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ARTICLE

ABSTRACT
We describe the development and initial validity assessment of the 20-item BioCalculus 
Assessment (BCA), with the objective of comparing undergraduate life science students’ 
understanding of calculus concepts in different courses with alternative emphases (with 
and without focus on biological applications). The development process of the BCA in-
cluded obtaining input from a large network of scientists and educators as well as students 
in calculus and biocalculus courses to accumulate evidential support of the instrument’s 
content validity and response processes of test takers. We used the Rasch model to exam-
ine the internal structure of scores from students who have experienced calculus instruc-
tion in the two methods. The analysis involved three populations (Calculus 1, Calculus 2, 
and Biocalculus) for which the Calc 1 and Calc 2 students were not exposed to calculus 
concepts in a life science setting, while the Biocalculus students were presented con-
cepts explicitly with a life science emphasis. Overall, our findings indicate that the BCA has 
reasonable validity properties, providing a diagnostic tool to assess the relative learning 
success and calculus comprehension of undergraduate biology majors from alternative 
methods of instruction that do or do not emphasize life science examples.

INTRODUCTION
Hosts of reports over the past few decades have pointed out the need for quantitative 
skills and conceptual mathematical foundations for undergraduates studying life 
science (American Association for the Advancement of Medicine, 2009; American 
Association for the Advancement of Science [AAAS], 2011; National Research Council 
[NRC], 2003; Steen, 2005). With the continuing growth of computational and data 
science approaches across the life sciences, these reports broadly agree that 21st-century 
biologists will be well-served through enhanced comprehension of the core quantita-
tive concepts used throughout biology. Calculus provides one of the most fundamental 
mathematical frameworks that underlie science and is universally included as a core 
course for science, technology, engineering, and mathematics (STEM) students around 
the world. Calculus is a major component of quantitative training for biology under-
graduates (Bressoud et al., 2013, 2015).

There has been consistent encouragement from the quantitative education commu-
nity to link quantitative learning to real-world contexts. It is in part due to this that 
there have been intentional moves over the past four decades, since the time of Batsch-
elet (1971), to develop mathematical materials in a biological context. The underlying 
assumption is that students with an interest in biology will more readily appreciate the 
importance of mathematics and be successful in developing their understanding of 
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quantitative concepts such as those in calculus if the mathemat-
ics is framed in a biological context. This is consistent with rec-
ommendations from the National Council of Teachers of Math-
ematics that opportunities for students to experience 
mathematics in a context is important and that students are 
more likely to remember mathematics presented with real-
world applications (National Council of Teachers of Mathemat-
ics, 2000). This is also congruent with a large body of reports 
and literature in K–12 science and mathematics instruction call-
ing for an integrated science and mathematics curriculum 
(Hurley, 2001; Stinson et al., 2009) and use of mathematics in 
the science classroom (NRC, 2012).

Many national reports also encourage interdisciplinary 
approaches in STEM education (NRC, 2003; AAAS, 2011; 
President’s Council of Advisors on Science and Technology 
[PCAST], 2012). Regarding mathematics education, the PCAST 
(2012) report calls for a national experiment that includes 
developing and teaching mathematical concepts from an inter-
disciplinary approach. The mathematics education community 
has responded to this report in several ways, noting that the 
community should revisit course content, delivery methods, 
and educational assessment tools in undergraduate mathemat-
ics education (Holm, 2016).

Prior related efforts on calculus assessments include the Cal-
culus Concept Inventory (Epstein, 2007). This was specifically 
developed as a tool to compare outcomes from interactive 
engagement and traditional teaching methods. In this sense, it 
was not a standard concept inventory across all core calculus 
concepts but focused on comparing alternative methods of 
instruction rather than emphasizing a particular student’s con-
ceptual understanding. The objective was to have a tool for 
population-scale comparisons of samples of responses from stu-
dents who experiences two different modes of instruction. 
There has been very limited work on the validity analysis of 
Epstein’s Calculus Concept Inventory, but there are no other cal-
culus concept inventories at this time (Gleason et al., 2015, 
2018). Carlson and collaborators developed a Precalculus Con-
cept Assessment and a Calculus Concept Readiness instrument, 
both focused on precalculus concepts (Carlson et al., 2010, 
2015). Gleason et al. (2018) critiqued the Calculus Concept 
Inventory, concluding that their data, from 1800 students 
enrolled in Calculus 1 courses, were consistent with a unidi-
mensional model but expressing concerns about its content 
validity and reliability. The focus in their analysis was not on the 
comparision of alternative modes of instruction, which was the 
reason for which the inventory was developed.

Few assessments or inventories have focused across fields 
(i.e., explicitly interdisciplinary), but instead are discipline-cen-
tric. Given the push toward interdisciplinary education, it is 
important to determine the most effective practices to use con-
cepts from outside mathematics in meeting mathematical 
learning goals. Likewise, it is important to have valid tools for 
assessing changes in students’ understanding, assessing the 
potential advantages of pedagogical interventions, and explic-
itly evaluating the contention that placing quantitative concepts 
in the concrete context of a domain of application will enhance 
student comprehension of the quantitative concept. The Statis-
tical Reasoning in Biology Concept Inventory (SRBCI; Deane 
et al., 2016) is one of the first assessment tools to cross disci-
plinary bounds. Developers framed SRBCI questions using biol-

ogy examples to assess students’ conceptions of statistical rea-
soning. Another assessment tool to assist in analyzing student 
quantitative comprehension in a life science context is 
BioSQuaRE (Stanhope et al., 2017), which considers algebra, 
statistical, and visualization concepts.

