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Simple Summary: Epstein-Barr Virus (EBV)-induced lymphomas have a significant global incidence,
given the widespread infection to the human population. EBV adopts several mechanisms to replicate
and persist in the host, by hijacking its epigenetic machinery. The main topic of this review details
the current insights of EBV interactions with the host epigenetic system, and it will be discussed
the potential relationship between the EBV-induced chronic inflammation and the dysregulation of
epigenetic modifiers that might lead to tumorigenesis. Promising novel therapies against several types
of cancer involve the use of epigenetic modifier inhibitors. To design new therapeutical strategies
targeting lymphomas, it is crucial to conduct exhaustive reaserch on the regulation of these enzymes.

Abstract: During the past decade, the rapid development of high-throughput next-generation
sequencing technologies has significantly reinforced our understanding of the role of epigenetics
in health and disease. Altered functions of epigenetic modifiers lead to the disruption of the host
epigenome, ultimately inducing carcinogenesis and disease progression. Epstein–Barr virus (EBV)
is an endemic herpesvirus that is associated with several malignant tumours, including B-cell
related lymphomas. In EBV-infected cells, the epigenomic landscape is extensively reshaped by
viral oncoproteins, which directly interact with epigenetic modifiers and modulate their function.
This process is fundamental for the EBV life cycle, particularly for the establishment and maintenance
of latency in B cells; however, the alteration of the host epigenetic machinery also contributes to the
dysregulated expression of several cellular genes, including tumour suppressor genes, which can
drive lymphoma development. This review outlines the molecular mechanisms underlying the
epigenetic manipulation induced by EBV that lead to transformed B cells, as well as novel therapeutic
interventions to target EBV-associated B-cell lymphomas.
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1. Introduction

Epigenetic modifications are the foundation of plasticity in multicellular organisms, which
are characterised by functionally distinct cell types while sharing identical genome sequences.
The epigenetic machinery induces and sustains unique gene transcriptional patterns that determine
the developmental fate of each cell type [1]. There are three broad types of epigenetic mechanisms
within cells that regulate chromatin accessibility and gene expression: DNA methylation, histone
modification, and posttranscriptional gene regulation by non-coding RNA (miRNA) [2]. Each of
these mechanisms plays a vital role in a wide variety of essential biological processes, ranging from
organismal development and cell differentiation to cellular stress responses, tissue homeostasis,
and formation of immune memory [3,4].

Recent advances in the epigenetic field have revealed that the perturbation of the epigenetic
landscape leads to alterations in gene expression, ultimately resulting in cellular transformation and
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malignant outgrowth [5]. While the epigenetic machinery is finely regulated in normal cells, there is
growing evidence indicating that environmental factors can induce epigenetic alterations by affecting
the expression and functionality of enzymes involved in DNA methylation or histone modifications.
The breakdown of the epigenetic mechanisms causes variations in transcriptional programs of cells and
might eventually lead to tumorigenesis. Among these factors, several oncogenic and persistent DNA
and RNA viruses contribute to epigenetic changes characteristic of cancerous cells [6], which include
the Epstein–Barr virus (EBV) [7], Hepatitis viruses (HBV, HCV) [8], Kaposi’s sarcoma herpesvirus
(KSHV) [9], and numerous human papillomaviruses (HPVs) [10].

EBV, also known as human herpesvirus 4 (HHV4), is a ubiquitous gammaherpesvirus which
asymptomatically infects >95% of the world population. The primary infection occurs in oropharyngeal
epithelial cells [11]; however, EBV predominantly infects B lymphocytes during its latent stages.
Within the immunocompetent individual, the virus persists in naïve and memory B cells in a
non-pathogenic state for the lifetime of the host [12]. Intermittently, these virus-infected memory B cells
differentiate into antibody-secreting plasma cells, which awakes EBV from its latent stage, leading to
infection of other resting B lymphocytes [13]. In immunocompromised hosts, such as postoperative
organ transplant or HIV-infected patients, EBV infection is strongly associated with several B-cell
lymphomas. The list includes endemic/sporadic Burkitt’s lymphoma (eBL/sBL), diffuse large B-cell
lymphoma (DLBCL), classical Hodgkin’s lymphoma (cHL), primary central nervous system lymphoma
(PCNSL), primary effusion lymphoma (PEL), and plasmablastic lymphoma (reviewed in [14]).

