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Summary

In addition to being pivotal for the host health, the skin microbiome possesses a
large reservoir of metabolic enzymes, which can metabolize molecules (cos-
metics, medicines, pollutants, etc.) that form a major part of the skin exposome.
Therefore, to predict the complete metabolism of any molecule by skin micro-
biome, a curated database of metabolic enzymes (1,094,153), reactions, and sub-
strates from �900 bacterial species from 19 different skin sites were used to
develop ‘‘SkinBug.’’ It integrates machine learning, neural networks, and chemo-
informatics methods, and displays a multiclass multilabel accuracy of up to 82.4%
and binary accuracy of up to 90.0%. SkinBug predicts all possible metabolic reac-
tions and associated enzymes, reaction centers, skin microbiome species
harboring the enzyme, and the respective skin sites. Thus, SkinBug will be an
indispensable tool to predict xenobiotic/biotic metabolism by skin microbiome
and will find applications in exposome and microbiome studies, dermatology,
and skin cancer research.

Introduction

After the human gut, it is the skin that harbors the largest and most exposed human-associated micro-

biome known as the skin microbiome that plays a pivotal role in both health and disease (Grice et al.,

2009; Grice and Segre, 2011; Kong and Segre, 2012). Skin is composed of three layers, among which the

outermost layers (epidermis and dermis) serve as an elaborate host for building an ecosystem with more

than a trillion microbial cells belonging to more than 1,000 microbial species from 19 different phyla (Ed-

wards and Marks, 1995; Grice et al., 2009; Grice and Segre, 2011; Nakatsuji et al., 2013).

Several specialized niches such as sebaceous, moist, and dry are found on the skin with differences in mois-

ture level; aerobic, anaerobic, and semi-aerobic conditions; carbon and sulfur availability; secretions; and

exogenous environmental factors (Grice and Segre, 2011). The aerobic niches include the skin surface and

the epidermis layer, whereas the dermis layer and specifically the invaginations that form folliculo-seba-

ceous units or roots of the hair follicles and sweat glands form the anaerobic and lipid-rich niches for anaer-

obic species (Bay et al., 2020; Grice and Segre, 2011). The skin site-specific niches support the growth of

diverse bacterial species and result in enormous compositional differences in skin microbiome (Grice

and Segre, 2011).

The commensal skinmicrobiome influences the physical characteristics of the epidermis layer and regulates

the development of immune system, and a dysbiosis of this community is associated with several skin dis-

eases such as acne, atopic dermatitis, and psoriatic lesions (Byrd et al., 2018; Grice et al., 2009; Kong

et al., 2012; Naik et al., 2012; Picardo and Ottaviani, 2014; SanMiguel and Grice, 2015; Zeeuwen et al.,

2013; Saxena, 2018). In addition to being crucial for the host health, the skin microbiome also possesses a

large and diverse reservoir of metabolic enzymes that play a key role in metabolizing numerous biomole-

cules naturally produced by either host skin cells or other commensal microorganisms. One such example

of a common skin commensal isStaphylococcus epidermidis that can ferment theglycerol present in the skin

and can inhibit the growth of Propionibacterium acnes, which causes acne vulgaris (Wang et al., 2014).

This gigantic pool of metabolic enzymes can also potentially metabolize the xenobiotic molecules that

come in regular contact with our skin such as those present in cosmetics, pharmacological formulations,
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and the environmental pollutants, which together comprise a large part of the skin exposome (Stingley

et al., 2010). Furthermore, due to the presence of both aerobic and anaerobic microbial species in the aer-

obic and anaerobic niches, the skin microbiome can perform the aerobic or anaerobic metabolism of any

biotic/xenobiotic molecule.

For example, the metabolism of synthetic azo dyes such as methyl red (MR) is reported by both aerobic and

anaerobic bacterial species of skin microbiome that reduce the dye using their azoreductase enzyme

(Stingley et al., 2010). The azo dyes are regularly used in cosmetics, tattoo inks, and other products, and

the reduction of these dyes due to their undesirable metabolism by the skin microbiome-harbored meta-

bolic enzymes can produce carcinogenic aromatic amines, which poses significant health risks (Chung,

1983; Nakayama et al., 1983). Another example is the aerobic oxidative metabolism of an abundant envi-

ronment pollutant BaP by monooxygenase enzymes from different bacterial species of skin microbiome

(Sowada et al., 2014). The anaerobic metabolism of different skin secretion substances such as triglyceride

lipids and secretory proteins by lipases and proteases has also been reported by experimental studies

(Byrd et al., 2018). Similarly, the metabolism of glycolic acid, cholesterol, and glycerol by aerobic bacterial

species; the metabolism of arginine, triglyceride lipids, propylene glycol, and palmitic acid by anaerobic

bacterial species; and the metabolism of alpha-tocopherol, uric acid, lactic acid, ethanolamine, linolenic

acid by both aerobic and anaerobic bacterial species of skin microbiome have been reported recently

by an experimental study (Timm et al., 2020). However, in most of these cases, the exact metabolic reac-

tions and the metabolic enzymes responsible for the metabolism of these molecules are yet unknown.

The skin microbiome-mediated undesired metabolism of commonly used cosmetic products and therapeutic

drugs applied on the skin can significantly alter the bioavailability and therapeutic bioactivity of thesemolecules.

Therefore, explorationof themetabolic potential of the enzymespresent in the skinmicrobiome ismuch needed

to understand their impact and role in humanhealth anddisease, in exposome studies, to determine the efficacy

and bioavailability of the therapeutic and cosmetic molecules applied on the skin, and also to predict their po-

tential toxicity due to the promiscuousmetabolismby the skinmicrobiome.However, the comprehensive exper-

imental metabolic investigation of each molecule separately by skin microbiome through experimental ap-

proaches is a very challenging and tedious task because skin microbiome shows the highest longitudinal

variability and largest phylogenetic diversity (Grice and Segre, 2011).

In this scenario, the development of an efficient computational method for the prediction of metabolism of

chemical substances by microbial species present in skin microbiome appears as a promising approach. At

present, there exists no tool for the prediction of metabolism of cosmetics or any xenobiotic molecule

solely by the skin microbial species. Therefore, we developed a tool named ‘‘SkinBug’’ by integrating

machine learning, neural networks, and chemoinformatics methods to predict themetabolic reactions, cor-

responding reaction centers, metabolic enzymes that can catalyze the predicted reactions, species con-

taining predicted enzymes, and skin sites harboring predicted species for any given biotic/xenobiotic

molecule by the skin microbiome. As the metabolic enzymes show promiscuity and are capable of metab-

olizing structurally similar substrates, the structural and chemical properties of substrate molecules from

the known reactions were used as features for predicting the metabolism of biotic or xenobiotic/therapeu-

tic molecules by skin microbiome (Babtie et al., 2010; Hult and Berglund, 2007; Khersonsky et al., 2006; Pan-

dya et al., 2014; Khersonsky and Tawfik, 2010; Sharma, 2017). The predictions from the tool can help to

determine the metabolic potential of the skin microbiome, in exposome studies, and to design more effi-

cient skin therapeutic molecules and cosmetic agents by considering their metabolism by skinmicrobiome.

Results

In this study, we have developed a computational tool named ‘‘SkinBug’’ to predict the metabolic reaction,

enzymes, species, and skin sites of the skin microbiome that can potentially metabolize the biotic/xenobi-

otic molecules by integrating chemoinformatics, machine learning, and neural network methodologies.

Construction of pangenomes for skin microbiome

Several metagenomic studies have explored the bacterial diversity of different skin sites; however, until

now there is no single resource available that provides information on the bacterial species present at

different skin sites. Therefore, the data and text mining of the available literature was performed to

construct the database of bacterial species present at different skin sites. A total of 1,616 unique bacterial

species were identified from the 19 different skin sites from literature. Of the 1,616 identified bacterial
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species, the complete genomes of 897 could be identified at the ‘‘NCBI RefSeq’’ database. The genomes of

all the strains were used to construct the pangenome of a particular species. A total of 897 pangenomes

were constructed for the human skin microbiome and were used for further analysis.

Transferases are the most abundant enzymes in skin microbiome

Using the ExPASy enzyme database a total of 1,094,153 metabolic enzymes were identified from the 897

pangenomes. Each of these metabolic enzymes was linked to a four-digit EC number based on the asso-

ciated EC number of its closest homolog. From the distribution of metabolic enzymes across six reaction

classes, it was apparent that the enzymes belonging to ‘‘Transferases’’ class were the most abundant in the

skin microbiome, whereas ‘‘Isomerases’’ enzymes were the least abundant (Figure S1).

The proportions of different reaction class were identified for each of the 19 skin sites (Figure 1A). For all

the sites, we observed that the ‘‘Transferases’’ reactions weremost abundant followed by the ‘‘Oxidoreduc-

tases’’ and ‘‘Hydrolases’’ reactions, perhaps due to the higher abundance of these classes of enzymes in the

bacterial pangenomes. The inner wrist, perineum, and cheek had the highest proportions of the ‘‘Ligase-

s’’_underreactions and the lowest proportions of ‘‘Hydrolysis’’ reactions when compared with the other skin

sites. The inner wrist and perineum also have the least proportion of ‘‘Oxidoreductases’’ reactions when

compared with the other skin sites.

Skin sites are highly variable in enzymatic reactions

Of the 5,430 reactions on KEGG (Kyoto Encyclopedia of Genes and Genomes) database, the complete skin mi-

crobiome had enzymes for 2,523 reactions (Kanehisa andGoto, 2000). To identify the similarities and differences

Figure 1. Diversity of metabolic enzymes on skin sites

(A) Proportions of different metabolic enzymes from six types of reaction classes (‘‘Oxidoreductases,’’ ‘‘Hydrolases,’’

‘‘Transferases,’’ ‘‘Lyases,’’ ‘‘Isomerases,’’ and ‘‘Ligases’’) plotted as stacked bar plots across the 19 different skin sites.

(B) Silhouette plot for determining the optimum number of clusters for clustering different skin sites. The y axis is average

silhouette width value, and the x axis is the number of clusters. The k-value at which the maximum of average silhouette

width is achieved is the optimum number of clusters.

(C) The dendrogram showing the results of hierarchical clustering of the skin sites based on the 2,523 unique reactions

that can be performed by the metabolic enzymes of species present in skin microbiome. The approximate unbiased p

values (AUp) and the bootstrap probability (BP) values for each branch/cluster were calculated using multiscale bootstrap

resampling and using normal bootstrap resampling, respectively. The AUp values arementioned in red, and the BP values

are mentioned in green.

See also Figures S1–S4.
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in skin sites with respect to the enzymatic reactions, hierarchical clustering was performed and the approximate

unbiased p values (AUp) and the bootstrap probability (BP) values for each branch/cluster were calculated. The

optimum number of clusters was identified to be two based on the average silhouette method (Figure 1B).

Among the two most optimum clusters, the sites cheek, inner wrist, and perineum clustered together, and

the rest of the sites formed another cluster (Figure 1C). Moreover, four clades were found to be statistically sig-

nificant in the hierarchical clustering of skin sites. The first clade was formed by the cheek, inner wrist, and peri-

neum; the second clade was formed by the arm and foot; the third clade was formed by the groin and retroaur-

icular crease; and the fourth clade was formed by pressure ulcer and venous leg ulcer (Figure 1C). It is apparent

that the sites with similar secretions, humidity, environmental exposure, or disease status clustered together.

Also the total reactions present at each site and the reactions common to the different sites were identified using

thematrix layout analysis (Supplementary Text S5). Foot and armhad the highest number of enzymatic reactions,

whereas the perineum, inner writs, and cheek had the lowest number of enzymatic reactions (Figure S2). These

observations are supported by a previous finding, which showed that dry niches of skin microbiome such as

foot and arm have higher phylogenetic diversity than the other niches of skin microbiome (Grice and Segre,

2011). Only 277 reactions of 2,523 were common to all the 19 skin microbiome sites, and many reactions were

unique to specificgroupsof sites. For example, 134 reactionswereunique to foot andarmandoccur only at these

two sites (Figure S2). This suggests that themetabolic potential of different skinmicrobiome sites is variable, and

site-specificmetabolism shouldbe consideredwhile developing the tool topredict themetabolismofmolecules

by skin microbiome.

Metabolic complexity of microbiome

The principal-component analysis (PCA) with 2,322 variables was performed for the 3,769 substrates (Sup-

plementary Text S6 and S7). In the PCA analysis, PC-1 (14.7%) and PC-2 (5.7%), collectively could explain

only 20.4% of the variance present in the input dataset (Figure 2A). Furthermore, from the scree and cumu-

lative scree plot it is apparent that more than 1,000 dimensions (PCs) were needed to explain the complete

variance (>95%) present in the dataset (Figure 2A). This suggests that the dataset is very diverse andmost of

the variables add significant variance to the dataset (Figures 2A, S3, and S4).

Furthermore, to identify if the different reaction classes are separable from each other or cluster separately, the

density-based unsupervised clustering was performed on the PCA results using PC-1 and PC-2 (Kriegel et al.,

2011). Thedensity-basedclustering is resistant tonoise, outliers, and inherent irregular shapesof the clusterspre-

sent in the complex datasets when compared with the other methods such as k-means, PAM (partition around

medoids), and hierarchical clustering. The two parameters that affect the quality of clustering are epsilon (eps)

and minimum points (MinPts). Larger datasets need a larger ‘‘MinPts’’ value, thus, a value of 20 was used. The

epsilon value of 3.25was chosen basedon the k-distance graph, the best value being the kneepoint in the graph

(FigureS5). In thedensity-basedclusteringweobservedthat thedataset formedthreeclusterswitha lotofoutliers

marked as black points (Figure 2B). Moreover, each of these clusters had substrate molecules from all the six re-

action classes; cluster-1 had the highest number of substrates for Transferases reaction, whereas cluster-2 and

cluster-3 had the highest number of substrates for Oxidoreductase reaction (Figure 2C). Furthermore, the PCA

analysis of pure substrates that can perform only one type of reaction was performed to check if any pattern of

separation exists among these pure substrates. For these substrates also, more than 1,000 dimensions were

required for explaining the complete variancepresent in thedataset (Figure S6), andno clear separationbetween

different reactions classes was observed (Figure S6).

Collectively, it is evident that the input dataset is very diverse and complex and there is no clear linear or

non-linear separation between different reaction classes. Thus, robust machine learning and/or deep

learning methods are required to build the models that can perform the multiclass multilabel classification

for these reaction classes.

Prediction of metabolism by skin microbiome

The complete workflow of the construction of ‘‘SkinBug’’ is mentioned in Figure 3. ‘‘SkinBug’’ provides a

comprehensive prediction of the possible metabolic reactions and their respective reaction centers, cor-

responding metabolic enzymes, species having those enzymes, and skin sites carrying those species.

The five key steps involved in the prediction are classified into five modules. The first module predicts

the reaction class, the second module predicts reaction subclass, the third module predicts complete
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reactions, the fourth module predicts the reaction centers in the molecule for the predicted reactions, and

the fifth module provides information on the metabolic enzymes, species, and skin sites.

Module-1: Construction of reaction class-specific prediction models

Two kinds of approaches were used; one is machine learning that will be efficient at learning the class cor-

relations and class discrimination, and the other is artificial neural network (ANN) models that will be effi-

cient at learning the class-specific patterns.