For decades calculus has been a required quantitative course 
for biology undergraduates, and biology students make up nearly 
30% of all students taking Calculus 1 across all types of U.S. 
undergraduate institutions (Bressoud et al., 2013, 2015). The 
standard mechanism for teaching calculus in the United States 
has been through formal course sequences designed for a broad 
collection of science and engineering students. Historically, some 
institutions have either included life science students in these 
courses or have developed specialized courses for these students 
separate from and with somewhat different topic coverage than 
the standard science and engineering courses. Such specialized 
courses have sometimes been broadly inclusive of social science 
students as well, but some have focused explicitly on life science 
students, because they often make up a significant fraction of all 
STEM students at an institution. Over recent decades several bio-
calculus texts were developed that focus on standard calculus 
topics (Neuhauser, 2011; Adler, 2012; Schreiber et al., 2014) or 
take a somewhat broader perspective of quantitative topics to 
include linear algebra, probability, and discrete-time modeling 
(Bodine et al., 2014; Stewart and Day, 2015).

Our purpose is to explore the development and initial valid-
ity assessment of the BioCalculus Assessment (BCA), which 
aims to evaluate, in a comparative approach, undergraduate 
student understanding of calculus concepts embedded in the 
context of life science examples. Our objective is to develop a 
tool that can be effective in comparing alternative formats for 
student comprehension of concepts from calculus, particularly 
the alternative courses available to life science students at many 
U.S. institutions. Thus, the BCA has been developed explicitly 
to provide a means to assess the impact on calculus concept 
comprehension of different modalities of calculus instruction 
arising from different emphases and inclusion of concrete bio-
logical contexts. Options for students in this study include a 
standard science and engineering calculus sequence as well as 
a sequence designed specifically for life science students that 
emphasizes biology applications to enhance comprehension of 
calculus concepts. Three calculus concepts formed the basis of 
the BCA: rates of change, modeling, and interpretation of data 
and graphs.

It is our expectation that instruments such as the BCA and 
SRBCI can be applied to develop guidance regarding the impact 
of inclusion of life science disciplinary examples in calculus and 
statistical reasoning courses. Given the importance of quantita-
tive methods across the life sciences, biology faculty may use 
the results of more expansive applications of the BCA to encour-
age their faculty colleagues who teach calculus to do so in a 
manner that is most effective for their students. This should 
also contribute to broader educational research questions 
regarding the impact of learning methods on student concep-
tual comprehension (Koedinger et al., 2013).

METHODS
The validity of the test, that is, the degree to which evidence 
supports the interpretation of test scores (Nunnally, 1978; 
Crocker and Algina, 1986; Pedhazur and Schmelkin, 1991; 
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American Educational Research Association, American Psycho-
logical Association, and National Council on Measurement in 
Education, 2014), is an important aspect to examine when 
developing a test. Test validity is assessed through an accumu-
lation of evidence that reinforces a test is measuring what it is 
intended to measure. The Standards for Educational and Psy-
chological Testing indicate evidence such as content validity, 
response processes, and the internal structure of the test can be 
collectively used to support test validity (American Educational 
Research Association et al., 2014) and were used to frame our 
validation process for the BCA.

The BCA was primarily developed as a tool that educators 
and researchers could use to measure learning gains of students 
who are taught calculus instruction across different instruc-
tional modalities. Pellegrino et al. (2001) assert that every edu-
cational assessment is based on the following triangular princi-
ples: cognition, observations, and interpretation. During the 
creation of the BCA, we used input from subject-matter experts 
to create test items intended to measure understanding of cal-
culus content across three focal areas (e.g., rates of change, 
modeling, and interpretation of data and graphs). These sub-
ject-matter experts have vast experience instructing and edu-
cating students within calculus and were instrumental in creat-
ing items for the assessment that are believed to adequately 
represent how students attain knowledge and develop com-
petence within the subject. Focus groups were then conducted 
with students to gauge their perspectives on the connection of 
the items to course topics. We created a multiple-choice assess-
ment as a means of observing students’ knowledge, as multi-
ple-choice tests are easy to administer and score. Finally, with 
respect to the third foundation of the triangle, scores from pre 
to post on the instrument can be used to assess learning gains 
across different intervention strategies, and these scores can 
then be used to further research for different ways calculus con-
tent can be taught to undergraduate life science students.

Development of the BCA
Similar to the development of other assessment tools (e.g., 
Anderson et al., 2002; Garvin-Doxas and Klymkowsky, 2008; 
Jorion et al., 2015; Deane et al., 2016), the development of the 
BCA was an iterative process of collecting feedback across dif-
ferent stakeholder groups. More specifically, to develop the 
BCA, we identified core competencies to include on the assess-
ment; consulted subject-matter experts in mathematics and 
biology to determine the most relevant test items to include on 
the instrument; modified the instrument based on undergradu-
ate students’ feedback; completed pilot administration of tests; 
and evaluated the internal structure of the BCA using Rasch 
analysis.

We used the BIO2010 (NRC, 2003) and Vision and Change 
reports (AAAS, 2011) to identify a consensus of core calcu-
lus-related quantitative competencies for life science majors. 
We identified three major calculus concepts to include in the 
assessment based on our review of these reports: rates of 
change, modeling, and interpretation of data and graphs. We 
then constructed a pool of 52 initial test items that included 
these quantitative competencies interconnected to life science 
examples. We constructed test items through adaptation of 
questions from the following resources: the Calculus Concept 
Inventory (Epstein, 2013), Applied Calculus (Hughes-Hallett 

et al., 2013), Mathematics for the Life Sciences (Bodine et al., 
2014), and Cornell’s Good Questions website (Cornell Univer-
sity, n.d.). Plausible distractors for each question were chosen 
based on our research team’s teaching experience of the con-
cepts and consultation of the mathematics education literature 
for common student misconceptions related to the topics, 
including modeling and rates of change (Thompson, 1994; 
Thompson and Silverman, 2008; Bezuidenhout, 1998, 2001; 
Zandieh, 2000; Carlson et al., 2002). We did not find much 
research regarding misconceptions involving interpretations of 
data and graphs.

Content Validity
Content validity is an aspect of validity evidence that refers to 
the relevance, representativeness, and technical quality of items 
included on a test (Messick, 1995; American Educational 
Research Association et al., 2014). Evidence of content validity 
can be collected through systematic reviews by subject matter 
experts who give feedback on the adequacy of test items and 
the representation and relevance of the items to the domain 
(Reeves and Marbach-Ad, 2016).