Epigenetic modifications play a critical role in EBV-associated B-cell lymphoma development.
In particular, EBV viral products themselves mimic the epigenetic modifiers of the host by directly
manipulating gene expression profiles [15]. One of the most critical viral factors is the nuclear antigen
EBNA2, which induces B cell activation and proliferation [16]. EBNA2, together with EBNA-LP
(leader protein), co-regulates the expression of several host genes, including the proto-oncogene
MYC and transcription factors, such as PU.1, EBF1, IRF4, and CBF1 [17]. During the latent stages,
additional EBV viral products such as latent membrane proteins (LMPs) and non-coding RNAs
(ncRNAs) transform B cells into immortalised lymphoblastoid cell lines (LCL) in vitro and induce
memory cell differentiation in vivo, by silencing the tumour suppressor PRDM1 [18]. The direct role of
EBV viral products in manipulating the epigenetic landscape of infected B cells has been explored over
the past decade. This review will provide a comprehensive overview of the well-known mechanisms
behind this manipulation and the latest advances in the field.

Studies on host–pathogen interactions have illuminated a role for the inflamed environment
generated by infectious pathogens in altering the functionality and expression of epigenetic modifiers.
Given the strong link between inflammation and tumorigenesis, but also epigenetic dysregulation
and cell transformation, it would be crucial for new therapeutic strategies to explore how the
pathogen-mediated inflammation could modulate the epigenetic landscape in the context of cancer.
A noteworthy review by P. Yang et al. discussed the association between Hepatitis B virus (HBV)-related
inflammation and the initiation of hepatocellular carcinoma (HCC) in chronically diseased liver
tissue [19]. A model has also been proposed to link the HBV-inflammation environment and the
epigenetic deregulation during HCC development and progression, generating a new working
hypothesis on how other chronic infections may alter the epigenome to induce tumorigenesis [20].

Little is known about the link between the inflammation status caused by EBV infection and the
regulation of epigenetic modifiers. For this reason, in the second part of this review, we will discuss
the role of the inflammatory environment mediated by EBV and the causative factors regulating the
epigenetic landscape, leading to B cell transformation.

2. Host–Pathogen Interaction during EBV Pathogenesis

EBV has a complex life cycle, with distinct cellular tropism depending on the stage of infection.
Dissecting each phase of the host–pathogen interaction is critical to understand the potential of EBV to
transform B cells (Figure 1) [21].
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Figure 1. Epstein–Barr Virus (EBV) life cycle and latency stages. The viral life cycle includes at least 
five different stages (Lytic infection, Latency III, Latency II, Latency I/0, and Lytic reactivation), and 
four of them are associated with EBV diseases. EBV infects submucosal B cells, inducing viral gene 
transcript expression that establishes the latency III program. The infected cells pass through the 
lymph node germinal centre, proliferate and mature. During this stage, EBV induces gene expression 
of the Latency II program. Some latently infected memory B cells leave the germinal centre and persist 
(Latency I/0), whereas occasionally some infected memory cells evolve to plasma cells that shed newly 
assembled free virions into saliva (lytic reactivation). Credits: Created with BioRender.com. 

2.1. The Viral Life Cycle: From the Epithelium to B Cells 

EBV is typically transmitted by saliva and its initial infection, known as the lytic replication 
cycle, affects the oropharyngeal epithelial cells in the upper respiratory tract. In children, it is usually 
asymptomatic; however, the primary infection in adults can be more severe, leading to a syndrome 
known as infectious mononucleosis (IM) [22]. During the lytic cycle, EBV crosses the mucosal barrier, 
and it spreads into the bloodstream. Here, it targets circulating naïve and memory B cells, through 
the binding of the major envelope glycoprotein gp350/220 to the CD21 receptor that is highly 
expressed on these populations [23]. Both B cell populations represent the reservoir for the 
establishment of EBV latency. Unlike the lytic cycle, latency does not result in virion production; 
nevertheless, during the latent phase, subsets of EBV genes are expressed following four distinct 
latency programs: latency 0, I, II or III. Intermittently, the virus can reactivate and re-enter the lytic 
replication cycle. However, the host immune system is sufficient to maintain control of the infection, 
by inducing a robust cytotoxic T lymphocytes (CTL) response [24] and producing neutralising 
antigen-specific IgG antibodies (Figure 2) [25]. In immunocompromised individuals, the immune 
system fails to monitor viral replication, resulting in an increase in latently infected cells in the 
peripheral blood or persistently infected cells on the oropharynx. Similarly, patients co-infected with 
other chronic pathogens (HIV, Plasmodium Falciparum) maintain a persistent status of B cell 
activation and memory formation [26–28], which may contribute to an expanded number of latently 
EBV-infected, proliferating B cells. In both scenarios, EBV latency programs can lead to malignant 
transformation of B cells. 
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Figure 1. Epstein–Barr Virus (EBV) life cycle and latency stages. The viral life cycle includes at least five
different stages (Lytic infection, Latency III, Latency II, Latency I/0, and Lytic reactivation), and four of
them are associated with EBV diseases. EBV infects submucosal B cells, inducing viral gene transcript
expression that establishes the latency III program. The infected cells pass through the lymph node
germinal centre, proliferate and mature. During this stage, EBV induces gene expression of the Latency
II program. Some latently infected memory B cells leave the germinal centre and persist (Latency I/0),
whereas occasionally some infected memory cells evolve to plasma cells that shed newly assembled
free virions into saliva (lytic reactivation). Credits: Created with BioRender.com.