For the machine learning-based multiclass multilabel predictions, both the problem transformation (five types)

and algorithm adaptation methods were used. For each type of problem transformation seven types of best

suited core learners were used. Thus, the performances of a total of 34 different problem transformationmodels

and the two available algorithm adaptation models were compared. To obtain a comprehensive and reliable

comparison of themodels, the comparison was performed using three types of datasets: (1) boruta selected fin-

gerprints, boruta selecteddescriptor, andECFP, (2) boruta selected fingerprints, boruta selecteddescriptor, and

FCFP; and (3) boruta selected fingerprints, boruta selected descriptor, ECFP, and FCFP. The values of multilabel

accuracy,multilabel precision, F1 score, andhamming loss for all themodels for all the three datasets are plotted

as line plot and are mentioned in Figures S7–S9. From the plots it is evident, that only Random forest survival

regression classification (RFSRC) algorithm consistently performed better on all the three datasets, and thus,

this algorithm was selected for further modeling.

The complete dataset of 3,769 substrates was split into a working dataset and a blind dataset with a split

ratio of 95:5. Furthermore, the working dataset was split into training and testing dataset using a

Figure 2. Evaluating the diversity and complexity of metabolic dataset

(A) The cumulative scree plot and a normal scree plot from the PCA analysis of all the substrate molecules from the complete input dataset based on the

2,322 selected features. The x axis is the principal component number, y axis for the dot plot is the cumulative variance explained by the individual principal

components, and the y axis for the bar plot is the percentage of variance explained by the individual principal components.

(B) The density-based clustering of substrate molecules using the principal component PC1 and PC2 from the PCA analysis. The density-based clustering was

performedwith MinPts value 20 and epsilon value 3.25. Three dense clusters were identified, which are colored as blue for cluster-1, yellow for cluster-2, and gray for

cluster-3.

(C) The proportion of different reaction classes in each cluster is shown as pie chart with percentage value labeled for each reaction class. The proportion is

calculated based on the number of substrate molecules that can undergo a particular kind of reaction class in that cluster. The pie chart is mentioned for all

three above identified clusters: cluster-1, cluster-2, and cluster-3.

See also Figures S5 and S6.
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customized stratified random sampling method (Methods). The RandomForestSRC model was trained on

training dataset, and its performance was evaluated on the testing dataset. From the multilabel perfor-

mance, it is apparent that the model showed a multilabel accuracy of up to 82.4%, multilabel sensitivity

of up to 91.8%, multilabel precision of up to 83.3%, F1 score of up to 85.5%, and hamming loss of up to

0.067 in the three types of statistical testing methods (Figure 4A).

However, this performance could also be a result of over-fitting; thus, examining the over-fitting of the

model is required. One way to examine over-fitting is cross validation. If the performance varies too

much among the different folds of the cross-validation, it indicates the case of over-fitting. Hence for

the RFSRC model, the performance on each fold of the 5-fold cross-validation was calculated and plotted

as box plot to evaluate the over-fitting of the model (Figure 4B). From the box plot it is clear that the per-

formance of the model across the folds of cross-validation is similar for all the five measures of multiclass

multilabel performance. Thus, it is apparent that the RFSRC model does not show any sign of over-fitting.

Additionally, the binary performance of the RFSRCmodel on test dataset was also evaluated for each of the

reaction class and is shown as a heatmap (Figure 4C). The binary performance measures the quality of

learning for each of the target class present in the multiclass multilabel dataset. The performance for

each class is measured using the 11 different binary performance matrices. In the binary performance,

the model could achieve the binary accuracy of up to 98.8%, area under the curve of up to 95.5%, and Mat-

thews correlation coefficient of up to 0.78. The binary performance of the RFSRCmodel on the 5-fold cross-

validation and blind dataset was also calculated and is mentioned in the Tables S1 and S2.

For the ANNmodel, the final selected architecture had a total of three layers: input layer with size of 2,322 neu-

rons basedon the number of features selected, hidden layer with size of 1,162 neurons, andoutput layerwith size

of six neurons based on six types of reaction classes. As ANN model was to be used for the multilabel classifi-

cation, the three evaluationmatrices were categorical accuracy, binary accuracy, and log loss. The change in the

threematrices along the epochs ismeasured for the training and test dataset to obtain themost optimumepoch

value. The value of 1,500 epochs was found to be the most optimum using all the three matrices as all the three

matrices showed a plateau after this value (Figures 5A–5C).

Figure 3. The algorithm and complete workflow for the construction of SkinBug
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The specific order for the hyperparameters tuning as suggested by Greff et al., 2016, was performed using

grid search to achieve the most optimum value of all the parameters (Greff et al., 2016). The results of the

grid search with 5-fold cross-validation-based hyperparameters tuning are mentioned in Figures S10–S14.

The final ANN model was trained with the hyperparameter values: epochs = 1,500, optimizer algorithm =

RMSprop, learning rate = 0.001, weight initialization method = lecun_uniform, batch size = 150, dropout

rate = 0.4, and weight constraint = 4. As it was a multiclass multilabel classification problem, for the hidden

layer ‘‘rectified linear unit’’ activation function was used, whereas for the output layer the ‘‘sigmoid’’ activa-

tion function was used.

The final ANNmodel on the optimized hyperparameters was tested using the 5-fold cross-validation on the

training dataset. The values of all the three evaluation matrices were calculated for each fold of the 5-fold

cross-validation and were plotted as box plot to evaluate for any kind of over-fitting (Figure 5D). From the

box plot it is apparent that the values across the folds are very similar, thus conveying no over-fitting in the

final ANNmodel. Furthermore, the performance of the ANNmodel was also evaluated on the test dataset.

The ANN model could achieve a categorical accuracy of up to 70.7%, binary accuracy of up to 90.0%, and

log loss of up to 0.813 (Figure 5E).

As the learning capabilities of the RFSRC model and the ANN models are complementary to each other,

the union of the predictions of multiclass multilabel RFSRC and ANNmodels was used to make the predic-

tion of the reaction class.

Module-2: Construction of reaction subclass-specific prediction models

As one molecule could undergo multiple types of reactions belonging to different reaction subclasses,

the multiclass multilabel prediction models were constructed for each type of reaction class to predict

the reaction subclasses. The working dataset was split into six datasets, one for each reaction class,

Figure 4. The multilabel and binary performance of reaction class-specific RFSRC prediction model

(A) The multilabel accuracy, multilabel sensitivity, multilabel precision, multilabel F1 score, and hamming loss mentioned

for three type of statistical testing of the RFSRC model: stratified randomly sampled test dataset, 5-fold cross-validation,

and blind dataset.

(B) The box plot for the performance across each fold of the 5-fold cross-validation for the five different performance

measures: multilabel accuracy, multilabel sensitivity, multilabel precision, multilabel F1 score, and hamming loss. The y

axis shows the fraction value for each of the performance measure. Fraction values were chosen so that all the measures

including hamming loss could be plotted on the same y axis scale.

(C) The binary performance of the reaction class prediction RFSRC model for each of six different reaction classes

(‘‘Oxidoreductases,’’ ‘‘Hydrolases,’’ ‘‘Transferases,’’ ‘‘Lyases,’’ ‘‘Isomerases,’’ and ‘‘Ligases’’). Fraction values were chosen

so that all the measures could be shown on the same scale.

AUC = area under the curve, MMCE = binary mean misclassification error, FNR = binary false-negative rate, FPR = binary

false-positive rate, ACC = binary accuracy, MCC = Matthews correlation coefficient, NPV = binary negative predictive

value, PPV = binary positive predicted value, F1 = binary F1 score, FDR = binary false discovery rate, GPR = geometric

mean of binary precision and binary recall.

See also Figures S7–S9.
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and these datasets were utilized for the construction of reaction subclass-specific prediction models

(Methods). The previously optimized RFSRC algorithm was used to construct six different multilabel pre-

diction models specific to the six types of reaction classes. The multiclass multilabel performance on

testing dataset for RFSRC model for each reaction class is mentioned in Table 1, and for 5-fold cross-vali-

dation on training dataset is mentioned in Table 2. The RFSRC models showed the multilabel accuracy of

61.0–74.4%, multilabel sensitivity of 63.7%–77.7%, multilabel precision of 75.0%–91.4%, F1 score of

63.9%–76.5%, and hamming loss of 0.093–0.019 on the test dataset. The binary performance of RFSRC

models for each of the corresponding reaction subclass for each reaction class for 5-fold cross-validation

is mentioned in Tables S3–S8, and on test dataset, is mentioned in Tables S9–S14. After the different re-

action classes are predicted by the reaction class prediction models, the prediction of reaction subclass

was performed for each of the predicted reaction class using the respective reaction class-specific RFSRC

models.

Module-3: Construction of complete reaction prediction models

The molecular similarity search was performed against all the predicted reaction subclasses from each

of the predicted reaction class. The molecular similarity search measure known as Tanimoto coefficient

Figure 5. The optimization of epochs and performance evaluation of ANN model

(A) The plot of log loss or binary cross-entropy for different values of epochs for the training and testing dataset.

(B) The plot of binary accuracy for different values of epochs for the training and testing datasets.

(C) The plot of categorical accuracy for different values of epochs for the training and testing datasets.

(D and E) (D) The box plot for the performance across each fold of the 5-fold cross-validation for the three different

performance measures of ANN model: categorical accuracy, binary accuracy, and log loss or binary cross-entropy. The y

axis for the binary and categorical accuracy shows the percentage value, whereas the y axis for the log loss or binary cross-

entropy shows the actual value. (E) The performance of ANN model measured using three evaluation measures,

categorical accuracy, binary accuracy, and log loss or binary cross-entropy for two types of statistical testing methods: 5-

fold cross-validation and testing on stratified randomly sampled testing dataset.

See also Figures S10–S14.
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was calculated, and the subclasses that had substrates with Tanimoto coefficient value of >0.80 were

considered further. This step was essential to filter out the false-positive predictions from the previous

steps. The k-nearest neighbors (KNN) were identified in the reaction subclasses that qualify the afore-

mentioned criteria using the KNN method. In this approach, the molecular similarity searching and

KNN methods together allow for identifying the best structural and chemical homolog of the input

molecule. Thus, the complete reactions of all the molecules that qualify the molecular similarity search-

ing and KNN method were assigned to the given molecule. This way all the complete metabolic reac-

tions that could potentially occur to a given molecule were identified.

Module-4: Prediction of reaction centers

The reaction centers on the given molecule for all complete reactions predicted in the abovementioned

steps are identified using the RDM (Reaction center, Difference region, andMatched region) patterns data-

base. The RDM patterns are derived from the structure alignments of the substrates and contain the infor-

mation about the KEGG atom type changes at the reaction center, matched region of the molecules, and

the dissimilar region of the molecule (Yamanishi et al., 2009). The KEGG reaction-class pairs (RC pairs) were

identified for each of the predicted complete reactions, and the corresponding RDM patterns were ex-

tracted from the RDM pattern database constructed in this study. Each of the RDM pattern is applied to

the given molecule, and the respective reaction center is identified using the in-house python script while

taking into account the atoms types, their valancies, and bonding information about the molecule.

Module-5: Prediction of metabolic enzymes, species, and skin sites

In this module, for each of the predicted complete reaction, the metabolic enzymes that could potentially

perform those reactions, the corresponding species that harbors those metabolic enzymes, and all the skin

sites that carry those species are retrieved from the in-house constructed skin microbiome specific meta-

bolic database that contains information on 1,094,153metabolic enzymes from 897 species pangenomes of

skin microbiome from 19 skin sites.

The development of SkinBug web server

For easy and user-friendly usage of the SkinBug approach, a user-friendly web server tool was devel-

oped and is available at http://metagenomics.iiserb.ac.in/skinbug. On the web server, a user can up-

load a mol/sdf file of a molecule, or can provide the PubChem ID of a molecule. For a novel molecule,

these files can also be prepared by drawing its structure in any of the molecular editor software, e.g.,

ChemDraw. The complete workflow of the web server-based predictions using SkinBug is mentioned in

Figure 6, and the other details of the web server tool are mentioned in Supplementary Text S8.

The results from the SkinBug tool are displayed as results sections: R1 to R6. All the possible reaction clas-

ses are provided in R1; reaction subclass in R2; complete reactions in R3; the RC pair, RDM pattern, and

predicted reaction centers in R4; and the predicted skin sites in R5. The complete reaction annotated as

a four-digit EC number, corresponding metabolic enzyme, species harboring the enzyme, and the homol-

ogy parameters for enzyme annotations (percent identity, e-value, query coverage, subject coverage) are

mentioned in R6. All the results could also be downloaded as a single text file by clicking on the ‘‘Download

Results’’ icon.

Table 1. Multiclass multilabel performance metrics for the reaction subclass-specific models calculated using

stratified random sampling

Reaction class Accuracy (%) Sensitivity (%) Precision (%) F1 score (%) Hamming loss

Oxidoreductases 73.9 77.7 88.6 76.5 0.019

Transferases 61.0 63.7 83.3 63.9 0.072

Hydrolases 72.4 76.8 79.2 74.8 0.04

Lyases 74.4 76.7 85.6 76.2 0.058

Isomerases 72.2 73.6 91.4 73.1 0.06

Ligases 72.0 72.0 75.0 72.0 0.093

All the parameters mentioned above were calculated using multilabel evaluation methodology (see Tables S9–S14).
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Validation of the SkinBug tool

This is the first tool that can predict the enzymatic biotransformation of any biotic or xenobiotic molecule by

the skin microbiome, and thus a direct comparison with any existing state-of-the-art tool was not possible.

The biological validation of SkinBug was performed on diverse molecules including natural molecules pre-

sent on skin, cosmetics, pharmaceuticals, etc. that come in regular contact with our skin, and their meta-

bolism is known from the experimental studies (Table 3). A total of 28 diverse molecules selected for which

information about their metabolism by human host or microbial species of skin microbiome through exper-

imental studies is available in literature were evaluated by SkinBug and presented as case studies. This

validation set also included the examples of molecules that can undergo the aerobic and/or anaerobic

metabolism. The comparison of SkinBug predictions was performed with the metabolism information

known from previous experimental studies, and information available from three reference databases,

namely, EAWAG-BBD (The University of Minnesota Biocatalysis/Biodegradation Database), Transformer

(Metabolism of Xenobiotics Database), and SMPDB (The Small Molecule Pathway Database) (Gao et al.,

2010; Hoffmann et al., 2014; Jewison et al., 2014). The prediction results for these 28 molecules along

with the information from literature are mentioned in Table 3. Some examples from the comparative analysis

with the reference databases are provided below.