We recruited subject matter experts in the interdisciplinary 
fields of mathematics and biology to help determine items to 
include on the BCA. All investigators leading this research are 
affiliated with the National Institute for Mathematical and Bio-
logical Synthesis (NIMBioS), a National Science Foundation–
supported synthesis center that supports and promotes research 
and education at the interface of mathematics and biology. 
Investigators used NIMBioS’s large network of scientists and 
educators to recruit experts to review potential items for the 
assessment via an announcement in the NIMBioS bimonthly 
newsletter and through personal email invitations. A total of 84 
experts completed an online rating form for the initial 52 ques-
tions. Each expert reviewed approximately four randomly 
assigned questions from the pool, with each of the 52 questions 
being rated by four reviewers. Each reviewer could also com-
ment or suggest revisions.

Following the method provided by Rubio et al. (2003), we 
provided the draft questions for the instrument to the expert 
review panel with a response form and instructions on rating 
the items. For each item reviewed, each reviewer was asked to 
rate items for 1) representativeness of the concept, defined as 
an item’s ability to represent the content domain as described in 
the provided concepts for each item on a scale of 1–4, with 4 
being the most representative; 2) clarity of the item, defined as 
how clearly and understandably the item is worded, on a four-
point scale; and 3) overall quality of the question, defined as 
being free from bias, well written, and having plausible and 
mutually exclusive distractors (incorrect answers) on a four-
point scale. Additionally, reviewers were provided space for 
comments to explain their rating responses and/or offer sugges-
tions for question improvement.

We computed a content validity index (CVI) for each item 
from the review panel responses by counting the number of 
experts who rated the item a three or four on each rating crite-
ria and dividing that number by the total number of experts 
reviewing the item. This, along with overall mean ratings for all 
three criteria were used to determine the most defensible items 
to include in the first iteration of the assessment. Items with a 
mean CVI less than 0.80 and an overall mean rating less than 
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3.3 were removed (Davis, 1992). This resulted in 35 test ques-
tions to consider for inclusion on the instrument. These 35 
questions were then reevaluated by our research team, using 
comments and suggestions made by the expert reviewers to 
ensure representativeness of the concept, clarity of the item, 
and overall quality. After reevaluation, 23 of the highest-rated 
items were included in a first draft of the instrument.

Response Processes
Validity evidence on response processes of test takers is con-
cerned with the fit between the performance of takers and the 
construct (e.g., knowledge of calculus concepts). Evidence of 
response processes is commonly assessed through think-aloud 
procedures that probe students’ rationalization and thought 
processes for answering particular questions (American Educa-
tional Research Association et al., 2014; Reeves and Mar-
bach-Ad, 2016). This process can help developers ensure that 
the target population understands the question, ensure that 
wording of test items is appropriate, and include distractors 
that reflect students’ common misconceptions.

We conducted two focus groups with students to ensure that 
the students interpreted test items as intended, ensure that the 
language and notation used on the test were familiar to stu-
dents, and obtain feedback from students about question word-
ing and distractor choices. Criteria for student participation in 
the focus groups included undergraduates who had declared a 
biological science major and who had either taken 1) the AP 
Calculus exam but who had not taken calculus at the university, 
2) two semesters of calculus at the university level, or 3) two 
semesters of Mathematics for the Life Sciences (a calculus 
course for life science majors that teaches calculus concepts in 
biological context). These criteria ensured that the focus group 
students would have the relevant educational background in 
mathematics to understand the concepts represented in the 
assessment. Email invitations to participate were sent to 463 
prospective students, and a total of 19 students participated in 
one of two focus groups in Spring 2016 (10 and 9 students, 
respectively). All students had declared a biological sciences 
major, except one student who was from an environmental and 
soil science major. Nine of the students met the criteria of hav-
ing AP Calculus exam credit, eight had taken two semesters of 
calculus at university, and two had taken two semesters of 
Mathematics for the Life Sciences. Ten of the focus group partic-
ipants were female.

Two of the coauthors (K.S. and P.B.) and a graduate student 
facilitated the focus groups using the retrospective cognitive 
think-aloud process (Nolin, 1996). Additionally, two coauthors 
(S.L. and L.J.G.) with mathematics teaching experience each 
attended one of the focus groups to assist in answering ques-
tions from students. We provided students in each group with a 
paper copy of the instrument on which they could make notes, 
and students answered questions on the test using a personal 
response system or “clicker.” Clickers are remote-controlled 
devices that allow students to send their answers to a receiver 
connected to an instructor’s or researcher’s laptop computer, 
which instantaneously analyzes and displays the results. We 
asked students to answer test questions one at a time when 
prompted by a member of the research team, and after all stu-
dents had provided their confidential responses to each ques-
tion, we discussed the answer and distractors with the group 

using the following probes: 1) What do you think the question 
is asking?, 2)What is confusing about the question?, and 3) 
What words or phrases don’t you understand? (Bowling et al., 
2008). Students also had space on paper copies of the instru-
ment to write comments if they did not feel comfortable sharing 
with the group. Focus group sessions were recorded and tran-
scribed. We analyzed data from the recorded student think-
aloud process, along with notes from the research team and 
student paper copies of the test, for themes surrounding poten-
tially confusing test wording, and results were used to modify 
question texts, answers, and distractors.

Owing to test fatigue, students gave minimal feedback 
regarding questions that appeared at the end of the instrument. 
A new version of the instrument with the edited questions in 
reverse order was piloted with 14 students. Using the same stu-
dent criteria and recruitment strategies from the focus group 
stage, we recruited 14 students (of whom four had also partici-
pated in the focus group portion of the project) to participate in 
one of two pilot study groups (groups of six and eight students). 
All students in these pilot groups had declared a biological sci-
ence major. Nine of the students met the criteria of having AP 
Math exam credit, two had taken two semesters of university 
calculus, and three had taken two semesters of Mathematics for 
the Life Sciences. Eight of the participants were female.