2.1. The Viral Life Cycle: From the Epithelium to B Cells

EBV is typically transmitted by saliva and its initial infection, known as the lytic replication
cycle, affects the oropharyngeal epithelial cells in the upper respiratory tract. In children, it is usually
asymptomatic; however, the primary infection in adults can be more severe, leading to a syndrome
known as infectious mononucleosis (IM) [22]. During the lytic cycle, EBV crosses the mucosal barrier,
and it spreads into the bloodstream. Here, it targets circulating naïve and memory B cells, through the
binding of the major envelope glycoprotein gp350/220 to the CD21 receptor that is highly expressed
on these populations [23]. Both B cell populations represent the reservoir for the establishment
of EBV latency. Unlike the lytic cycle, latency does not result in virion production; nevertheless,
during the latent phase, subsets of EBV genes are expressed following four distinct latency programs:
latency 0, I, II or III. Intermittently, the virus can reactivate and re-enter the lytic replication cycle.
However, the host immune system is sufficient to maintain control of the infection, by inducing a
robust cytotoxic T lymphocytes (CTL) response [24] and producing neutralising antigen-specific IgG
antibodies (Figure 2) [25]. In immunocompromised individuals, the immune system fails to monitor
viral replication, resulting in an increase in latently infected cells in the peripheral blood or persistently
infected cells on the oropharynx. Similarly, patients co-infected with other chronic pathogens (HIV,
Plasmodium Falciparum) maintain a persistent status of B cell activation and memory formation [26–28],
which may contribute to an expanded number of latently EBV-infected, proliferating B cells. In both
scenarios, EBV latency programs can lead to malignant transformation of B cells.
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Figure 2. The targeting of EBV-infected cells and EBV virions by the adaptive immune system. EBV-
infected B cells that display viral antigens on major histocompatibility (MHC) molecules are 
recognized by cytolytic T cells (CD8 T cells), which release cytotoxic granules (e.g., perforin and 
granzymes) and trigger apoptosis in infected cells. The binding of antibodies to glycoproteins at the 
surface of replicating cells enable their recognition and elimination by natural killer (NK) cells 
through antibody dependent-cellular cytotoxicity (ADCC). Humoral immunity prevents the 
spreading of the infection to other B cells of the host by targeting EBV virions through neutralising 
antibodies. Credits: Created with BioRender.com. 

2.2. EBV Adopts Immune Evasion Strategies to Facilitate Viral Persistence in B Cells 

EBV expresses differential sets of proteins depending on the stage of infection, giving the virus 
a survival advantage by evading the immune response and facilitating viral persistence in B cells. 
During the lytic replication, the early-immediate BZLF1 and BRLF1 molecules act as transactivators 
that induce the expression of ~30 early lytic genes but, on the other hand, interfere with antiviral 
signals by inhibiting the interferon regulator factor 7 (IRF7) transcriptional activity [29] and reducing 
the expression of TNF𝛼, IFN𝛾 and HLAI/II [30–32]. Despite the modulation of antiviral functions, the 
lytic stage of infection still induces a robust cellular and humoral response towards the different viral 
proteins, by recruiting both B and T cells at the site of primary infection. However, EBV can quickly 
modulate antigen-presenting pathways by reducing both HLAI and II molecules in target cells [30]. 
The decreased expression of HLA molecules slows the adaptive response against the pathogen, 
which in turn takes advantage of this temporal delay to infect naïve and memory B cells, where it 
eventually establishes latency. Additionally, the virus adopts similar immune evasion strategies in 
the newly infected B cells by activating the expression of BGLF5, another viral protein with immune-
evasive properties. Indeed, BGLF5 is directly involved in the degradation of HLAI/II mRNAs [33]. 
This additional inhibition of cross-presentation functions makes EBV+B cells poorly recognisable by 
CD4 or CD8 T cells for their cytotoxic activities [34]. The fine modulation of these signalling pathways 
leads to diminished adaptive responses due to a lower interferon responsiveness and hampered 
antigen presentation, allowing the establishment of infection and persistence. 