For the metabolism of hydroquinone molecule (used as a demelanizing agent) SkinBug predicted mono-

oxygenases, dioxygenases, hydroxylases, and arylesterases, and the reference databases also indicated

the same four classes of enzymes for its metabolism. Likewise, for terbinafine (used to treat fungal infec-

tions on skin) and fluorouracil (used in actinic keratosis and skin warts conditions), the reference data-

bases suggested their metabolism by human liver cytochromes, and SkinBug also predicted metabolic

enzymes from skin microbiome with similar activity such as monooxygenases. For para-aminobenzoic

acid, which is used as melanizing agent and for the treatment of different skin disorders, both SkinBug

and reference databases suggested benzoate dioxygenases for its metabolism. Similarly, for methylpar-

aben (used in cosmetic products), which is metabolized by 4-hydroxybenzoate 1-hydroxylase and mono-

oxygenases as per the reference databases, SkinBug also predicted the same enzymes from skin micro-

biome for its metabolism. It is noteworthy that for some molecules such as cinnamyl alcohol, BaP,

fluorouracil, and 7,12-dimethylbenz(a)anthracene molecules, SkinBug only predicted those reactions

that are known in literature without any false-positives confirming to its robustness. However, the strength

of SkinBug lies in the fact that for the other molecules as mentioned in Table 3, in addition to correctly

predicting the known reactions it also predicted additional metabolic reactions, which seems correct

as per the reactive functional groups present on those molecules, along with the implicated microbial en-

zymes and species. Thus, the predictions of SkinBug corroborated with the metabolic information avail-

able on these reference databases and experimental studies (Table 3), confirming to the accuracy and

reliability of the predictions.

Metabolism of Benzo(a)pyreme by skin microbiome

BaP is an abundant environmental pollutant found in almost all types of soot and smoke generated by the

incomplete combustion of fossil fuel, coal, and other biomass including tobacco. The metabolism of this

polycyclic aromatic hydrocarbon molecule by oxidation reaction through cytochrome P450 enzyme from

human host and monooxygenases and dioxygenase enzymes from bacterial species of skin microbiome

is known from experimental studies, and reference databases such as the University of Minnesota

Table 2. Multiclass multilabel performance metrics for the reaction subclass-specific models calculated using 5-fold

cross-validation

Reaction class Accuracy (%) Sensitivity (%) Precision (%) F1 score (%) Hamming loss

Oxidoreductases 61.5 64.3 82.8 64.9 0.036

Transferases 56.3 59.6 80.8 60.0 0.09

Hydrolases 63.1 66.3 80.5 66.3 0.052

Lyases 64.4 67.1 77.7 67.1 0.084

Isomerases 65.2 67.7 82.5 67.0 0.089

Ligases 77.7 80.0 84.5 79.9 0.075

All the parameters mentioned above were calculated using multilabel evaluation methodology (see also Tables S3–S8).
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Biocatalysis/Biodegradation Database (Gelboin, 1980; Gibson et al., 1975; Jiang et al., 2007; Schwarz et al.,

2001; Sowada et al., 2014). For this molecule, SkinBug correctly predicted its metabolism by skin micro-

biome as shown by an experimental study from Sowada et al., 2014, and predicted its oxidation by naph-

thalene 1,2-dioxygenase and monooxygenase enzymes from multiple species of Burkholderia, Polaromo-

nas, Pseudomonas, and Ralstonia genera from the skin microbiome. This case study further supports the

validity, accuracy, and utility of SkinBug tool. The ingestion of BaP is known to be toxic due to its meta-

bolism by human cytochrome P450 enzyme and the products of its oxidation are known to cause carcino-

genicity and other adverse health effects by reacting with the host DNA (Gibson et al., 1975; Vo-Dinh et al.,

1987; Zhou et al., 2017). Thus considering the previous findings and prediction results, it is apparent that its

contact with skin could also be toxic due to its undesired metabolism by the skin microbiome.

Similarly, the prediction of aniline metabolism that is largely present in the tobacco smoke reveals that this

can also be metabolized by the microbial species present in the skin microbiome.

Metabolism of Azo dyes by skin microbiome

Azo dyes such as MR are widely used in cosmetics and other products that regularly come in contact with

our skin in the form of tattoo ink, hair colors, and textile colors. These dyes are experimentally known to be

reduced by azoreductase (Azo1) enzyme found in several species of the skin microbiome (Stingley et al.,

2010). SkinBug also predicted the reduction of these dyes by the same metabolic enzyme and species

and also predicted some other metabolic enzymes from different bacterial species of skin microbiome

with azoreductase activity that could also potentially metabolize the azo dyes.

Discussion

The skin microbiome is capable of undertaking numerous metabolic reactions in addition to that of the hu-

man genome (Stingley et al., 2010). The regular contact of skin microbiome with cosmetic agents, pollut-

ants, and topical substances like skincare products and medical ointments, etc., which are part of the skin

exposome, creates unprecedented possibilities of their promiscuous metabolism that results in modula-

tion of their efficacy, and occasional toxicity associated with skin rashes and cancer (Chung, 1983; Stingley

et al., 2010). To predict all the possible metabolic reactions that can occur to such chemical substances by

Figure 6. The prediction steps and complete workflow for processing of any input molecule by the SkinBug web

server
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Table 3. The prediction of metabolism of the 28 selected molecules by SkinBug along with their known metabolism from literature

Sr. No. Compound Function

Reaction subclass

from literature

Reaction subclass

from SkinBug Enzyme from literature

Enzyme from

SkinBug

Skin microbial genus

from literature

Skin microbes genus

from SkinBug References

1 Cinnamyl alcohol Perfuming,

Masking

Acting on the CH-OH

group of donors;

acting on paired

donors, with

incorporation or

reduction of molecular

oxygen

Acting on the CH-OH

group of donors; acting

on paired donors, with

incorporation or

reduction of molecular

oxygen; acyltransferases

Alcohol dehydrogenase;

cytochrome P450

Cinnamyl alcohol

dehydrogenase; acetyl

CoA benzyl alcohol

acetyltransferase

NA No genus predicted (Jäckh et al., 2012;

Walker et al., 2013)

2 Leucine Antistatic, hair

conditioning, skin

conditioning

Transferring

nitrogenous groups

Acting on the CH-NH2

group of donors; acting

on paired donors, with

incorporation or

reduction of molecular

oxygen; acyltransferases;

transferring nitrogenous

groups; acting on

carbon-nitrogen bonds,

other than peptide

bonds; intramolecular

transferases; forming

carbon-oxygen bonds

Branched chain amino acid

aminotransferase

Isoleucine N-

monooxygenase; valine

N-monooxygenase;

leucine N-

acetyltransferase;

branched chain amino

acid transferase; leucine

transaminase; leucine

2,3-aminomutase;

leucine tRNA ligase; etc.

Corynebacterium;

Staphylococcus

Zymomonas;

Pseudomonas;

Burkholderia;

Streptomyces;

Staphylococcus;

Yersinia;

Corynebacterium; etc.

(Fredrich et al.,

2013; Hole�cek,

2018)

3 Glycerol Perfuming,

denaturant,

humectant,

solvent, hair

conditioning,

viscosity

controlling

Acting on the CH-OH

group of donors;

transferring

phosphorus-

containing groups

Acting on the CH-OH

group of donors;

glycosyltransferases;

transferring phosphorus-

containing groups;

acting on ester bonds;

glycosylases; carbon-

carbon lyases; carbon-

oxygen lyases

Glycerol kinase; glycerol

dehydrogenase

Glycerol kinase; glycerol

dehydrogenase; 1,2-

alpha-glucosylglycerol

phosphorylase;

acylglycerol lipase;

glycerol phosphatase;

dihydroxy acid

dehydratase; etc.

Staphylococcus Zymomonas; Xylella;

Xanthomonas;

Gluconobacter;

Geobacillus;

Staphylococcus;

Streptococcus; etc.

(Fredrich et al.,

2013; Ruzheinikov

et al., 2001; Xue

et al., 2017)

4 Benzo(a)pyreneb Environmental

pollutant found in

soot, tobacco

smoke, diesel

exhaust etc.

Acting on paired

donors, with

incorporation or

reduction of molecular

oxygen

Acting on paired donors,

with incorporation or

reduction of molecular

oxygen

Cytochrome P450: CYP1A1,

monooxygenases,

dioxygenases

Naphthalene 1,2-

dioxygenase; unspecific

monooxygenases;

steroid 21-

monooxygenase; etc.

Pseudomonas;

Micrococcus; Bacillus; etc.

Pseudomonas; Bacillus;

Burkholderia;

Polaromonas; Ralstonia

(Ahmad and

Mukhtar, 2004)

5 Retinoic acid Antiseborrheic Acting on paired

donors, with

incorporation or

reduction of molecular

oxygen

Acting on paired donors,

with incorporation or

reduction of molecular

oxygen; acting on the

aldehyde or oxo group

of donors;

Glycosyltransferases

Cytochrome P450: CYP1A1 Unspecific

monooxygenase; alkane

monooxygenase; retinal

dehydrogenase;

aldehyde oxidase;

glucuronosyl transferase;

etc.

NA Escherichia;

Pseudomonas;

Alcanivorax;

Methylobacterium;

Jonesia; etc.

(Ahmad and

Mukhtar, 2004)

(Continued on next page)
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Table 3. Continued

Sr. No. Compound Function

Reaction subclass

from literature

Reaction subclass

from SkinBug Enzyme from literature

Enzyme from

SkinBug

Skin microbial genus

from literature

Skin microbes genus

from SkinBug References

6 7,12-Dimethylbenz

(a)anthracene

Environmental

pollutant found in

tobacco smoke

Acting on paired

donors, with

incorporation or

reduction of molecular

oxygen

Acting on paired donors,

with incorporation or

reduction of molecular

oxygen

Cytochrome P450: CYP1A1,

cytochrome P450: CYP1B1

Unspecific

monooxygenase;

aromatase; estradiol 6-

beta monooxygenase

NA No genus predicted (Ahmad and

Mukhtar, 2004)

7 Vitamin D3 Skin conditioning Acting on paired

donors, with

incorporation or

reduction of molecular

oxygen

Acting on the CH-CH

group of donors; acting

on paired donors, with

incorporation or

reduction of molecular

oxygen

Cytochrome P450 Vitamin D3,24-

hydroxylase; calcidiol 1-

monooxygenase;

vitamin D1, 25-

hydroxylase

NA Nocardia;

Verrucosispora;

Stackebrandtia

(Ahmad and

Mukhtar, 2004)

8 4-Allylanisole Perfuming Acting on paired

donors, with

incorporation or

reduction of molecular

oxygen

Acting on the CH-OH

group of donors; acting

on paired donors, with

incorporation or

reduction of molecular

oxygen; transferring

one-carbon groups

Cytochrome P450 4-(hydroxymethyl)

benzenesulfonate

dehydrogenase; (iso)

eugenol O-

methyltransferase; trans-

anol O-

methyltransferase

NA No genus predicted (Jäckh et al., 2012)

9 Isoeugenol Perfuming,

masking, drug:

local antiseptic

and analgesic

Acting on the CH-OH

group of donors;

acting on paired

donors, with

incorporation or

reduction of molecular

oxygen

Acting on the CH-OH

group of donors; acting

on paired donors, with

incorporation or

reduction of molecular

oxygen; transferring

one-carbon groups

Cytochrome P450,

cytochrome P450: CYP2E1,

alcohol dehydrogenase

Alcohol dehydrogenase;

isoeugenol synthase;

salicylate 1-

monooxygenase; 4-

hydroxypheny

lacetate 3-

monooxygenase;

catechol O-

methyltransferase; etc.

NA Thermus; Zymomonas;

Staphylococcus;

Pseudomonas; Bacillus;

Acinetobacter; etc.

(Jäckh et al., 2012)

10 4-Phenylenediamine Hair dyeing Acting on paired

donors, with

incorporation or

reduction of molecular

oxygen

Acting on other

nitrogenous compounds

as donors; acting on

paired donors, with

incorporation or

reduction of molecular

oxygen; carbon-carbon

lyases

Cytochrome P450 Nitrobenzene

nitroreductase; histidine

decarboxylase

NA Vibrio; Raoultella;

Pseudomonas;

Ralstonia; Variovorax;

etc.

(Jäckh et al., 2012)

(Continued on next page)
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Table 3. Continued

Sr. No. Compound Function

Reaction subclass

from literature

Reaction subclass

from SkinBug Enzyme from literature

Enzyme from

SkinBug

Skin microbial genus

from literature

Skin microbes genus

from SkinBug References

11 Anilineb Outdoor air,

tobacco smoke

Acting on paired

donors, with

incorporation or

reduction of molecular

oxygen

Acting on other

nitrogenous compounds

as donors; acting on

paired donors, with

incorporation or

reduction of molecular

oxygen; transferring

one-carbon groups;

acyltransferases;

glycosyltransferases;

transferring sulfur-

containing groups;

acting on carbon-

nitrogen bonds, other

than peptide bonds;

carbon-carbon lyases;

forming carbon-nitrogen

bonds

Cytochrome P450 Phenol 2-

monooxygenase;

azobenzene reductase;

arylamine N-

acetyltransferase;

arylamine

glucosyltransferase;

amine sulfotransferase;

aryl acylamidase;

aminobenzoate

decarboxylase; gamma-

glutamylanilide

synthase; etc.

NA Bacillus; Staphylococcus;

Mycobacterium

(Jäckh et al., 2012)

12 Methyl red or azo dyea Textile dyes,

tattoo inks, and

cosmetic colorant

Acting on other

nitrogenous

compounds as donors

Acting on the CH-CH

group of donors; acting

on other nitrogenous

compounds as donors;

acting on single donors

with incorporation of

molecular oxygen

(oxygenases); acting on

paired donors, with

incorporation or

reduction of molecular

oxygen

Azoreductase (Azo1) FMN-dependent

NADPH azoreductase

(Azo1); NAD(P)H-

dependent

oxidoreductase; 4-

(dimethylamino)

phenylazoxybenzene

reductase; azobenzene

reductase

Staphylococcus;

Corynebacterium;

Micrococcus;

Dermacoccus; Kocuria

Staphylococcus; Bacillus (Stingley et al.,

2010)

13 Fluorouracil Used in actinic

keratosis and skin

warts conditions

Glycosyltransferases;

acting on the CH-CH

group of donors

Glycosyltransferase;

acting on the CH-CH

group of donors; acting

on paired donors, with

incorporation or

reduction of molecular

oxygen; acting on CH or

CH2 groups;

glycosylases; acting on

carbon-nitrogen bonds,

other than peptide

bonds

Orotate phosphoribosyl

transferase; uridine

phosphorylase; thymidine

phosphorylase;

dihydropyrimidine

dehydrogenase

Orotate phosphoribosy

ltransferase; uridine

phosphorylase;

thymidine

phosphorylase;

dihydropyrimidine

dehydrogenase;

unspecific

monooxygenase

NA Yersinia; Wolinella;

Vibrio; Tolumonas;

Shigella; Aeromonas;

Xylella; etc.

(Amirfallah et al.,

2018; Longley et al.,

2003)

(Continued on next page)

ll
O
P
E
N

A
C
C
E
S
S

1
4

iS
cie

n
ce

2
4
,
1
0
1
9
2
5
,
Jan

u
ary

2
2
,
2
0
2
1

iS
cience
A
rticle



Table 3. Continued

Sr. No. Compound Function

Reaction subclass

from literature

Reaction subclass

from SkinBug Enzyme from literature

Enzyme from

SkinBug

Skin microbial genus

from literature

Skin microbes genus

from SkinBug References

14 Propylene glycol Used as

demulcent and in

skin lotions and

ointments

Acting on the CH-OH

group of donors

Acting on the CH-OH

group of donors; carbon-

carbon lyases; carbon-

oxygen lyases

Alcohol dehydrogenases L-glycol dehydrogenase;

aldehyde reductase;

glycerol dehydrogenase;

lactaldehyde reductase;

propanediol

dehydratase; etc.