We provided paper copies of the instrument to the students, 
who were given the opportunity to provide written or oral com-
ments about each question if they felt a question was confusing 
in any way. Members of the research team were available to 
answer any questions the students had. After these pilot tests, 
minor revisions were made to questions for clarity based on the 
feedback from the pilot study students. We used the resulting 
22-question preliminary instrument from this phase of develop-
ment in the evaluation phase of the study.

BCA In-Class Administration
Faculty in Calculus 1 (C1), Calculus 2 (C2), and Mathematics 
for the Life Sciences (BioCalc) administered the BCA in class 
over three semesters to students enrolled in their classes. C1 
covers topics in differential calculus with no integral calculus 
and with emphasis on rates of change, and C2 expands on this 
to cover topics in integral calculus and series. These courses 
meet for 4 hours each week. C1 and C2 use a classical science 
and engineering calculus approach, emphasizing symbolics, 
graphing, and hand calculation, having limited applications 
mostly to physics, and allowing the use of graphing calculators. 
BioCalc is the second course of a two-course sequence, the first 
of which provides an overview of discrete mathematical topics 
including linear algebra; descriptive statistics; and discrete 
probability with applications to population modeling, allome-
try, and population genetics. The second course in the sequence, 
BioCalc, covers both differential and integral calculus, using 
biological examples particularly drawn from population biol-
ogy, including exponential and logistic growth, and some phys-
iological examples, including photosynthesis and blood flow. A 
focus throughout this two-course sequence is interpretation of 
data, simple modeling, and the use of a computational software 
package, MATLAB, to expose students to applications and 
numerical illustration of the key concepts in a biological con-
text. BioCalc meets for 3 hours a week, and the focus on mod-
eling, data, and computational software are emphases that do 
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not appear in C1 and C2.We chose these courses because stu-
dents within each course should be exposed to most, if not all, 
topics included on the assessment, and the courses are repre-
sentative of how calculus topics are often split across calculus 
sequences. Essentially every biology major at the University of 
Tennessee, Knoxville, takes either the C1 and C2 sequence or 
BioCalc and its predecessor course covering topics in discrete 
mathematics. The coverage of the BCA content within C1, C2, 
and BioCalc is indicated in Table 1 by major concepts and sub-
content with corresponding BCA question numbers. Many ques-
tions incorporated more than one of the three major concepts.

After the first administration of the 22-item BCA in Fall 
2016, we removed two items from the instrument. We removed 
one item due to the high difficulty and low discrimination prop-
erties. We removed the second item because it was deemed to 
have unrealistic biological features after further review by our 
research team. In addition, 14 of the remaining 20 items 
included distractors of “none of the above” or “not enough 
information given.” We replaced these distractor options with 
plausible distractors in alignment with test development best 
practices (Kline, 1986; Downing, 2006; Brame, 2013; DiBat-
tista et al., 2014).

A final revision to the test involved moving less difficult 
items to the beginning of the test and harder items to the end of 
the test. A meta-analytic review conducted by Hauck et al. 
(2017) found student performance on multiple-choice exams in 
which items are sequenced (i.e., ordered based on item diffi-
culty) has no to minimal effect on overall test performance. 
However, test anxiety has been found to be reduced in item 
sequences of easy-to-hard test items (Tippets and Benson, 
1989; Chen, 2012). Because the completion of the BCA was 

voluntary and taking the test had no influence on students’ 
grades, we decided to reorder test items in an easy-to-hard 
sequence in hopes of minimizing test anxiety, potentially 
encouraging students to complete the exam with minimal 
negative affects on overall test performance. The final BCA 
included 20 items and was administered to students in the 
Spring 2017 and Fall 2017 semesters.

Instructors administered the BCA to students during the last 
25 minutes of class time within 2 to 3 weeks before the end of 
the semester. Students were encouraged to answer all questions 
and to provide a best guess to questions for which they did not 
know the answer. During the first two administrations of the 
BCA, we emailed students after course grades were submitted 
and asked them to provide consent to use their test scores as 
part of the validation research study. For the final test adminis-
tration, we sought consent at preadministration, because we 
found that students were less likely to respond to emails when 
the semester was not in session. We used posttest scores from 
students who gave consent for their scores to be used in the 
analysis of this phase of the study, resulting in 206 student 
scores in the analysis (51 students from C1, 98 students from 
C2, and 57 students from BioCalc).

Internal Structure of the BCA
The internal structure of a test provides information regarding 
the degree to which the relationships among test items and test 
components conform to the construct on which the proposed 
test score interpretations are based (Messick, 1995; American 
Educational Research Association et al., 2014). Tests are devel-
oped to measure the amount of knowledge or the level of ability 
a person has regarding specific content domains. However, 

TABLE 1. Curricular alignment of BCA concepts with course topics by three focal concept areas: rates of change, modeling, and analyzing 
and interpreting graphs

Topics included in BCA C1 C2 BioCalc BCA question

Rates of change
 Derivative rules X X 16
 Interpreting/constructing graphs using derivatives X X 7, 8, 11
 Optimization X X 11
 Definite integral X X 12, 13, 17
 Fundamental theorem of calculus X X 17
 Net change as an integral of a rate X X 12, 13, 17
 Methods of integration X X 13
 Application of integrals X X 12, 13, 17
 Rate of change X X X 5, 7, 8, 12, 18
 Functions and modeling X X X 11, 12, 13

Modeling
 Continuity X X 4
 Intermediate value theorem X X 4
 Definite integral X X 15
 Methods of integration X X 15
 Application of integrals X X 15
 Rate of change X X X 14, 20
 Functions and modeling X X X 3, 6, 20

Analyzing and interpreting graphs
 Interpreting/constructing graphs using derivatives X X 2
 Rate of change X X X 1, 2, 9
 Functions and modeling X X X 10, 19
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knowledge and ability represent latent variables, as they can 
only be assessed and measured indirectly. For these latent vari-
ables, tests are used as a tool to quantify a person’s ability level 
by how successfully he or she answers test items. One technique 
for assessing the internal structure of test scores is the Rasch 
model, proposed by Georg Rasch (1960).

