1975 95:2 6:23 4:81 97:5 3:59 2:48

Wet chin tuck 1932 82:4 23:8 17:4 86:0 16:41 14:0

Overall 5726 91:1 12:8 8:91 93:4 8:92 6:57

TNS = total number of swallows; CSS = correctly segmented swallows; NFP = number of false positives; NFN = number of false negatives.
doi:10.1371/journal.pone.0033464.t002
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direction and the PPF approach in the S-I direction. Except with

the EMD approach, all other methods exhibited consistent error

across various values of SNR. This is a desirable property in real-

life applications, since it does not necessitate apriori denoising of

signals. It should be mentioned that EMD can produce larger

errors than other methods as shown in Figure 2. This is mainly due

to the fact that EMD cannot differentiate properly between low

frequency oscillations associated with the trend and higher

frequency oscillations associated with the swallowing phenome-

non.

Table 2 represents the results of the segmentation process

accuracy. In particular, these results clearly depict that removing

low frequency components associated with head movement

increases accuracy. Overall, we witness a 27% drop in the number

of false negatives and a 30% drop in the number of false positives.

The results for the last part of our analysis are summarized in

Table 3. From these results it is clear that statistical persistence was

significantly reduced after removing low frequency components.

In fact, this finding was anticipated in [19], where we suggested

that the expected a values should be between 0 and 0.5, given that

segments with small fluctuations (i.e., baseline) are intermingled

with segments possessing larger fluctuations (i.e., swallows).

Furthermore, we anticipated that the underlying baseline

characteristics (e.g., weak vibrations caused by vasomotion) and

head motions were largely responsible for the observed statistical

persistence. In [19], we also concluded that these temporal

dependencies should be considered in the development of

accelerometry-based decision support tools. The findings present-

ed in this paper confirmed our anticipatory remarks. They clearly

show that these low-frequency components should be removed

since they could potentially affect the accuracy of an accelero-

metry-based decision support tool.

We should mention that removing low frequency components

associated with head motions did introduce any previously

unreported trends [19]. In particular, consistent with previous

studies, there were no gender (Mann-Whitney test, pw0:14), age

(linear regression, pw0:06) or BMI (linear regression, pw0:15)

differences in either direction.

Conclusion
In this paper, an approach for the removal of low frequency

components associated with head movements was proposed for

dual-axis swallowing accelerometry signals. The scheme is based

on spline least square approximations of the signal and is well-

suited for long signals. First, we carried out a comparative analysis

of our spline-based scheme against well-known approaches using

synthetic signals. We found that the spline-basesd scheme provided

more accurate segmentation results. Then, dual-axis swallowing

accelerometry signals collected during 3 swallowing tasks com-

pleted by 408 healthy participants were processed using the spline

approach. In particular, we found that by removing low frequency

components associated with head movements we increased the

accuracy of the segmentation process. Nevertheless, we observed a

significant decrease in the strength of statistical persistence

suggesting that any accelerometry-based decision support tools

should remove these low-frequency components since they could

confound the decision support process.
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