NA Salmonella; Escherichia;

Geobacillus;

Citrobacter; Klebsiella;

etc.

(Ewaschuk et al.,

2005; Kraut and

Kurtz, 2008)

15 Hydroquinone Demelanizing

agent

Acting on single

donors with

incorporation of

molecular oxygen;

glycosyltransferases

Acting on single donors

with incorporation of

molecular oxygen

(oxygenases); acting on

paired donors, with

incorporation or

reduction of molecular

oxygen;

glycosyltransferases;

transferring alkyl or aryl

groups, other than

methyl groups;

glycosylases; carbon-

carbon lyases; etc.

Dioxygenases; quinone

oxidoreductase

Catechol 1 2-

dioxygenase;

hydroquinone 1 2-

dioxygenase; toluene 4-

monooxygenase; p-

benzoquinone

reductase; 4-

hydroxybenzoate 1-

hydroxylase;

arylesterase;

hydroquinone

glucosyltransferase; etc.

NA Pseudomonas; Bacillus;

Escherichia;

Acinetobacter; etc.

(McDonald et al.,

2001; Zhang et al.,

2012)

16 Para-aminobenzoic

acid

Used as

sunscreen and

melanizing agent.

Also used in

treatment of

fibrotic skin

disorders

Transferring alkyl or

aryl groups, other than

methyl groups

Transferring alkyl or aryl

groups, other than

methyl groups; acting on

paired donors, with

incorporation or

reduction of molecular

oxygen; transferring

one-carbon groups;

carbon-carbon lyases;

etc.

Dihydropteroate synthase Benzoate 1 2-

dioxygenase;

phenylethanolamine N-

methyltransferase;

dihydropteroate

synthase;

aminobenzoate

decarboxylase; etc.

NA Yersinia; Vibrio;

Streptococcus; Shigella;

Streptomyces; etc.

(Wegkamp et al.,

2007)

17 Benzophenone Used as organic

sunscreen and

melanizing agent.

Also used as a

fragrance

enhancer

Acting on paired

donors, with

incorporation or

reduction of molecular

oxygen

Acting on paired donors,

with incorporation or

reduction of molecular

oxygen; acting on the

CH-OH group of donors

Cytochrome P450 (CYPs) Nitrilotriacetate

monooxygenase

NA Sorangium; Anabaena;

Burkholderia;

Sorangium; etc.

(Watanabe et al.,

2015)

(Continued on next page)
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Table 3. Continued

Sr. No. Compound Function

Reaction subclass

from literature

Reaction subclass

from SkinBug Enzyme from literature

Enzyme from

SkinBug

Skin microbial genus

from literature

Skin microbes genus

from SkinBug References

18 Lindane Used in scabies

and pediculosis

skin conditions

Acting on halide

bonds; acting on

paired donors, with

incorporation or

reduction of molecular

oxygen

Acting on halide bonds;

acting on paired donors,

with incorporation or

reduction of molecular

oxygen; etc.

Dehydrochlorinase enzyme Haloalkane

dehalogenase

NA Sphingobium;

Psychrobacter;

Phenylobacterium;

Caulobacter; etc.

(Macholz and

Kujawa, 1985;

Nagata et al., 1993;

Tanaka et al., 1979)

19 Ethinyl estradiol Used for the

treatment of

moderate acne

vulgaris (common

acne) in females

Acting on paired

donors, with

incorporation or

reduction of molecular

oxygen

Acting on paired donors,

with incorporation or

reduction of molecular

oxygen; acting on the

CH-OH group of donors;

glycosyltransferases; etc.

Cytochrome P450 (CYPs) Unspecific

monooxygenase;

aromatase; 3-beta-

hydroxy-delta-5-steroid

dehydrogenase; etc.

NA No genus predicted (Stimmel et al.,

1951; Wang et al.,

2004)

20 Docosanol Used in the

treatment of

herpes virus

infection-caused

recurring

episodes of small,

painful, fluid-filled

blisters on the skin

Acting on the CH-OH

group of donors;

acting on paired

donors, with

incorporation or

reduction of molecular

oxygen

Acting on the CH-OH

group of donors; acting

on paired donors, with

incorporation or

reduction of molecular

oxygen

NA Hexadecanol

dehydrogenase; long-

chain-alcohol

dehydrogenase;

naphthalene 1 2-

dioxygenase; etc.

NA Geobacillus;

Zymomonas;

Staphylococcus; Bacillus;

etc.

(Pope et al., 1996)

21 Lauric acid Used on skin for

its antibacterial

properties and

ability to

effectively

combat acne

Acting on paired

donors, with

incorporation or

reduction of molecular

oxygen; acting on the

aldehyde or oxo group

of donors

Acting on paired donors,

with incorporation or

reduction of molecular

oxygen; acting on the

aldehyde or oxo group

of donors; acting on

ester bonds

Fatty acid beta-oxidation

enzymes such as acyl CoA

dehydrogenase, hydrolase,

etc.

Trimethyllysine

dioxygenase; aldehyde

dehydrogenase; oleoyl-

(acyl-carrier-protein)

hydrolase; clavaminate

synthase; etc.

NA Bacillus; Mycobacterium;

Escherichia; Thermus;

etc.

(Dayrit, 2015)

22 Methyl lactateb Used as a

soothing and

cooling agent for

skin. Also to

provide relief

against itching

and irritation on

skin

Acting on the CH-OH

group of donors

Acting on the CH-OH

group of donors; acting

on the aldehyde or oxo

group of donors;

acyltransferases; etc.

Lactate dehydrogenase L-lactate

dehydrogenase;

glyoxylate reductase;

oxaloglycolate

reductase

(decarboxylating);

pyruvate synthase;

formate C-

acetyltransferase; etc.

Staphylococcus;

Micrococcus; etc.

Staphylococcus; Vibrio;

Micrococcus;

Shewanella; etc.

(Gladden, 2004;

Lam et al., 2018)

(Continued on next page)
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Table 3. Continued

Sr. No. Compound Function

Reaction subclass

from literature

Reaction subclass

from SkinBug Enzyme from literature

Enzyme from

SkinBug

Skin microbial genus

from literature

Skin microbes genus

from SkinBug References

23 Methylparabenb Used in cosmetic

products as

preservative to

give products a

longer shelf life

Glycosyltransferases;

acting on ester bonds;

acting on paired

donors, with

incorporation or

reduction of molecular

oxygen

Glycosyltransferases;

acting on paired donors,

with incorporation or

reduction of molecular

oxygen; acting on the

CH-OH group of donors;

etc.

Glucuronosyltransferase Cyanohydrin beta-

glucosyltransferase; 4-

hydroxypheny

lacetaldehyde oxime

monooxygenase; 4-

hydroxybenzoate 1-

hydroxylase; 3-

phenylpropanoate

dioxygenase; etc.

NA Pseudomonas;

Escherichia; Bacillus;

Mycobacterium; etc.

(Abbas et al., 2010;

Moos et al., 2016)

24 Triclosan Used as antiseptic

and antibacterial

on the skin

Acting on paired

donors, with

incorporation or

reduction of molecular

oxygen;

glycosyltransferases

Acting on paired donors,

with incorporation or

reduction of molecular

oxygen; acting on single

donors with

incorporation of

molecular oxygen

(oxygenases); acting on

the CH-CH group of

donors

Sulfur oxygenase/reductase;

cytochrome P450 (CYPs);

glucuronosyltransferase

Sulfur oxygenase/

reductase; carbazole 1,9a-

dioxygenase;

naphthalene 1,2-

dioxygenase; persulfide

dioxygenase; etc.

NA Pseudomonas; Bacillus;

Streptococcus; Yersinia;

etc.

(Fang et al., 2016;

Wang et al., 2018)

25 Terbinafineb Used to treat the

fungal infections

on skin

Acting on paired

donors, with

incorporation or

reduction of molecular

oxygen

Acting on paired donors,

with incorporation or

reduction of molecular

oxygen

Cytochromes (CYPs) Ammonia

monooxygenase

NA Nitrosomonas;

Nitrosospira

(Vickers et al., 1999)

26 Alpha-tocopherolb Used in cosmetic

products to

prevent UV

damage to the

skin

Acting on paired

donors, with

incorporation or

reduction of molecular

oxygen

Acting on paired donors,

with incorporation or

reduction of molecular

oxygen; acting on the

CH-OH group of donors;

transferring one-carbon

groups

Cytochromes (CYPs) Validamycin A

dioxygenases; aurachin

C monooxygenase/

isomerase; calcidiol 1-

monooxygenase;

thymidylate synthase;

etc.

Deinococcus;

Stenotrophomonas

Deinococcus;

Stenotrophomonas;

Zymomonas; Yersinia;

etc.

(Johnson et al.,

2013; Timm et al.,

2020)

27 Cholesterolb Used as an

emollient in

cosmetic

products such as

eye makeup, face

makeup, skin

lotions, creams,

and hair care

formulations

Acting on paired

donors, with

incorporation or

reduction of molecular

oxygen

Acting on paired donors,

with incorporation or

reduction of molecular

oxygen; acting on the

CH-OH group of donors;

acting on the CH-CH

group of donors;

intramolecular

oxidoreductases

Sterol 27-hydroxylase Cholesterol 25-

hydroxylase; vitamin D

25-hydroxylase; 11-beta-

hydroxysteroid

dehydrogenase; 3-beta-

hydroxysteroid 3-

dehydrogenase; etc.

Streptococcus; Bacillus;

Aerococcus

Streptococcus; Bacillus;

Mycobacterium;

Aeromonas; etc.

(Iuliano, 2011; Timm

et al., 2020)

(Continued on next page)
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Table 3. Continued

Sr. No. Compound Function

Reaction subclass

from literature

Reaction subclass

from SkinBug Enzyme from literature

Enzyme from

SkinBug

Skin microbial genus

from literature

Skin microbes genus

from SkinBug References

28 Linoleic acid Used in the

conditions of skin

irritation and to

reduce acne

breakouts

Acting on paired

donors, with

incorporation or

reduction of molecular

oxygen

Acting on paired donors,

with incorporation or

reduction of molecular

oxygen; acting on single

donors with

incorporation of

molecular oxygen

(oxygenases); acting on

ester bonds

Lipoxygenase; delta-6-

desaturase

Linoleate 13S-

lipoxygenase; linoleate

11-lipoxygenase; acyl-

CoA 6-desaturase;

palmitoyl-CoA

hydrolase; etc.

Paracoccus;

Stenotrophomonas;

Brevundimonas;

Staphylococcus; etc.

Paracoccus;

Stenotrophomonas;

Brevundimonas;

Staphylococcus; etc.

(Brown et al., 2000;

Gardner, 1970;

Timm et al., 2020)

aThreshold for the subclass prediction models of ‘‘Oxidoreductases’’ was set from 0.5 to 0.1, and for ‘‘Transferases,’’ ‘‘Hydrolases,’’ and ‘‘Lyases’’ the thresholds were set from 0.5 to 0.2. The Tanimoto coefficient

threshold was set to 0.5.
bTanimoto coefficient threshold was set to 0.5 or 0.3.
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our skin microbiome, along with the information on respective reaction centers, metabolic enzymes, micro-

bial species carrying these enzymes, and also the skin sites harboring these species, ‘‘SkinBug’’ is proposed

to be a unique, reliable and user-friendly tool.

One of the key contributions of this study is the construction of the skin microbiome-specific metabolic

database using the pangenomes instead of individual genomes that helped in incorporating the metabolic

potential of all the strains of a given species. Furthermore, we used only the high-quality pangenomes of

897 species that helped in the construction of the first comprehensive metabolic enzyme database of skin

microbiome, which is the integral part of the SkinBug tool for making reliable metabolic predictions. The

inclusion of information on bacterial species from 19 different skin sites and various skin-specific niches

including anaerobic/aerobic niches and carbon- and sulfur-rich/-limiting niches in the skin microbiome

database was very important for comprehensive training and achieving higher prediction accuracy. It

was observed that the skin microbiome database had a higher representation of aerobic species because

the metagenomic studies so far have been carried out majorly for the aerobic niches than the anaerobic

niches due to the difficulty associated with anaerobic niches in sampling, isolation, and cultivation (Sfriso

et al., 2020). Another key aspect of SkinBug is the inclusion of all the well-annotated and manually curated

reactions of the KEGG database and their primary substrates for the construction of training set, analysis,

and modeling. Likewise, the manual curation of database entries for the selected bacterial species and in-

clusion of only the complete bacterial genomes from NCBI RefSeq database, along with the usage of very

strict thresholds, helped in the exclusion of any false-positives that often lead to errors in the predictions.

Furthermore, SkinBug exploits the structural and chemical properties of substrates using chemical descrip-

tors, linear fingerprints, and circular fingerprints, and thus is able to predict all the possible reactions for the

given molecule. Therefore, it is also well-equipped to address the cases of enzymatic moonlighting and

promiscuity because any additional substrate (for additional metabolic reaction) in such cases will also

need to have similar structural and chemical properties as the original substrate. These features ensure

the accuracy and wide applicability of the SkinBug tool for metabolic prediction of diverse biotic and xeno-

biotic molecules. The tool has a modular structure, which helps in easy updates of databases and models.

Due to the different levels of secretions, environmental exposure, and topography of skin sites, micro-

biome variability and the consequential metabolic variability across sites are expected that was also

observed in this study. Of the 2,523 unique reactions that were found to be occurring in skin microbiome,

only 277 were common to all the sites and the rest were specific to the different skin sites. The results

pointed toward the need for site-specific metabolic prediction for skin microbiome, and this is one of

the key features of SkinBug.

It was apparent from the hierarchical clustering of skin sites that the sites with similar physical and physio-

logical properties clustered together. The exposed, dry, and desiccated skin sites such as the arm, foot,

and forearm clustered together as they have similar physical and physiological properties such as moisture

level, pH, and environmental exposure. Similarly, the sites with high amount of secretions such as diseased

sites, face, and skin surface invaginations clustered together. Likewise, the groin and retroauricular crease

sites are similar in terms of moisture levels and secretions, and pressure ulcer and venous leg ulcer are both

the diseased sites with similar physiology, thus their clustering was also expected and observed in this

study. Furthermore, it was intriguing to observe that cheek, perineum, and inner wrist clustered together.

The clustering of cheek and perineum was expected because both sites have a lot of secretions by glands

such as sebaceous, sweat, and hepatoid, and thus may harbor similar microbiome, which was also reported

by other studies (Grice and Segre, 2011). However, the clustering of inner wrist, which is a desiccated and

dry site, with check and perineum was surprising. The plausible explanation for it emerges from the recent

studies which reported that the dry and desiccated sites harbor a highly dynamic flora, and a phylogenetic

diversity that is even higher than the diversity of gut and oral cavity microbiomes of the same individual

(Costello et al., 2009; Grice and Segre, 2011). In summary, it was evident that the bacterial species and

the correspondingmetabolic reactions observed at the different skin sites associates with the physiological

and physical properties of the skin sites such as topographical location, different secretions, moisture

levels, and environmental exposure (Grice et al., 2009; Grice and Segre, 2011).