The Rasch model is a psychometric technique that trans-
forms raw scores into linear scales for person measures (ability) 
and item difficulty by modeling the probability of success (i.e., 
correct response) based on the difference between a student’s 
ability and an item’s difficulty. Boone (2016) advocates using 
Rasch techniques to improve the quality of tests in the life sci-
ences, and Rasch models have been used to explore aspects of 
validity of concept inventories and other test instruments 
(Planinic et al., 2010; Arthurs et al., 2015; Deane et al., 2016; 
O’Shea et al., 2016). Rasch models are compatible with funda-
mental principles of measurement and therefore are useful tools 
for assessing whether data from physical science assessments 
conform to the model (Andrich, 2004).

In the Rasch model, items are assumed to be equivalent and 
item discrimination is set at 1, so that person ability and item 
difficulty can be compared using a common continuum 
(DeMars, 2010; Bond and Fox, 2015). Rasch models provide 
estimates for a person’s ability and item difficulty using logits. 
Logits are the natural log of an odds ratio, where an odds ratio 
is the ratio of the relative frequency of an event occurring over 
the relative frequency of it not occurring, when both frequen-
cies are positive (Ludlow and Haley, 1995). Logits are equal 
interval units that allow scores to be additive and thus provide 
meaning to person and item comparisons (Bond and Fox, 
2015). A 0 logit represents the mean or average item difficulty 
(or person ability). When the numerator represents the relative 
frequency of incorrect answers, positive logits represent more 
difficult test items, while negative logits represent easier, less 
difficult test items. This allows item difficulty to be on the same 
continuum as person ability, which is also represented such that 
negative logits indicate lower ability levels and positive logits 
represent higher ability levels (Tavakol and Dennick, 2013). A 
review of the spread in logits scores for person ability and item 
difficulty provides information regarding the representational 
spread of these indices along a continuum (Ludlow and Haley, 
1995; DeMars, 2010; Bond and Fox, 2015).

Inherent assumptions to the Rasch model are unidimension-
ality and local independence. Unidimensionality refers to the 
assumption that all items are indicators of a single attribute of 
interest; therefore, scores are a representative summary of this 
attribute (Bond and Fox, 2015). Local independence of test 
items assumes that the probability of correctly answering any 
test item is independent of how examinees respond to other 
items on the instrument. While the literature indicates several 
techniques for assessing unidimensional linearity in the data, 
more research is necessary for exploring which methods are 
most appropriate when data are dichotomous (Tennant and 
Pallant, 2006). We explored the unidimensionality of the BCA 
data using principal components analysis (PCA) on residuals 
(Tennant and Pallant, 2006) and analyzed fit indices to assess 
violations of the assumptions (Bond and Fox, 2015; O’Shea 
et al., 2016). PCA analyzes the interrelationships among a set of 
variables (e.g., test questions) in order to condense information 
into a smaller set of variables, thus providing an objective case 

for creating summated scales (Hair et al., 2006). With PCA, 
eigenvalues (sum of squared loading for a factor) are used to 
represent the amount of variance accounted for by a factor. 
Multiple criteria can be used to explore the underlying structure 
of variable contribution, including the latent root criterion, 
which indicates that any factors present should account for the 
variance of at least a single variable (Hair et al., 2006).

In addition to PCA of unidimensionality, indices for item fit 
can provide further details on model fit. Indices for item fit 
include outfit and infit mean square (MSQ) statistics, which are 
chi-square statistics used to measure the association between 
the Rasch model fit and the data. Model fit is assumed when the 
chi-square ratio is ∼1. Outfit MSQs are sensitive to outliers, 
whereas infit MSQs are weighted and not influenced by outliers 
in the data (Smith, 1991; Linacre, 2002; Bond and Fox, 2015). 
Linacre (2002) suggests that misfit occurs when chi-square val-
ues are below 0.5 or above 1.5. The infit and outfit MSQ indices 
can be transformed to a standard normal scale using the Wil-
son-Hiferty transformation. These normalized statistics are 
referred to as Zstd outfit and Zstd infit and have an expected 
mean of 0 with an SD of 1 (Linacre, 2002; DeMars, 2010; Bond 
and Fox, 2015). Values of Zstd exceeding −2.0 and +2.0 suggest 
misfit of the data.

Local independence can be checked using Yen’s Q3 statistic, 
which calculates item-by-item correlations for item-pair residu-
als, where residuals are the differences between observed 
responses and the expected item responses predicted by the 
Rasch model (Yen, 1984; Embretson and Reise, 2000; DeMars, 
2010; Wallace and Bailey, 2010). Local independence is 
assumed when there is no correlation or relationship between 
item-pair residuals (i.e., when correlation coefficients are 0), 
and local dependence is assumed with higher correlation coef-
ficients. While there is not a uniformly accepted cutoff value for 
what correlation value is small enough to be indicative of local 
independence, a recent simulation study by Christensen et al. 
(2017) suggests critical values around 0.2 above the average 
correlation are reasonably stable.

The focus of our analysis was to determine whether the BCA 
operates similarly for students enrolled in different calculus-re-
lated courses. We conducted separate Rasch models for stu-
dents enrolled in C1, C2, and BioCalc. We also used Wright 
maps, representing the relationship between the distribution of 
person and item measures using a vertical logit scale, to provide 
a visual summary for how data perform within the Rasch model 
(Bond and Fox, 2015). The analyses were completed using 
WINSTEPS v. 3.92.1 (Linacre, 2017) and R (R Core Team, 
2017) with the libraries sirt (Robitzsch, 2018), ltm (Rizopoulos, 
2006), and TAM (Robitzsch et al., 2018).

Human Subjects Approval
This study was completed in accordance with approval from the 
University of Tennessee’s Institutional Review Board (UTK 
IRB-15-02385-XP).