However, there were some key challenges during the development of SkinBug. The first one was to train the

multiclass multilabel classification models from the limited dataset of well-annotated reactions with suffi-

cient accuracy. To overcome this challenge, the integration of both the machine learning and neural
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network methods, selection of optimum algorithms, and rigorous optimization of selected models helped

to achieve the high multiclass multilabel classification accuracy. The highly skewed distribution of meta-

bolic reactions in the six reaction classes and their subclasses constituted the second challenge for optimal

training of models. To tackle this challenge, the usage of a modified version of the stratified random sam-

pling that included down-sampling, in addition to the standard stratified random sampling method,

helped in effectively splitting of the data into training and testing for efficient predictive modeling.

The third challenge was the hierarchical nature of the complete reactions annotated as the four-digit EC

number, for which the prediction strategies were also needed to be hierarchical and accurate at each

step of the prediction to achieve accurate four-digit EC number prediction. To overcome this challenge,

an integrated approach employing machine learning and neural network models to predict the reaction

class, followed by construction of six different machine learning models to predict the reaction subclasses,

and a molecular similarity search-guided k-nearest neigbors method to predict the complete reactions

were incorporated into SkinBug.

Comprehensive validation of a prediction tool is important to ensure reliable and accurate predictions,

which in the case of SkinBug was carried out using a diverse set of molecules (cosmetic, pharmaceutical,

pollutants, natural molecules present on skin, etc.) that includes the cases of aerobic and anaerobic meta-

bolism at various skin sites including the dry, moist, and sebaceous niches. The results of validation were

well supported by the experimental studies and reference databases. The accuracy of the predictions was

also exemplified by the selected case studies of BaP and azo dyes where SkinBug predicted the correct

metabolic reactions, enzymes, and microbial species as known from the experimental studies and refer-

ence databases (Gibson et al., 1975; Jiang et al., 2007; Schwarz et al., 2001; Sowada et al., 2014; Zhou

et al., 2017).

Taken together, the robust methodology, training, comprehensive validations, and their biological signif-

icance make SkinBug a very useful, accurate, and reliable method to predict the metabolic reaction,

enzyme, microbial species, and the specific skin site for any given molecule. However, for the occurrence

of a metabolic reaction, the xenobiotic/biotic molecule needs to come in close vicinity of the active enzyme

along with other favorable reaction conditions, and it is tempting to question if the predicted reaction will

really occur given these conditions. The plausible biological reasoning to answer this emerges from the fact

that bacterial species have an abundance of transporters such as outer membrane-associated b-barrel-

containing proteins or porins, which may allow for the transport of biotic/xenobiotic molecules, and thus

will facilitate their metabolism by the bacteria. One such example is the TonB-dependent transport system

where the outer membrane-associated TonB-dependent transporter (TBDT), and other similar ATP-driven

influx transporters, facilitate the active transport and subsequent metabolism of xenobiotic compounds by

bacterial cells (Jindal et al., 2019; Samantarrai et al., 2020). The experimental supports to these processes

are provided by a few recent studies that showed the metabolism of different biotic/xenobiotic molecules

such as BaP, glycoholic acid, cholesterol, glycerol, azo dyes, arginine, triglyceride lipids, propylene glycol,

palmitic acid, alpha-tocopherol, uric acid, lactic acid, ethanol amine, and linolenic acid on their incubation

with the bacterial species of the skin microbiome (Sowada et al., 2014; Stingley et al., 2010; Timm et al.,

2020).

The case studies along with biological validations confirm the accuracy and reliability of SkinBug with

strong control over false-positives and false-negatives, highlight the potential of SkinBug in revealing

the metabolic consequences of undesired metabolism by our skin microbiome, and provide leads for

further experimental studies. It is also anticipated to have applications in skin microbiome and exposome

studies, in the development of novel diagnostic and therapeutic approaches in dermatology, and in cos-

metics industry for developing safer, more effective and population-specific products.

Limitations of the study

The availability of complete and annotated genomes of bacterial species for skin microbiome is one of the

limiting factors that determines the size and comprehensiveness of the metabolic database for the skin mi-

crobiome. Similarly, machine learning and neural network models are trained on available metabolic reac-

tion information, which currently has a lower representation of Isomerases and Ligases reaction classes.

Thus, the availability of more information on genomes and metabolic reactions in the reference databases

will further strengthen and broaden the applicability of SkinBug.
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Conclusion

Our skin comes in regular contact with many chemical molecules due to pollution or usage of skin care

products, thus the prediction and evaluation of metabolism of these molecules by skin microbiome species

was much needed for which SkinBug is a valuable contribution. The integrated approach of using machine

learning, neural networks, and chemoinformatics along with the database of metabolic enzymes for skin

microbiome species constructed in this study helped in prediction of all the possible metabolic reactions

that can occur to a given molecule, their respective reaction centers, the metabolic enzymes that can

perform the predict reactions, species that harbors these metabolic enzymes, and the skin sites that carry

these species. The case studies along with biological validations presented here attest to the accuracy,

applicability, and potential of SkinBug. This first state-of-the-art tool to predict the metabolism of a given

molecule by the skin microbiome will be very useful for the development of novel therapeutic approaches

in dermatology and cosmetics and will also provide leads for future experimental studies.
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SUPPLEMENTARY FIGURES 

 

 

 

Supplementary Figure S1: Bar plot of number of metabolic enzymes from different reaction 

classes present in the human skin microbiome (Related to Figure 1) 

  



 

 

Supplementary Figure S2: Matrix layout for the intersection of unique enzymatic reactions 

from 19 different skin sites. The blue horizontal bar depicts the absolute number of unique 

enzymatic reactions that can occur on the each skin site. The vertical bar plot represents the 

number of unique enzymatic reactions (top of bars) shared by the different skin sites. The 

sites that share a particular number are shown as the intersection of filled ellipsoids at x-

axis. The ellipsoids are placeholders for individual skin site. (Related to Figure 1)  

 



 

 

Supplementary Figure S3: Distribution of substrate molecules across different reactions 

classes (annotated as one-digit EC number). Here all inclusive approach has been used 

where if one molecule can undergo reactions from different reaction claseses the count is 

incremented in all of them. (Related to Figure 1) 

 



---------------------

 

Supplementary Figure S4: Distribution of 3,769 substrate molecules across different 

reactions classes (annotated as one-digit EC number) unique combinations. (Related to 

Figure 1) 

  



 

 

 

Supplementary Figure S5: The distribution of 20-nearest neighbours distances across the 

dataset of 3,769 substrate molecules based on the selected 2,322 variables. The knee point 

at 3.25 is the most suitable epsilon value for the density based clustering using DBSCAN. 

(Related to Figure 2) 

  



 

Supplementary Figure S6: Evaluating the diversity and complexity of a subset dataset where 
one substrate can undergo only one type of reaction (Related to Figure 2) 

[A] The cumulative scree plot and a normal scree plot from the PCA analysis of all the 
substrate molecules from the dataset of substrates that can undergo only one type of 
reaction class. All the selected 2,322 features were used for performing the PCA analysis. 
The x-axis is the principal component number, y-axis for the dot plot is the cumulative 
variance explained by the individual principal components, and the y-axis for the bar plot is 
the percentage of variance explained by the individual principal components. 

[B] The PCA plot of the substrate molecules that can undergo only one type of reaction class 
using the principal component PC-1 and PC-2 from the PCA analysis. Different reaction 
classes are coloured differently and the ellipsoids are drawn for each reaction class based on 
the distribution of substrate molecules in the plot.  

 

  



 

 

Supplementary Figure S7: The performance of different multiclass multilabel classification 

algorithms on the multilabel dataset with ECFP fingerprints, FCFP fingerprints, boruta 

selected descriptors, and boruta selected fingerprints. ACC – Multilabel accuracy, PPV – 

Multilabel precision or Multilabel positive predicted value, Hamloss – Hamming loss, F1 – 

Multilabel F1 score. Binary relevance – BR, Classifier chains – CC, Nested stacking – NS, 

Dependent binary relevance – DBR, Stacking – S. (Related to Figure 4) 

  



 

 

Supplementary Figure S8: The performance of different multiclass multilabel classification 

algorithms on the multilabel dataset with ECFP fingerprints, boruta selected descriptors, and 

boruta selected fingerprints. ACC – Multilabel accuracy, PPV – Multilabel precision or 

Multilabel positive predicted value, Hamloss – Hamming loss, F1 – Multilabel F1 score. 

Binary relevance – BR, Classifier chains – CC, Nested stacking – NS, Dependent binary 

relevance – DBR, Stacking – S. (Related to Figure 4) 

 

  



 

 

Supplementary Figure S9: The performance of different multiclass multilabel classification 

algorithms on the multilabel dataset with FCFP fingerprints, boruta selected descriptors, and 

boruta selected fingerprints. ACC – Multilabel accuracy, PPV – Multilabel precision or 

Multilabel positive predicted value, Hamloss – Hamming loss, F1 – Multilabel F1 score. 

Binary relevance – BR, Classifier chains – CC, Nested stacking – NS, Dependent binary 

relevance – DBR, Stacking – S. (Related to Figure 4) 

 

  



 

 

Supplementary Figure S10: Selecting the most optimum weight initializer for ANN models 

using grid search method using 5-fold cross validation. Different weight initializers are 

plotted against their respective fraction binary accuracies. The most optimum weight 

initializer was “lecun_uniform”.  (Related to Figure 5)  

  



 

 

 

Supplementary Figure S11: Selecting the most optimum value of learning rate for ANN 

models using grid search method using 5-fold cross validation. Different values of learning 

rates are plotted against their respective fraction binary accuracies. The most optimum 

value for the learning rate was “0.001”.  (Related to Figure 5) 

 

 

  



 

Supplementary Figure S12: Selecting the best performing optimizer for ANN models using 

grid search method using 5-fold cross validation. Different optimizers are plotted against 

their respective fraction binary accuracies. The best performing optimizer was “RMSprop”. 

(Related to Figure 5)  

  



 

Supplementary Figure S13: Selecting the most optimum value of batch size for ANN models 

using grid search method using 5-fold cross validation. Different values of batch size are 

plotted against their respective fraction binary accuracies. The most optimum value for the 

batch size was “150”.  (Related to Figure 5) 

  



 

Supplementary Figure S14: Selecting the most optimum value of dropout rate and weight 

constraint for ANN models for performing dropout regularization using grid search method 

using 5-fold cross validation. Different combinations of values of dropout rate and weight 

constraint are plotted against their respective fraction binary accuracies. The most optimum 

value for the dropout rate was “0.4” and most optimum value of weight constraint was “4”.  

(Related to Figure 5) 

 

 

  



SUPPLEMETARY TABLES 

 

Table S1: The binary performance of multiclass multilabel model for predicting the reaction 

class on 5-fold cross validation testing. (Related to Figure 4) 

Reaction Class AUC MMCE FNR FPR ACC MCC NPV PPV 
F1 

Score 
FDR GPR 

Oxidoreductases 0.855 0.207 0.111 0.345 0.793 0.568 0.806 0.786 0.834 0.214 0.836 

Transferases 0.841 0.235 0.225 0.244 0.765 0.531 0.774 0.757 0.766 0.243 0.766 

Hydrolases 0.824 0.210 0.538 0.089 0.790 0.422 0.821 0.656 0.543 0.344 0.551 

Lyases 0.844 0.164 0.620 0.047 0.836 0.420 0.857 0.673 0.486 0.327 0.506 

Isomerases 0.900 0.082 0.571 0.020 0.918 0.522 0.931 0.734 0.541 0.266 0.561 

Ligases 0.886 0.082 0.761 0.017 0.918 0.336 0.931 0.577 0.338 0.423 0.371 

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR 

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary 

negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false 

discovery rate, GPR = Geometric mean of binary precision and binary recall 

 

  



Table S2: The binary performance of multiclass multi-label model for predicting the reaction 

class on blind set testing. (Related to Figure 4) 

Reaction Class AUC MMCE FNR FPR ACC MCC NPV PPV 
F1 

Score 
FDR GPR 

Oxidoreductases 0.871 0.174 0.081 0.309 0.826 0.638 0.855 0.813 0.863 0.188 0.864 

Transferases 0.884 0.222 0.217 0.226 0.778 0.557 0.783 0.774 0.778 0.226 0.778 

Hydrolases 0.810 0.186 0.487 0.094 0.814 0.450 0.859 0.625 0.563 0.375 0.566 

Lyases 0.896 0.120 0.536 0.036 0.880 0.516 0.899 0.722 0.565 0.278 0.579 

Isomerases 0.943 0.060 0.417 0.032 0.940 0.551 0.968 0.583 0.583 0.417 0.583 

Ligases 0.878 0.030 0.429 0.013 0.970 0.602 0.981 0.667 0.615 0.333 0.617 

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR 

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary 

negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false 

discovery rate, GPR = Geometric mean of binary precision and binary recall 

 

 

  



Table S3: The binary performance of multiclass multilabel model for predicting the 

subclasses of “Oxidoreductases” class on 5-fold cross validation testing. (Related to Table 1 

and 2) 

Reaction subclass AUC MMCE FNR FPR ACC MCC NPV PPV F1 FDR GPR 

Acting on the CH-OH 
group of donors 

0.944 0.115 0.237 0.056 0.885 0.733 0.892 0.868 0.812 0.132 0.814 

Acting on the aldehyde or 
oxo group of donors 

0.921 0.079 0.611 0.013 0.921 0.520 0.929 0.791 0.521 0.209 0.555 

Acting on the CH-CH group 
of donors 

0.914 0.099 0.503 0.022 0.901 0.586 0.911 0.812 0.617 0.188 0.635 

Acting on the CH-NH2 
group of donors 

0.945 0.046 0.686 0.008 0.954 0.449 0.961 0.698 0.433 0.302 0.468 

Acting on the CH-NH 
group of donors 

0.936 0.036 0.723 0.004 0.964 0.440 0.967 0.743 0.403 0.257 0.453 

Acting on NADH or NADPH 0.899 0.007 0.714 0.000 0.993 0.533 0.993 1.000 0.444 0.000 0.535 
Acting on other 

nitrogenous compounds 
as donors 

0.952 0.017 0.800 0.000 0.983 0.420 0.983 0.900 0.327 0.100 0.424 

Acting on a sulfur group of 
donors 

0.920 0.026 0.742 0.002 0.974 0.437 0.977 0.773 0.386 0.227 0.446 

Acting on a heme group of 
donors 

0.744 0.001 1.000 0.000 0.999 0.000 0.999 0.000 0.000 NA NA 

Acting on diphenols and 
related substances as 

donors 
0.881 0.014 1.000 0.000 0.986 0.000 0.986 0.000 0.000 NA NA 

Acting on a peroxide as 
acceptor 

0.927 0.018 0.739 0.002 0.982 0.436 0.984 0.750 0.387 0.250 0.442 

Acting on hydrogen as 
donor 

0.877 0.004 0.692 0.000 0.996 0.554 0.996 1.000 0.471 0.000 0.555 

Acting on single donors 
with incorporation of 

molecular oxygen 
(oxygenases) 