RESULTS
We assessed how content validity, response processes, and the 
internal structure of the test provide accumulated support for 
the overall validity of the BCA. Content validity was confirmed 
through feedback we received from a large network of scientists 
and educators in the interdisciplinary fields of mathematics and 
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biology. These subject matter experts rated test items for concept 
representativeness, clarity of the item, and overall quality of the 
question. Only test items given high CVIs were included on the 
instrument. Further evidence based on response processes was 
obtained through focus groups and a pilot administration of the 
test with target student populations. We used feedback from 
these undergraduate students to modify and edit the BCA for 
wider administration. Finally, we used Rasch analysis to assess 
the internal structure of test items included on the BCA.

The BCA was revised between the initial administration and 
subsequent administrations. To determine whether rearranging 
the order in which an item appeared on the test created any bias 
in the likelihood of students getting the items correct or incor-
rect (e.g., would student fatigue or similar affect impact the 
analyses if data were combined across administrations), we 
conducted differential item functioning (DIF) analyses. DIF 
analysis is a technique used to compare the invariance of item 
difficulties across subsamples to assess item bias. Item bias 
occurs when a test item does not have the same relationship to 
the latent trait (i.e., calculus knowledge) across two or more 
examinee groups (Embretson and Reise, 2000; Bond and Fox, 
2015). For our data, we created interaction terms between the 
items and the administration term and examined z-scores for 
interaction terms using a benchmark of −2 and +2. For any item 
exceeding an absolute z-score of 2, we examined effect sizes for 
the item to determine the strength of statistical significance. 
Only one of the 20 items was flagged as being significantly dif-
ferent across test administrations. For this item, “none of the 
above” on the Fall 2016 version was an attractive distractor but 
was replaced with another plausible distractor in the subse-
quent revision that was not chosen as frequently as the “none of 
the above” option. As 19 of the 20 items did not demonstrate 
item bias and we could explain the difference in response 

functioning for the flagged item, we determined that it was rea-
sonable to use all three semesters’ test data. We then conducted 
separate Rasch models for C1, C2, and BioCalc.

Assumptions: Unidimensionality and Local Independence
We checked the assumption of unidimensionality for the Rasch 
models produced for each calculus course. PCA across courses 
had multiple eigenvalues above 1, suggesting multidimension-
ality in the BCA test items. Further review for how items loaded 
on factors was indeterminate; thus, we also used fit indices to 
analyze the presence of multidimensionality in the data. MSQ 
and Zstd infit and outfit statistics provided by WINSTEPS v. 
3.92.1 for C1, C2, and BioCalc are presented in Table 2. Linacre 
(2012) suggests that outfit indices should be examined before 
infit indices; MSQ indices should be considered before Zstd; 
and high MSQs (indicative of underfit) should be considered 
before low MSQs (indicative of overfit). For our study, MSQ 
outfit and infit values generally fell within 0.5 and 1.5, indicat-
ing acceptable fit of the model (Linacre, 2002). However, for 
C1, the MSQ outfit values for items 14 (MSQ = 1.91, Zstd = 
3.10) and 18 (MSQ = 1.78, Zstd = 1.70) exceed the MSQ cutoff 
of 1.5, and item 14 also exceeded the Zstd cutoff of +2.0. Items 
18 (MSQ = 1.42) and 20 (MSQ = 0.33) for BioCalc also suggest 
potential misfit to the data. However, the Zstd for these items 
are within the −2.0 to +2.0 range. Note that item 14 deals with 
the underlying assumptions of an exponential population 
growth model, which is heavily emphasized in BioCalc but not 
in C1. All infit values, which are weighted and not influenced by 
outliers, fall within expected fit ranges.

We checked for local independence of the BCA items by cal-
culating Yen’s (1984) Q3 statistic for the C1, C2, and BioCalc 
populations. Correlation matrixes of item-pair residuals are 
provided in the Supplemental Material. The average residual 

TABLE 2. Outfit and infit chi-square and z-score statistics by C1, C2, and BioCalc

C1 C2 BioCalc

Outfit Infit Outfit Infit Outfit Infit

Item MSQ Zstd MSQ Zstd MSQ Zstd MSQ Zstd MSQ Zstd MSQ Zstd
1 0.84 −0.60 0.89 −0.60 1.27 1.10 1.13 0.80 1.27 1.00 1.06 0.40
2 0.80 −0.70 0.95 −0.20 1.22 1.10 1.09 0.70 1.01 0.10 1.03 0.20
3 1.00 0.10 0.95 −0.30 0.98 −0.10 0.96 −0.30 0.95 −0.10 0.92 −0.40
4 0.78 −0.90 0.86 −0.70 0.83 −1.10 0.91 −0.80 0.93 −0.60 0.96 −0.40
5 0.95 −0.20 1.01 0.10 1.06 0.50 1.06 0.60 0.96 −0.20 1.00 0.00
6 1.00 0.00 1.02 0.20 1.03 0.30 1.04 0.60 0.96 −0.40 0.96 −0.50
7 0.86 −0.90 0.92 −0.70 0.98 −0.20 0.98 −0.20 0.99 0.10 1.05 0.30
8 1.07 0.50 1.09 0.80 1.00 0.00 1.03 0.40 1.00 0.10 1.02 0.20
9 0.77 −1.40 0.84 −1.80 0.88 −1.20 0.92 −1.10 0.91 −0.60 0.93 −0.60
10 1.21 0.90 1.05 0.40 0.93 −0.70 0.96 −0.50 0.95 −0.40 0.97 −0.30
11 1.05 0.30 1.05 0.40 1.03 0.40 1.02 0.40 0.82 −1.50 0.85 −1.40
12 0.82 −0.60 0.94 −0.40 1.00 0.10 0.97 −0.10 0.92 −0.30 1.00 0.00
13 0.84 −0.70 0.92 −0.70 0.84 −1.40 0.87 −1.50 0.94 −0.30 0.95 −0.40
14 1.91 3.10 0.95 −0.30 0.89 −0.80 0.90 −1.10 1.03 0.30 1.06 0.60
15 1.10 0.40 1.14 0.80 0.91 −0.30 0.96 −0.20 1.11 0.50 1.10 0.60
16 1.08 0.60 1.10 1.20 1.11 1.20 1.03 0.50 1.00 0.00 0.99 −0.10
17 1.04 0.20 1.02 0.20 1.14 1.00 1.08 0.80 1.17 0.80 1.06 0.40
18 1.78 1.70 1.27 1.10 1.32 1.20 1.15 0.90 1.42 1.70 1.18 1.00
19 0.98 0.10 0.97 0.00 1.02 0.20 1.07 0.30 0.92 −0.10 1.04 0.20
20 0.98 0.10 1.00 0.10 0.69 −1.20 0.86 −0.70 0.33 −0.90 0.85 0.00
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correlations for C1, C2, and BioCalc each rounded to −0.05. 
Residual correlations above 0.15 were then flagged as potential 
violations of local independence. Of the 190 item-pairs, 18 
(9%) coefficients for C1, 11 (6%) coefficients for C2, and 19 
(10%) coefficients for BioCalc exceeded the adjusted critical 
value of 0.15. For C1, item-pair 2 and 4 resulted in the maxi-
mum Q3 value of 0.31. For C2, item-pair 13 and 20 resulted in 
the maximum Q3 value of 0.31; and for BioCalc, item-pair 4 
and 5 resulted in the maximum Q3 value of 0.37. We deter-
mined that, overall, local independence was still reasonably 
valid, as 1) coefficients produced across correlation matrices 
were still relatively small, 2) item-pairs flagged for local depen-
dence were not consistent across population groups, and 3) no 
relationship was evident between test items when reviewing 
item-pairs with coefficients above the threshold. Hence, this 
suggests that the student responses to each test item are inde-
pendent of their responses to other test items.