0.890 0.071 0.659 0.008 0.929 0.503 0.933 0.824 0.483 0.176 0.530 

Acting on paired donors, 
with incorporation or 

reduction of molecular 
oxygen 

0.894 0.197 0.223 0.175 0.803 0.602 0.819 0.784 0.780 0.216 0.780 

Oxidizing metal ions 0.949 0.002 0.357 0.000 0.998 0.801 0.998 1.000 0.783 0.000 0.802 
Acting on CH or CH2 

groups 
0.930 0.026 0.653 0.002 0.974 0.530 0.976 0.839 0.491 0.161 0.539 

Acting on iron-sulfur 
proteins as donors 

0.997 0.003 0.700 0.000 0.997 0.547 0.997 1.000 0.462 0.000 0.548 

Acting on reduced 
flavodoxin as donor 

0.993 0.002 1.000 0.000 0.998 0.000 0.998 0.000 0.000 NA NA 

Acting on phosphorus or 
arsenic in donors 

0.880 0.003 1.000 0.000 0.997 0.000 0.997 0.000 0.000 NA NA 

Catalysing the reaction X-
H + Y-H = X-Y 

0.916 0.017 0.814 0.001 0.983 0.381 0.983 0.800 0.302 0.200 0.386 

Reducing C-O-C group as 
acceptor 

0.813 0.004 1.000 0.000 0.996 0.000 0.996 0.000 0.000 NA NA 

Other oxidoreductases 0.798 0.007 0.737 0.000 0.993 0.466 0.993 0.833 0.400 0.167 0.468 

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR 

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary 



negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false 

discovery rate, GPR = Geometric mean of binary precision and binary recall 

NA - Although, stratified random sampling was used to split the six datasets into the training and testing 

datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few 

of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA 

values 

 

Table S4: The binary performance of the multiclass multi-label model for predicting the 

subclasses of “Transferases” class on 5-fold cross validation testing. (Related to Table 1 and 

2) 

Reaction subclass AUC MMCE FNR FPR ACC MCC NPV PPV F1 FDR GPR 

Transferring one-carbon 
groups 

0.896 0.150 0.360 0.069 0.850 0.610 0.870 0.781 0.704 0.219 0.707 

Transferring aldehyde or 
ketonic groups 

0.939 0.017 1.000 0.001 0.983 
-

0.004 
0.984 0.000 0.000 1.000 0.000 

Acyltransferases 0.853 0.169 0.502 0.057 0.831 0.512 0.848 0.747 0.597 0.253 0.610 
Glycosyltransferases 0.890 0.144 0.384 0.059 0.856 0.608 0.873 0.790 0.692 0.210 0.698 

Transferring alkyl or aryl 
groups, other than methyl 

groups 
0.855 0.090 0.754 0.012 0.910 0.383 0.918 0.708 0.365 0.292 0.417 

Transferring nitrogenous 
groups 

0.956 0.062 0.465 0.011 0.938 0.650 0.944 0.863 0.660 0.137 0.679 

Transferring phosphorus-
containing groups 

0.943 0.106 0.278 0.053 0.894 0.697 0.917 0.809 0.763 0.191 0.764 

Transferring sulfur-
containing groups 

0.891 0.073 0.745 0.014 0.927 0.366 0.937 0.617 0.361 0.383 0.397 

Transferring selenium-
containing groups 

0.412 0.001 1.000 0.000 0.999 0.000 0.999 0.000 0.000 NA NA 

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR 

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary 

negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false 

discovery rate, GPR = Geometric mean of binary precision and binary recall 

NA - Although, stratified random sampling was used to split the six datasets into the training and testing 

datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few 

of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA 

values 

 

  



Table S5: The binary performance of the multiclass multi-label model for predicting the 

subclasses of “Hydrolases” class on 5-fold cross validation testing. (Related to Table 1 and 2) 

Reaction subclass AUC MMCE FNR FPR ACC MCC NPV PPV F1 FDR GPR 

Acting on ester bonds 0.878 0.204 0.237 0.177 0.796 0.586 0.814 0.774 0.768 0.226 0.768 
Acting on sulfur-nitrogen 

bonds 
0.336 0.002 1.000 0.000 0.998 0.000 0.998 0.000 0.000 NA NA 

Acting on carbon-
phosphorus bonds 

0.844 0.005 1.000 0.000 0.995 0.000 0.995 0.000 0.000 NA NA 

Acting on sulfur-sulfur 
bonds 

0.426 0.001 1.000 0.000 0.999 0.000 0.999 0.000 0.000 NA NA 

Acting on carbon-sulfur 
bonds 

0.766 0.009 1.000 0.000 0.991 0.000 0.991 0.000 0.000 NA NA 

Glycosylases 0.890 0.092 0.452 0.023 0.908 0.622 0.919 0.817 0.656 0.183 0.669 
Acting on ether bonds 0.944 0.032 0.475 0.002 0.968 0.690 0.969 0.941 0.674 0.059 0.703 

Acting on peptide bonds 
(peptidases) 

0.906 0.032 1.000 0.000 0.968 0.000 0.968 1.000 0.000 NA NA 

Acting on carbon-nitrogen 
bonds, other than peptide 

bonds 
0.903 0.156 0.283 0.094 0.844 0.638 0.870 0.784 0.749 0.216 0.750 

Acting on acid anhydrides 0.952 0.058 0.383 0.023 0.942 0.646 0.960 0.744 0.674 0.256 0.677 
Acting on carbon-carbon 

bonds 
0.928 0.060 0.907 0.010 0.940 0.159 0.949 0.357 0.147 0.643 0.182 

Acting on halide bonds 0.990 0.021 0.606 0.000 0.979 0.621 0.979 1.000 0.565 0.000 0.628 
Acting on phosphorus-

nitrogen bonds 
0.355 0.003 1.000 0.000 0.997 0.000 0.997 0.000 0.000 NA NA 

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR 

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary 

negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false 

discovery rate, GPR = Geometric mean of binary precision and binary recall 

NA - Although, stratified random sampling was used to split the six datasets into the training and testing 

datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few 

of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA 

values 

 

  



Table S6: The binary performance of the multiclass multi-label model for predicting the 

subclasses of “Lyases” class on 5-fold cross validation testing. (Related to Table 1 and 2) 

Reaction subclass AUC MMCE FNR FPR ACC MCC NPV PPV F1 FDR GPR 

Carbon-carbon lyases 0.851 0.224 0.259 0.201 0.776 0.537 0.823 0.710 0.725 0.290 0.726 
Carbon-oxygen lyases 0.839 0.223 0.231 0.214 0.777 0.554 0.742 0.810 0.789 0.190 0.789 

Carbon-nitrogen lyases 0.781 0.109 0.961 0.011 0.891 0.076 0.899 0.300 0.070 0.700 0.109 
Carbon-sulfur lyases 0.922 0.053 0.691 0.001 0.947 0.524 0.947 0.944 0.466 0.056 0.540 
Carbon-halide lyases 0.834 0.011 0.583 0.001 0.989 0.585 0.990 0.833 0.556 0.167 0.589 

Phosphorus-oxygen lyases 0.968 0.023 0.941 0.001 0.977 0.166 0.978 0.500 0.105 0.500 0.171 
carbon-phosphorus lyases 0.760 0.004 1.000 0.000 0.996 0.000 0.996 0.000 0.000 NA NA 

Other lyases 0.953 0.026 0.833 0.006 0.974 0.256 0.979 0.429 0.240 0.571 0.267 

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR 

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary 

negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false 

discovery rate, GPR = Geometric mean of binary precision and binary recall 

NA - Although, stratified random sampling was used to split the six datasets into the training and testing 

datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few 

of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA 

values 

 

  



Table S7: The binary performance of the multiclass multi-label model for predicting the 

subclasses of “Isomerases” class on 5-fold cross validation testing. (Related to Table 1 and 2) 

Reaction subclass AUC MMCE FNR FPR ACC MCC NPV PPV F1 FDR GPR 

Racemases and 
epimerases 

0.946 0.108 0.133 0.095 0.892 0.765 0.926 0.832 0.849 0.168 0.849 

cis-trans-Isomerases 0.822 0.027 0.529 0.005 0.973 0.601 0.977 0.800 0.593 0.200 0.614 
Intramolecular 

oxidoreductases 
0.924 0.167 0.356 0.077 0.833 0.605 0.843 0.802 0.714 0.198 0.719 

Intramolecular 
transferases 

0.827 0.165 0.646 0.049 0.835 0.389 0.859 0.636 0.455 0.364 0.475 

Intramolecular lyases 0.932 0.059 0.292 0.015 0.941 0.767 0.946 0.902 0.793 0.098 0.799 
Other isomerases 0.277 0.005 1.000 0.000 0.995 0.000 0.995 0.000 0.000 NA NA 

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR 

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary 

negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false 

discovery rate, GPR = Geometric mean of binary precision and binary recall 

NA - Although, stratified random sampling was used to split the six datasets into the training and testing 

datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few 

of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA 

values 

 

  



Table S8: The binary performance of the multiclass multi-label model for predicting the 

subclasses of “Ligases” class on 5-fold cross validation testing. (Related to Table 1 and 2) 

Reaction subclass AUC MMCE FNR FPR ACC MCC NPV PPV F1 FDR GPR 

Forming carbon-oxygen 
bonds 

0.902 0.086 0.463 0.029 0.914 0.581 0.933 0.733 0.620 0.267 0.627 

Forming carbon-sulfur 
bonds 

0.939 0.134 0.167 0.112 0.866 0.722 0.888 0.833 0.833 0.167 0.833 

Forming carbon-nitrogen 
bonds 

0.933 0.124 0.099 0.151 0.876 0.752 0.890 0.864 0.882 0.136 0.882 

Forming carbon-carbon 
bonds 

0.892 0.067 0.864 0.007 0.933 0.264 0.939 0.600 0.222 0.400 0.286 

Forming phosphoric-ester 
bonds 

0.981 0.019 0.500 0.007 0.981 0.568 0.987 0.667 0.571 0.333 0.577 

Forming nitrogen-D-metal 
bonds 

0.969 0.019 1.000 0.000 0.981 0.000 0.981 0.000 0.000 NA NA 

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR 

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary 

negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false 

discovery rate, GPR = Geometric mean of binary precision and binary recall 

NA - Although, stratified random sampling was used to split the six datasets into the training and testing 

datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few 

of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA 

values 

 

  



Table S9: The binary performance of the multiclass multi-label model for predicting the 

subclasses of “Oxidoreductases” class on stratified random sampling split testing. (Related 

to Table 1 and 2) 

Reaction subclass AUC MMCE FNR FPR ACC MCC NPV PPV F1 FDR GPR 

Acting on the CH-OH 
group of donors 

0.973 0.099 0.158 0.070 0.901 0.776 0.922 0.857 0.850 0.143 0.850 

Acting on the aldehyde or 
oxo group of donors 

0.975 0.047 0.462 0.013 0.953 0.624 0.963 0.778 0.636 0.222 0.647 

Acting on the CH-CH group 
of donors 

0.932 0.058 0.320 0.014 0.942 0.749 0.948 0.895 0.773 0.105 0.780 

Acting on the CH-NH2 
group of donors 

0.964 0.012 0.500 0.000 0.988 0.703 0.988 1.000 0.667 0.000 0.707 

Acting on the CH-NH 
group of donors 

0.996 0.012 0.333 0.006 0.988 0.661 0.994 0.667 0.667 0.333 0.667 

Acting on NADH or NADPH NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 
Acting on other 

nitrogenous compounds 
as donors 

1.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 

Acting on a sulfur group of 
donors 

1.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 

Acting on a heme group of 
donors 

NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

Acting on diphenols and 
related substances as 

donors 
0.994 0.006 1.000 0.000 0.994 0.000 0.994 0.000 0.000 NA NA 

Acting on a peroxide as 
acceptor 

0.994 0.006 1.000 0.000 0.994 0.000 0.994 0.000 0.000 NA NA 

Acting on hydrogen as 
donor 

NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

Acting on single donors 
with incorporation of 

molecular oxygen 
(oxygenases) 

0.854 0.052 0.583 0.013 0.948 0.521 0.958 0.714 0.526 0.286 0.546 

Acting on paired donors, 
with incorporation or 

reduction of molecular 
oxygen 

0.941 0.122 0.125 0.120 0.878 0.755 0.890 0.864 0.870 0.136 0.870 

Oxidizing metal ions NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 
Acting on CH or CH2 

groups 
0.994 0.006 0.500 0.000 0.994 0.705 0.994 1.000 0.667 0.000 0.707 

Acting on iron-sulfur 
proteins as donors 

NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

Acting on reduced 
flavodoxin as donor 

NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

Acting on phosphorus or 
arsenic in donors 

NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

Catalysing the reaction X-
H + Y-H = X-Y 

1.000 0.006 1.000 0.000 0.994 0.000 0.994 1.000 0.000 NA NA 

Reducing C-O-C group as 
acceptor 

NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

Other oxidoreductases NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR 

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary 



negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false 

discovery rate, GPR = Geometric mean of binary precision and binary recall 

NA - Although, stratified random sampling was used to split the six datasets into the training and testing 

datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few 

of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA 

values 

 

Table S10: The binary performance of the multiclass multi-label model for predicting the 

subclasses of “Transferases” class on stratified random sampling split testing. (Related to 

Table 1 and 2) 

Reaction subclass AUC MMCE FNR FPR ACC MCC NPV PPV F1 FDR GPR 

Transferring one-carbon 
groups 

0.924 0.133 0.302 0.070 0.867 0.654 0.892 0.789 0.741 0.211 0.742 

Transferring aldehyde or 
ketonic groups 

NA 0.006 NA 0.006 0.994 0.000 1.000 0.000 0.000 1.000 NA 

Acyltransferases 0.862 0.165 0.541 0.050 0.835 0.492 0.852 0.739 0.567 0.261 0.583 
Glycosyltransferases 0.961 0.089 0.220 0.043 0.911 0.764 0.926 0.865 0.821 0.135 0.822 

Transferring alkyl or aryl 
groups, other than methyl 

groups 
0.945 0.057 0.538 0.014 0.943 0.561 0.953 0.750 0.571 0.250 0.588 

Transferring nitrogenous 
groups 

0.968 0.051 0.500 0.007 0.949 0.639 0.953 0.875 0.636 0.125 0.661 

Transferring phosphorus-
containing groups 

0.937 0.089 0.286 0.033 0.911 0.731 0.922 0.862 0.781 0.138 0.785 

Transferring sulfur-
containing groups 

0.967 0.063 0.667 0.027 0.937 0.345 0.960 0.429 0.375 0.571 0.378 

Transferring selenium-
containing groups 

NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR 

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary 

negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false 

discovery rate, GPR = Geometric mean of binary precision and binary recall 

NA - Although, stratified random sampling was used to split the six datasets into the training and testing 

datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few 

of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA 

values 

 

  



Table S11: The binary performance of the multiclass multi-label model for predicting the 

subclasses of “Hydrolases” class on stratified random sampling split testing. (Related to 

Table 1 and 2) 

Reaction subclass AUC MMCE FNR FPR ACC MCC NPV PPV F1 FDR GPR 

Acting on ester bonds 0.895 0.202 0.216 0.191 0.798 0.591 0.826 0.763 0.773 0.237 0.773 
Acting on sulfur-nitrogen 

bonds 
NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

Acting on carbon-
phosphorus bonds 

NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

Acting on sulfur-sulfur 
bonds 

NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

Acting on carbon-sulfur 
bonds 

NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

Glycosylases 0.968 0.083 0.250 0.056 0.917 0.672 0.958 0.692 0.720 0.308 0.721 
Acting on ether bonds 0.997 0.024 0.400 0.000 0.976 0.765 0.975 1.000 0.750 0.000 0.775 

Acting on peptide bonds 
(peptidases) 

0.964 0.012 1.000 0.000 0.988 0.000 0.988 0.000 0.000 NA NA 

Acting on carbon-nitrogen 
bonds, other than peptide 

bonds 
0.931 0.119 0.200 0.085 0.881 0.715 0.915 0.800 0.800 0.200 0.800 

Acting on acid anhydrides 0.963 0.048 0.143 0.039 0.952 0.731 0.987 0.667 0.750 0.333 0.756 
Acting on carbon-carbon 

bonds 
0.959 0.036 1.000 0.000 0.964 0.000 0.964 0.000 0.000 NA NA 

Acting on halide bonds 1.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 
Acting on phosphorus-

nitrogen bonds 
NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR 

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary 

negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false 

discovery rate, GPR = Geometric mean of binary precision and binary recall 

NA - Although, stratified random sampling was used to split the six datasets into the training and testing 

datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few 

of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA 

values 

 

  



Table S12: The binary performance of the multiclass multi-label model for predicting the 

subclasses of “Lyases” class on stratified random sampling split testing. (Related to Table 1 

and 2) 

Reaction subclass AUC MMCE FNR FPR ACC MCC NPV PPV F1 FDR GPR 

Carbon-carbon lyases 0.895 0.169 0.192 0.154 0.831 0.650 0.868 0.778 0.792 0.222 0.793 
Carbon-oxygen lyases 0.907 0.169 0.194 0.138 0.831 0.664 0.781 0.879 0.841 0.121 0.841 

Carbon-nitrogen lyases 0.850 0.077 1.000 0.000 0.923 0.000 0.923 1.000 0.000 NA NA 
Carbon-sulfur lyases 0.968 0.031 0.333 0.016 0.969 0.651 0.984 0.667 0.667 0.333 0.667 
Carbon-halide lyases NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

Phosphorus-oxygen lyases 1.000 0.015 1.000 0.000 0.985 0.000 0.985 1.000 0.000 NA NA 
carbon-phosphorus lyases NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

Other lyases 1.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR 

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary 

negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false 

discovery rate, GPR = Geometric mean of binary precision and binary recall 

NA - Although, stratified random sampling was used to split the six datasets into the training and testing 

datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few 

of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA 

values 

 

  



Table S13: The binary performance of the multiclass multi-label model for predicting the 

subclasses of “Isomerases” class on stratified random sampling split testing. (Related to 

Table 1 and 2) 

Reaction subclass AUC MMCE FNR FPR ACC MCC NPV PPV F1 FDR GPR 

Racemases and 
epimerases 

0.973 0.083 0.077 0.087 0.917 0.824 0.955 0.857 0.889 0.143 0.889 

cis-trans-Isomerases 1.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 
Intramolecular 

oxidoreductases 
0.931 0.083 0.273 0.000 0.917 0.806 0.893 1.000 0.842 0.000 0.853 

Intramolecular 
transferases 

0.842 0.139 0.714 0.000 0.861 0.494 0.853 1.000 0.444 0.000 0.535 

Intramolecular lyases 0.961 0.056 0.200 0.032 0.944 0.768 0.968 0.800 0.800 0.200 0.800 
Other isomerases NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR 

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary 

negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false 

discovery rate, GPR = Geometric mean of binary precision and binary recall 

NA - Although, stratified random sampling was used to split the six datasets into the training and testing 

datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few 

of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA 

values 

  



Table S14: The binary performance of the multiclass multi-label model for predicting the 

subclasses of “Ligases” class on stratified random sampling split testing. (Related to Table 1 

and 2) 

Reaction subclass AUC MMCE FNR FPR ACC MCC NPV PPV F1 FDR GPR 

Forming carbon-oxygen 
bonds 

0.957 0.040 0.500 0.000 0.960 0.692 0.958 1.000 0.667 0.000 0.707 

Forming carbon-sulfur 
bonds 

0.887 0.200 0.200 0.200 0.800 0.592 0.857 0.727 0.762 0.273 0.763 

Forming carbon-nitrogen 
bonds 

0.910 0.240 0.231 0.250 0.760 0.519 0.750 0.769 0.769 0.231 0.769 

Forming carbon-carbon 
bonds 

0.958 0.080 1.000 0.042 0.920 -0.042 0.958 0.000 0.000 1.000 0.000 

Forming phosphoric-ester 
bonds 

NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

Forming nitrogen-D-metal 
bonds 

NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR 

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary 

negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false 

discovery rate, GPR = Geometric mean of binary precision and binary recall 

NA - Although, stratified random sampling was used to split the six datasets into the training and testing 

datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few 

of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA 

values 

 

  



TRANSPARENT METHODS 

Construction of microbial species database 

The data and text mining of the available literature was performed to construct a manually 

curated database of bacterial species present at different skin sites. The protein sequences 

of genomes of the bacterial species from the constructed database were retrieved from 

NCBI Reference Sequence Database (RefSeq) (O'Leary et al., 2015). Only complete genome 

assemblies were used from the RefSeq database. The genomes of all the available strains of 

a species were used to construct the pangenome of that species which helped to compile 

the metabolic potential of all the strains for a particular species.  The pangenome of a 

species includes all the genes from all the different strains of that species. The pangenomes 

were constructed for all the bacterial species that are experimentally known to be a part of 

skin microbiome, and for which the complete genomes were available on the NCBI RefSeq 

database. The information on different bacterial species for which the pangenomes were 

constructed, and the skin sites harbouring these species is provided in Supplementary Data 

Sheet 1. The information on 19 different sites primarily including the sebaceous, moist, and 

dry skin niches was retrieved from literature, manually curated, and was used for further 

analysis. For the construction of pangenome, the protein sequences of all genomes of a 

species were merged and clustered at 100% identity using CD-HIT v4.6 (Li and Godzik, 2006). 

Construction of skin microbiome specific metabolic information database 

The ExPASy enzyme database was used to find the Uniprot/SwissProt IDs of all the 

annotated enzymes that belong a particular metabolic reaction annotated as four-digit EC 

number (Gasteiger et al., 2003). The protein sequences for these enzymes were 

downloaded from the Uniprot database (Consortium, 2014). The homology search of these 

enzyme sequences was performed against each pangenome to identify all the metabolic 

enzymes present in that pangenome using the NCBI BLASTP program (Altschul et al., 1990). 

The hits were filtered using the cut-off criteria of identity >50%, bit-score >100, query 

coverage >50%, subject coverage >50%, E-value <10-10, mismatch percentage <50%, and gap 

percentage <50%. Finally, a database of complete reactions annotated as four-digit EC 

number and corresponding metabolic enzymes from all the pangenomes was constructed. 

Each of the metabolic enzymes was tagged with the bacterial species pangenome containing 

the enzyme. Further, the metabolic enzymes were also tagged with the skin sites that 

harbour the bacterial species with those enzymes.  

Construction of reaction, RDM pattern, and substrate database 

All the enzymatic reactions and their corresponding reactions IDs were retrieved from KEGG 

database (Kanehisa and Goto, 2000). For each reaction ID, the corresponding reactions pairs 

and respective RDM patterns were also retrieved from the KEGG database (Kanehisa and 



Goto, 2000). From this data the databases of reactions, reaction pairs, and RDM patterns 

were constructed. From the reactions, the primary substrates were identified and a 

database of primary substrates and their respective reactions annotated as four-digit EC 

number was constructed.  

Calculation of molecular features of substrates 

The structural and chemical features were calculated for each of the substrate molecule in 

the substrate database. Thus, the molecular information of substrates was translated into 

machine-readable features that include chemical properties parameters, linear structural 

fingerprints, and circular molecular connectivity information. The chemical features were 

calculated using the PaDEL software (Yap, 2011). These chemical features included different 

types of chemical descriptions such as acidic atom count, aromatic atom count, aromatic 

bonds count, carbon types, molecular distance edge etc. encoded into 240 different values. 

Two types of structural fingerprints were calculated: linear and circular. The linear 

fingerprints were calculated using the PaDEL software (Yap, 2011). A total of 12 different 

types of linear fingerprints (Fingerprinter, Pubchem, MACCS, Atom pairs 2D, KlekotaRoth 

etc.) were calculated that were represented as 10,208 bits (values either 0 or 1). The two 

types of circular/topological fingerprints, Morgan FCFP - 512 bits and Morgan ECFP - 512 

bits, were calculated using RDkit software (Landrum, 2016).  

Feature selection 

The Boruta algorithm implemented in R as the “Boruta” package was used to extract the 

important features among all the above calculated molecular features (Kursa and Rudnicki, 

2010). Boruta is a wrapper algorithm for feature selection that uses “Random Forest” 

algorithm, and scores each feature and marks them as important, unimportant or tentative. 

The tentative features were then finalized as important or unimportant using 

“TentativeRoughFix” function of Boruta package in R. The variable importance was 

calculated for each EC reaction (EC1 to EC6) class separately. Finally, the important features 

for each EC were merged and unique sorted to obtain the final set of important features. 

Principal component and cluster analysis 

Principal component analysis was performed using the “prcomp” function from “stats” 

package in R v3.4.4. This function performs the principal component analysis (PCA) by 

performing the singular value decomposition of the input data (Mankin, 2003). This method 

is the preferred method for better numeric accuracy. The PCA and scree plots were 

generated using the “factoextra” and “ggfortify” package in R v3.4.4 (Kassambara and 

Mundt, 2017). The density-based clustering was performed using the “fpc” and “dbscan” 

package in R v3.4.4. The kNN distance plot was generated using the “kNNdistplot” function 



from “dbscan” package in R v3.4.4 (Tran et al., 2013). The density cluster plot was generated 

using the “factoextra” package in R v3.4.4 (Kassambara and Mundt, 2017). 

Hierarchical clustering 

The hierarchical clustering was performed using the ‘hclust’ function of ‘stats’ package in R 

v3.4.4. The approximate unbiased p-values (AUp) and the bootstrap probability (BP) values 

for each branch/cluster were calculated using multiscale bootstrap resampling and using 

normal bootstrap resampling, respectively. The optimum number of clusters was identified 

to be two based on the average silhouette method . 

Construction of machine learning models  

Dataset construction 

The dataset of 3,769 substrate molecules was randomly split into a working and blind 

dataset with a ratio of 95:5. Thus, the working dataset had 3,602 molecules and the blind 

dataset had 167 molecules. The working dataset was utilized for the training and statistical 

evaluation of the machine learning model, and the blind dataset was used for the 

independent evaluation of the model. The dataset was highly skewed with a higher number 

of substrate molecules for “Oxidoreductases” and “Transferases” in comparison to other 

reaction classes. Also the abundances of substrate molecules belonging to different 

combinations of reaction classes were also highly variable. Thus, a modified strategy of 

stratified random sampling approach was used to divide the working dataset into the 

training and testing dataset for modeling. The details of the dataset construction are 

mentioned in Supplementary Text S1. 

Training and evaluation 

The prediction of reaction class is a multiclass multilabel problem because one substrate 

molecule can undergo more than one type of reaction among the six types of reactions 

classes. In machine learning, there exists two methods to model the multiclass multi-label 

problem, one is problem transformation method where the multiclass multi-label problem 

is divided into several multiclass or binary problems, and another is algorithm adaptation 

method where the algorithms are adapted to perform the multiclass multi-label predictions. 

For the problem transformation method all the algorithms used for binary or multiclass 

classification can be used, whereas for algorithm adaptation method the algorithms need to 

be changed before using them for the multiclass multi-label classification. In the problem 

transformation method, a learner known as “wrapped multilabel learner” is employed on 

the “core learner”. The function of wrapped learner is to manage and combine several core 

learners so that they can work in synchronization to achieve the multilabel classification. 

The core learner is any traditional algorithm for binary or multiclass classification. We used 

five different wrapper methods: (1) binary relevance (BR) method, (2) classifier chains (CC) 



method, (3) Nested stacking (NS) method, (4) Dependent binary relevance (DBR) method, 

and (5) Stacking method. We used the seven core learners for each of the above mentioned 

wrapper methods, these are: k-Nearest Neighbors (kNN), Recursive Partitioning (RPART), 

Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost),Perceptive Neural 

Network (NNET), Naive Bayes, Random Forests (RF). In the algorithm adaptation method, 

we used two methods, randomForestSRC (RFSRC) and random ferns (RFerns).  

The performance of the models was evaluated using two types of matrices, multilabel - to 

assess the capability of the model to perform the multilabel classification, and binary - to 

assess the capability of the model to perform the binary classification for each label. Five 

matrices were used in the multilabel case namely: Multilabel Accuracy, Multilabel Sensitivity 

or Recall or True Positive Rate, Multilabel Precision or Positive Prediction Value (PPV), 

Multilabel F1 measure (F1), and Hamming loss (Charte and Charte, 2015).  The formulas for 

these matrices for multiclass multilabel classification are mentioned below (Charte and 

Charte, 2015): 

                    
 

    
 

         

         

     

   

                        
 

   
 

         

    

     

   

 

                                   
 

   
 

         

    

     

   

  

                        
                

                
                

 

   
 

         

   

     

   

 

Where, D is the total number of instances in the multiclass multilabel dataset, C is the 

complete set of labels present in the multiclass multilabel dataset, Pi is the predicted labels 

for the ith instance, and Ti is the true labels for the ith instance. The set operations used 

were:   meaning intersection,   meaning union, and   meaning symmetric difference.  

We used eight matrices to evaluate the binary performance: Binary Accuracy, Mean 

Misclassification Error (MMCE), Matthews Correlation Coefficient (MCC), Binary Precision or 

Positive Predicted Value (PPV), Area under the curve (AUC), Binary False Negative Rate 

(FNR), Binary False Positive Rate (FPR), Binary Sensitivity or Recall or True Positive Rate 

(TPR), Binary Specificity or True Negative Rate (TNR), Binary Negative predictive value (NPV), 

Binary False discovery rate (FDR), and Binary Geometric Mean of binary precision and binary 

recall (GPR). The formulas for these binary performance matrices are mentioned in 

Supplementary Text S2. The final model for reaction class and subclass prediction was 

constructed with the method that showed the best multilabel and binary performance.  