Item Characteristics and Wright Maps
Item difficulties (in logits) ranged from −1.81 to +1.83 for C1, 
from −1.90 to 2.27 for C2, and from −1.94 to 2.79 for BioCalc; 
see Table 3. Note that the ranges of item difficulties for the three 
major calculus concepts were similar when compared for the 
three courses. For example, for the assessment questions 
emphasizing interpreting data and graphs, the ranges of item 
difficulty scores were −1.81 to 1.83 for C1, −1.78 to 2.27 for C2, 
and −1.94 to 1.19 for BioCalc. We used Wright Maps (shown in 
Figure 1, a–c, by calculus population: C1, C2, and BioCalc) to 
demonstrate the person ability levels and item difficulty levels 
of the 20 BCA items. Each map shows the difficulty level of the 
BCA items on the right-hand side, and person ability estimates 
on the left using the same units/metrics. Persons represented on 
the left next to a given item difficulty level represent those 
test-takers with a 50% chance of getting the item correct. In 
general, the pattern of item difficulties across the different pop-

ulations of calculus students is similar, with item difficulty 
being more evenly dispersed for C1 and C2 students. However, 
two inconsistencies suggest differences across students in the 
course populations. Item 12 is indicated as a relatively easy 
item for C2 and BioCalc students to get correct, but is one of the 
harder items in the pattern for C1 students. This discrepancy is 
likely attributable to the differences in content covered within 
the courses, such that students in their first semester of calculus 
have not been exposed to the material associated with this item 
(integrals), whereas the other students have. Another unusual 
item pattern is with item 7, which is placed as a slightly easier 
than the mean item for students in C1 and C2, but is a more 
difficult item for students in BioCalc.

Raw Scores versus Logit Ability Estimates
Raw scores for students’ abilities do not account for differences 
in item difficulties across test questions; thus, a difference of 
missing 10 points on a test may not represent students missing 
items of the same caliber or item difficulty. Rasch models pro-
vide a solution to a fundamental issue within social science data 
in which equidistance is not maintained across scores. The con-
version of raw scores into logits for estimating item difficulty 
and person ability provides linear, equal distance between 
scores, thus allowing for more accurate and precise comparison 
of ability levels. We examined the Pearson product-moment 
correlations between students’ raw scores and their Rasch abil-
ity estimates to see whether the raw scores could be used as 
appropriate estimates for students’ abilities. Product-moment 
correlations between students’ raw scores and their Rasch-pre-
dicted ability estimates were 0.98 for C1, 0.88 for C2, and 0.77 
for BioCalc. While the correlation coefficient for C1 represents a 
strong, positive linear relationship between Rasch scores and 
raw scores, the lower coefficients for C2 and BioCalc reinforce 
using Rasch model estimates as the most appropriate estimates 
for assessing gains in student learning.

DISCUSSION
Calculus has historically been a major component of quantita-
tive training for biology undergraduates. Because the majority 
of undergraduate life science curricula require calculus in some 
form, there continues to be a need for the BCA to assess student 
comprehension of calculus with different teaching methods and 
different levels of biological applications. The BCA measures a 
subcomponent of the broader range of quantitative skills to 
which life science students are exposed. Tools to assess concep-
tual understanding of calculus in a cross-disciplinary way are 
needed to assess changes in student understanding, examine 
potential advantages of pedagogical interventions, and explic-
itly evaluate whether placing quantitative concepts in this 
discipline-specific domain enhances student comprehension of 
calculus concepts. The availability of the BCA provides opportu-
nities for faculty and other researchers to participate in 
the ongoing national experiment in life science quantitative 
education through which institutions offer different routes for 
calculus training for life science students, which may be broadly 
useful, particularly as new fields such as data science emerge 
and are connected to life science programs.