Construction of artificial neural network (ANN) models 



Dataset construction 

The aim of constructing the ANN model was to improve upon the learning about the class-

specific patterns, thus, only the substrates where the molecule could undergo the reactions 

of only one type of reaction class were extracted from the working dataset (as mentioned 

above) and were used for the construction of ANN models. This dataset had a total of 1,758 

substrate molecules with the distribution of molecules across different reactions classes: 

“Oxidoreductases” - 832, “Transferases” - 573, “Hydrolases” - 195, “Lyases” - 79, 

“Isomerases” – 41, and “Ligases”- 36. It is evident from the distribution that the dataset is 

very biased and imbalanced, thus, the stratified random sampling was performed to split 

this dataset into training and testing dataset. For stratified random sampling, this dataset 

was first divided into six parts, one for each reaction class, and then each reaction class 

dataset was splitted separately into training and testing dataset using random sampling with 

the split ration of approximately 90:10. Now all the six training sets were merged to create 

the final training dataset and all the six testing datasets were merged to create the final 

testing dataset.  

Training and evaluation 

The ANN network was constructed in Python using libraries tensorflow v1.4.1 and keras 

v2.2.4. Based on the nature of the problem, the best suited multilayer perceptron model 

that is based on the backpropagation method for training is used. In the backpropagation 

method, the error rate is provided as feedback to the whole neural network that is known 

as back propagating the error, which is then used by an optimizer algorithm to optimize the 

parameters of artificial neural network.  

Three different matrices were used to evaluate the performance of the ANN model: 

categorical accuracy, binary accuracy, and log loss/binary cross entropy. Since it is a 

multiclass classification problem the target variable here is one hot encoded. The 

categorical accuracy checks if the maxima in the true values and the maxima in the 

predicted values have the same index, if yes, it is considered a true prediction, else it is 

considered a wrong prediction. This is performed on all test dataset instances, and the 

fraction of correct predictions out of total predictions on test dataset gives the categorical 

accuracy. In contrast, for calculating the binary accuracy, at first all the probabilities are 

converted into values with the threshold of 0.5 (if <0.5 means 0, and if >0.5 means 1), then 

all the true values of each instance are compared with the predicted values. If the true value 

is equal to the predicted value then it is considered as correct prediction, else it is 

considered a wrong prediction. This was also performed on all the values of each of the test 

dataset instance, and the fraction of correct predictions out of the total predictions gives 

the binary accuracy. The formula to calculate the log loss/binary cross entropy is: 



                    

 

   

 

Where, N is the number of different classes present in the dataset, log is the natural 

logarithm, Y(i,c) is the indicator if the classification is correct (1 if yes and 0 if no) for ith 

observation for c class, and P(i,c) is the probability predicted by the ANN model for ith 

observation for c class 

The hypermeters of the ANN models were also optimized based on the three evaluation 

matrices mentioned above to obtain the best performance from the ANN model. To 

calculate the optimum number of neurons in the hidden layer, the values close to the 

average of the size of input and output layers were tried and the best value was selected 

while keeping the number of hidden layer as one. Different number of hidden layers were 

tried to select the best performing ANN model with the most optimum number of hidden 

layers. A range of epoch values from 1 to 4000 were tried and based on the plateau in the 

performance an optimum value was selected. The other parameters of the ANN models 

were optimized using the grid search method with 5-fold cross validation the details are 

mentioned in Supplementary Text S3. The parameters optimized were: Weight initializer, 

Learning rate, Optimizer, Batch size, Dropout rate, and Weight constraint. 

Statistical evaluation of the machine learning and ANN models 

We used three methods to statistically evaluate the performance of the machine learning 

and ANN models. These three methods are split testing, cross validation, and blind set 

testing. The details of these methods are mentioned in Supplementary Text S4. 

Molecular similarity search 

The open source chemoinformatics tool Open Babel v2.3.2 was used for performing the 

molecular similarity search using the inbuilt default fingerprint FP2 which is a path-based 

fingerprint. The complete substrate molecule database was divided into several reaction 

subclass specific databases, depending on the type of reaction subclass a particular 

substrate can undergo. Once the reaction class and subclass are predicted by the machine 

learning and ANN models, the molecular similarity search against the predicted reactions 

subclass specific database is performed and Tanimoto Coefficient or Jaccard Index was 

calculated. The formula for calculating the Tanimoto Coefficient or Jaccard Index is: 

                                               
  

         
 

Where, T(a,b) is the tanimoto coefficient for molecule a and b, Na is number of bits that are 

1 in the fingerprints of molecule a, Nb is number of bits that are 1 in the fingerprints of 



molecule b, and Nc is the number of bits that are 1 in the intersection of fingerprints of 

molecule a and b. 

K-nearest neighbour (KNN) model construction or lazy learning 

KNN is a preferred method for the identification of structurally and chemically similar 

molecules to the input molecule in the search against a heterogeneous database (Soucy and 

Mineau, 2001). The KNN algorithm was implemented using the R package “FNN” 

(Beygelzimer et al., 2015). The k-nearest neighbours for any given molecule were extracted 

using the function “get.knnx” from the “FNN” package that uses “Euclidean distance” as the 

measure of similarity between molecules.  

Identification of reaction center  

The reaction centers were identified by using the RDM pattern information that is 

associated with each of the substrate-product pair of an enzyme catalyzed reaction in KEGG 

database (Kanehisa, 2002). In the RDM pattern database constructed in this study, all the 

complete metabolic reactions are associated with the respective Reaction Class (RC) pairs, 

and all the RC pairs were tagged with corresponding RDM patterns. For a given biochemical 

reaction available in KEGG, the KEGG-defined RDM (Reaction center, Difference region, 

Matching region) patterns contain the information on the KEGG atom type changes at the 

reaction center, matched region of the molecule, and the difference region of the molecule 

(Kotera et al., 2013). Here a reaction center is the atom where the reaction occurs, a 

matched region is the region common between substrate and product that remained 

unchanged after the reaction, and a difference region is the part of molecule that changed 

after the reaction. The RDM patterns are derived from the structural alignments of the 

substrates and products which identifies the reaction center, matched and difference 

regions (Yamanishi et al., 2009). To identify the reaction center in a molecule for each of the 

predicted metabolic reaction, all the RC pairs and corresponding RDM patterns were 

extracted. Using these RDM patterns, the reaction centers were identified by in-house 

python scripts. Thus, this computational approach is similar to the biochemical approach in 

which the primary substrate and product are compared to identify the reaction center 

where the biochemical reaction has occurred in the enzyme active site.  

  



SUPPLEMENTARY TEXT 

Supplementary Text S1: (Related to Figure 4 and 5) 

The dataset of 3,769 substrate molecules was randomly split into a working and blind 

dataset with a ratio of 95:5, the working dataset had 3602 molecules and the blind dataset 

had 167 molecules. The working dataset was utilized further for the training and statistical 

evaluation of the machine learning model and the blind dataset was used for the 

independent evaluation of the model. Since the dataset was much skewed with a very 

higher number of substrate molecules for “Oxidoreductases” and “Transferases” in 

comparison to other reaction classes and also abundance of substrate molecules with 

different combinations of reaction classes was very variable, thus, a modified strategy of 

stratified random sampling approach was used to divide the working dataset into the 

training and testing dataset for modeling.  

In this approach, to account for the differences in substrates belonging to different 

combinations of reaction classes the working dataset was divided into pure (contains 

substrates that can undergo only one type of reaction among different reaction classes) and 

mixed datasets (contains substrates that can undergo multiple reactions among different 

reaction classes). The pure dataset which had 1756 substrate was statistically down-

sampled to randomly select the same number (lowest in the sample = 36) of substrates for 

each reaction class. Thus, the down-sampled pure had a total of 216 substrates (36 of each 

reaction class). The mixed dataset had 1,846 substrate molecules which was split into two 

datasets large and small with the ratio of 95:5, the large part had 1,774 substrates, whereas 

the small part had 72 substrate molecules. The training dataset was constructed by merging 

the down-sampled pure dataset (216 substrates) and the large part of mixed dataset (1,774 

substrates), and had a total of 1,990 substrate molecules. The testing dataset was 

constructed by merging the remaining of pure dataset after down-sampling (1,540 

substrates) and the small part of the mixed dataset (72 substrates), and has a total of 1,612 

substrate molecules. These final training and testing datasets corresponded to an 

approximate ratio of 55:45 of the working dataset of 3602 substrate molecules. 

Similarly, for the training of machine learning models for reaction subclass prediction the 

working dataset was divided into six parts, one for each reaction class. The same substrate 

could belong to multiple parts if it can undergo reactions from multiple reaction classes. The 

numbers of reaction sub-classes in each reaction class were: “Oxidoreductases” - 22, 

“Transferases” - 9, “Hydrolases” -13, “Lyases” -8, “Isomerases” – 6, and “Ligases”- 6. For 

each dataset the stratified random sampling was performed to split the input dataset into 

training and testing dataset with the split ration of 90:10. 

 



Supplementary Text S2: (Related to Figure 4) 

To evaluate the binary performance we used eight matrices, Binary Accuracy, Mean 

Misclassification Error (MMCE), Matthews Correlation Coefficient (MCC), Binary Precision or 

Positive Predicted Value (PPV), Area under the curve (AUC), Binary False Negative Rate 

(FNR), Binary False Positive Rate (FPR), Binary Sensitivity or Recall or True Positive Rate 

(TPR), Binary Specificity or True Negative Rate (TNR), Binary Negative predictive value (NPV), 

Binary False discovery rate (FDR), and Binary Geometric Mean of binary precision and binary 

recall (GPR). The formulas for these binary performance matrices are mentioned below: 

                 
     

   
 

      
     

   
       

           

                             
 

                  
  

     
              

  

     
              

  

     
 

                              
  

     
                       

  

     
 

            
  

     
              

  

     
            

                    

Where, TP is true positives, FP is false positives, TN is true negatives, FN is false negatives, P 

is the total number of positives, and N is the total number of negatives in the input dataset. 

 

Supplementary Text S3: (Related to Figure 5) 

The other parameters of the ANN models were optimized using the grid search method with 

5-fold cross validation, the parameters along with the values tested are: (1) Weight 

initializer – Zero, Normal, Uniform, Glorot normal, Glorot uniform, He normal, He uniform, 

and Lecun uniform (2)  Learning rate – 0.0, 0.02, 0.1, 0.2, and 0.3 (3)  Optimizer – Adadelta, 

Adagrad, Adam, Adamax, Nadam, RMSprop, and SGD (4) Batch size – 0, 50, 100, 150, 200, 

250, 300, 400, and 500 (5) Dropout rate and Weight constraint – [0.0, 1], [0.0, 2], [0.0, 3], 

[0.0, 4], [0.0, 5], [0.1, 1], [0.1, 2], [0.1, 3], [0.1, 4], [0.1, 5], [0.2, 1], [0.2, 2], [0.2, 3], [0.2, 4], 

[0.2, 5], [0.3, 1], [0.3, 2], [0.3, 3], [0.3, 4], [0.3, 5], [0.4, 1], [0.4, 2], [0.4, 3], [0.4, 4], [0.4, 5],  

[0.5, 1], [0.5, 2], [0.5, 3], [0.5, 4], [0.5, 5], [0.6, 1], [0.6, 2], [0.6, 3], [0.6, 4], [0.6, 5],  [0.7, 1], 

[0.7, 2], [0.7, 3], [0.7, 4], [0.7, 5],  [0.8, 1], [0.8, 2], [0.8, 3], [0.8, 4], [0.8, 5],  [0.9, 1], [0.9, 2], 

[0.9, 3], [0.9, 4], and [0.9, 5]. The final model was constructed using the most optimum 

parameters selected based on the gird search method.  



 

Supplementary Text S4: (Related to Figure 4 and 5)  

a) Split testing: As mentioned in the dataset construction part the complete working 

dataset was divided into training and testing dataset using a specific splitting approach. 

The models were trained on the training dataset and evaluated in the test dataset. 

b) Cross validation: In this study, we used 5-fold cross validation for machine learning 

models and ANN models. In this method, during the process of training the dataset was 

randomly divided into five equal parts and five iterations of training and testing are 

performed. In each of the iteration four parts are used for training and the rest one part 

is used for the testing. This way in five iterations each of the training instances is used for 

testing the model and thus, avoiding any bias in the evaluation of the performance 

matrices. Finally, the mean/median and standard deviation value of performance 

matrices across five iterations is used to evaluate any bias in the model such as over-

fitting or under-fitting.   

c) Blind set testing: Approximately 5% of the randomly selected instances are kept aside 

before starting the training and testing process of model and, the model never sees these 

instances at any stage of its training and testing, hence called a blind dataset to model. 

Therefore, the performance of the model on this blind dataset is considered to be a real 

or unbiased performance of the model.  

 

Supplementary Text S5: (Related to Figure 1) 

To further evaluate the variability in skin sites in terms of enzymatic reactions it is critical to 

know the reactions that are common to the different sites. To identify the number of 

reactions that are common to different sites the matrix layout analysis performed using the 

‘UpSetR’ package in R (Conway et al., 2017; Lex and Gehlenborg, 2014). It generates a 

matrix layout diagram for visualizing the set intersections.   

 

Supplementary Text S6: (Related to Figure 1) 

A skin microbiome specific metabolic enzyme database of four-digit EC number and 

corresponding metabolic enzymes from all the pangenomes was constructed. Each 

metabolic enzyme in this database is tagged with the bacterial species if their pangenome 

harbors this enzyme. Also the metabolic enzymes were tagged with the skin sites based on 

the presence and absence of the bacterial species harboring the enzyme on that particular 

skin site. All the well-annotated enzymatic reactions were extracted from KEGG database 



and corresponding reaction, primary substrates, RC pair and RDM pattern databases were 

constructed. A total of 10,629 reactions, 3,769 primary substrates, and 2,592 RC pairs and 

RDM patterns were extracted from the KEGG database. Also each of the primary substrate 

in the database was tagged with the reaction class (EC-one digit), reaction subclass (EC-two 

digit), and complete reaction category (EC-four digit). The four types of molecular features 

were calculated for each of the primary substrate: chemical descriptors, linear fingerprints, 

Morgan ECFP fingerprints, and Morgan FCFP fingerprints. All this data was used for the 

training of the prediction models and for making the final metabolism predictions. 

 

Supplementary Text S7: (Related to Figure 4 and 5) 

Feature selection was performed using the Boruta package on chemical descriptor and 

linear fingerprints (Kursa and Rudnicki, 2010). Boruta selected 194 features out of 240 

chemical descriptors and 1,104 features out of 10,208 linear fingerprints across different 

reaction classes. All features of Morgan FCFP and Morgan ECFP were included and were not 

subjected to feature selection as these features are elementary and all the bits are needed 

to adequately describe a substrate molecule. The total number of features used for further 

analysis was 2,322: 194 from chemical descriptors, 1104 linear fingerprints, 512 Morgan 

ECFP fingerprints, and 512 Morgan FCFP fingerprints.  

 

Supplementary Text S8: (Related to Figure 6) 

A previous study have reported that the adjustment in the threshold of multiclass multilabel 

classification model could significantly improve on their performance (Al-Otaibi et al., 2014; 

Fan and Lin, 2007). Thus, although we evaluated the performance of our models using the 

threshold value of 0.5 for all the machine learning and ANN models so that we do not 

overestimate the sensitivity of our models, the prediction threshold of the models deployed 

in the web server was lowered for the reaction subclass prediction models of 

“Oxidoreductases”, “Transferases”, “Hydrolases”, and “Lyases” classes from 0.5 to 0.2 

because they had a range of 8 to 22 different subclasses and a high threshold could lead to 

miss out on some possible reaction subclasses.  
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