The BCA is designed to be administered in class to under-
graduate students. Multiple-choice tests are simple to adminis-
ter and quick and easy to analyze, and thus permit instructors 

TABLE 3. Item difficulty estimates for BCA items by C1, C2, and 
BioCalc with graphs, modeling, and rates of change (ROC) 

Subject Question C1 C2 BioCalc

Graphs 1 −1.56 −1.78 −1.8
Graphs 2 −1.81 −1.49 −1.94
Graphs 9 0.07 −0.5 0.29
Graphs 10 0.65 0.5 0.04
Graphs 19 1.83 2.27 1.19
Model 3 −1.22 −1.36 −1.79
Model 4 −1.56 −1.1 −0.22
Model 6 −0.63 −0.03 −0.29
Model 14 0.59 0.74 0.17
Model 15 0.98 1.62 0.9
Model 20 1.46 1.87 2.79
ROC 5 −1.02 −0.9 0.2
ROC 7 −0.83 −0.55 1.1
ROC 8 −0.83 −0.59 −0.94
ROC 11 0.55 0.11 0.17
ROC 12 0.7 −1.9 −1.58
ROC 13 0.39 0.67 0.25
ROC 16 −0.21 −0.17 −0.14
ROC 17 0.92 0.85 0.78
ROC 18 1.53 1.75 0.83
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to rapidly assess the conceptual abilities of students (Adams 
and Wieman, 2011). The BCA may be used on a broader scale 
to enable instructors to better target their teaching toward their 
students’ understanding, assess gains in conceptual knowledge, 
and evaluate teaching interventions. The high correlations 
between Rasch model produced scores and raw test scores sup-
ports using raw scores as an adequate means for assessing stu-
dent ability of calculus knowledge, so that evaluation of student 
test scores may be accessible to instructors who may not be 
familiar with Rasch models.

We created the BCA to fill a measurement gap for assessing 
learning gains of students with life science backgrounds who 
may learn calculus within an interdisciplinary quantitative biol-
ogy course or within a traditional university calculus course 
(often geared toward mathematics and engineering majors). 
Our assessment of the validity of the BCA indicates the instru-
ment is a valid diagnostic tool to assess calculus comprehension 
in undergraduate biology majors who learn calculus within a 

quantitative course designed specifically for life science stu-
dents, but also is appropriate to compare scores for students 
from traditionally taught calculus courses. Together, results 
from our assessment of the content validity, response processes, 
and internal structure of the instrument provide accumulated 
support for the validity of the BCA (American Educational 
Research Association et al., 2014).

While the instrument demonstrates evidence for the validity 
of the test, we recognize several limitations of our findings that 
future users of the test should consider. Overall fit indices indi-
cated that most of the 20 BCA test items were unidimensional 
(i.e., measure a single construct of calculus knowledge) and 
locally independent for C1, C2 and BioCalc. However, slight 
misfit in unidimensionality was observed when question 14 was 
included on the test for C1. Additionally, some item-by-item 
comparisons for local independence were outside typical cutoff 
values, but further review determined that overall evidence 
supported local independence of the test (similar to findings 

FIGURE 1. Wright maps for C1 (a), C2 (b), and BioCalc (c) for all BCA items. Wright maps demonstrate item difficulties and person abilities 
using same-scale units, showing a robust spread of levels. Note that the three maps have different scales and cannot be compared directly.
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from Deane et al., 2016, and Wallace and Bailey, 2010). Within 
the sequence of C1, the pattern of difficulty for item 12 did not 
fit the pattern of easiness represented for students in C2 and 
BioCalc. This is not surprising, because the topic of focus in 
item 12, integration, is not included in C1 but is included in C2 
and BioCalc. Note that the BCA includes four questions (12, 13, 
15, and 17) that assess comprehension of integrals, and all of 
these, except for item 12, had positive difficulty scores for all 
three course populations. As this material is not covered in the 
C1 sequence, the differences in the pattern make intuitive sense 
and also suggest that future users of the test would need to 
determine which items reflect the material covered within the 
courses being assessed.

Comparing the difficulty scores for the items indicates that 
students across the set of courses for this study can understand 
rates of change from simple data in a chart or a graph (e.g., 
items 1 and 2) and the implications of exponential rates of 
growth from simple population data to estimate population 
sizes at various times (e.g., item 3). At the other end of the dif-
ficulty scale, the representation of functions using log-log 
graphs is not readily understood (e.g., item 19). This topic of 
nonlinear scaling, though arising in many areas of biology, is 
not generally emphasized in standard calculus courses (e.g., C1 
and C2). Even though log-log plots are emphasized in BioCalc, 
the results indicate that these students generally also did not 
obtain conceptual understanding of nonlinear scaling. Simi-
larly, integration of trigonometric functions scored at high diffi-
culty for all courses (e.g., item 15). The implication of these 
results is that an emphasis on nonlinear functions in calculus 
courses for life science students should be encouraged. Concep-
tually, item 14 required responses about the assumptions in a 
simple population growth model and was of medium difficulty 
across all courses, while other items dealt with particular 
numeric or symbolic answers. So emphasis on determining 
basic underlying model assumptions might be appropriately 
increased to enhance student conceptual foundations.

The spread of difficulty across the 20 BCA items suggests 
some robustness of the test to assess differing levels of student 
abilities. As Figure 2 illustrates, across the set of three main 

concepts included in the BCA, there was a similar range of dif-
ficulty in terms of students’ responses. Thus, across these con-
cepts, for the sample of students in our study, no single concept 
stood out as requiring major reinforcement over others. The 
ranges of item difficulty scores for the three courses were simi-
lar when considered as disaggregated into the three major cal-
culus concepts, providing further evidence that the BCA is an 
appropriate tool to compare different methods of instruction. 
Further research is needed to determine whether this result 
holds when the BCA is more broadly applied to larger popula-
tions of students, as validation is an ongoing accumulation of 
evidence from various populations across different contexts 
(Pedhazur and Schmelkin, 1991; Messick, 1995; American 
Educational Research Association et al., 2014). As the instru-
ment is more broadly disseminated, more data collection might 
help to further validate the instrument across different popula-
tions and contexts. For instance, a broader data set may add 
evidence to evaluate why question number 14 did not operate 
according to the predicted Rasch model for C1 students, and a 
larger sample size could also help to gain a better understand-
ing of scores for local independence found in this study.

Feedback from future BCA users is welcome and will be used 
to refine and further evaluate the BCA. One limitation of the 
current study is that we did not account for various levels of 
exposure to calculus among students (i.e., an assumption was 
made that all have had similar precalculus courses before the 
assessment, and we did not account in any way for a diversity 
of prior calculus experience). Studying the effects of the variety 
of degrees of exposure to calculus on assessment results is an 
interesting area for further exploration.
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