2.3. Targeting B Cells to Establish Viral Persistence 

During the latent stages, EBV switches to different gene expression programs compared to the 
lytic phase. These latent proteins help in maintaining the persistence of the pathogen but also 
inducing malignant growth in immunocompromised patients. Mechanisms adopted by EBV during 
the latent stages include manipulation of both cellular signalling pathways and epigenetic machinery. 
There are two proposed pathways to latency establishment; (i) following direct infection of memory 
B cells or (ii) via a germinal center (GC) dependent process in which naïve B cells infected with EBV 
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Figure 2. The targeting of EBV-infected cells and EBV virions by the adaptive immune system.
EBV-infected B cells that display viral antigens on major histocompatibility (MHC) molecules are
recognized by cytolytic T cells (CD8 T cells), which release cytotoxic granules (e.g., perforin and
granzymes) and trigger apoptosis in infected cells. The binding of antibodies to glycoproteins at the
surface of replicating cells enable their recognition and elimination by natural killer (NK) cells through
antibody dependent-cellular cytotoxicity (ADCC). Humoral immunity prevents the spreading of the
infection to other B cells of the host by targeting EBV virions through neutralising antibodies. Credits:
Created with BioRender.com.

2.2. EBV Adopts Immune Evasion Strategies to Facilitate Viral Persistence in B Cells

EBV expresses differential sets of proteins depending on the stage of infection, giving the virus
a survival advantage by evading the immune response and facilitating viral persistence in B cells.
During the lytic replication, the early-immediate BZLF1 and BRLF1 molecules act as transactivators
that induce the expression of ~30 early lytic genes but, on the other hand, interfere with antiviral
signals by inhibiting the interferon regulator factor 7 (IRF7) transcriptional activity [29] and reducing
the expression of TNFα, IFNγ and HLAI/II [30–32]. Despite the modulation of antiviral functions,
the lytic stage of infection still induces a robust cellular and humoral response towards the different
viral proteins, by recruiting both B and T cells at the site of primary infection. However, EBV can
quickly modulate antigen-presenting pathways by reducing both HLAI and II molecules in target
cells [30]. The decreased expression of HLA molecules slows the adaptive response against the
pathogen, which in turn takes advantage of this temporal delay to infect naïve and memory B cells,
where it eventually establishes latency. Additionally, the virus adopts similar immune evasion
strategies in the newly infected B cells by activating the expression of BGLF5, another viral protein
with immune-evasive properties. Indeed, BGLF5 is directly involved in the degradation of HLAI/II
mRNAs [33]. This additional inhibition of cross-presentation functions makes EBV+B cells poorly
recognisable by CD4 or CD8 T cells for their cytotoxic activities [34]. The fine modulation of these
signalling pathways leads to diminished adaptive responses due to a lower interferon responsiveness
and hampered antigen presentation, allowing the establishment of infection and persistence.

2.3. Targeting B Cells to Establish Viral Persistence

During the latent stages, EBV switches to different gene expression programs compared to the
lytic phase. These latent proteins help in maintaining the persistence of the pathogen but also inducing
malignant growth in immunocompromised patients. Mechanisms adopted by EBV during the latent
stages include manipulation of both cellular signalling pathways and epigenetic machinery. There are
two proposed pathways to latency establishment; (i) following direct infection of memory B cells or
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(ii) via a germinal center (GC) dependent process in which naïve B cells infected with EBV traverse
through GC reactions and emerge as memory cells harbouring the virus [35]. Several latent programs
induced by EBV that finely regulate the persistency stages have been described, which are distinct and
sequentially regulated depending on the target cell (Figure 1). Each of these programs is dictated by
the expression of distinct EBV proteins, which are finely regulated by the activation or repression of
viral latent promoters (Cp, Wp, Qp, and LMPp). Latency III, or the Growth Program, is restricted to
lymphoblasts following the expression of Epstein–Barr nuclear antigens (EBNA1, -2, -3, -4, -5, -6) and
latent membrane proteins (LMP1, LMP-2A, -2B) [36]. Latency II, also called the Default Program, is
established in infected germinal centre centroblasts and includes the expression of EBNA-1 and LMP1,
LMP2A, -2B. The selective pressure driven by CTLs leads the transition to the stricter latency program
II, likely giving EBV a survival advantage. This is accounted for the increase in DNA methylation of
the Wp and Cp, silencing the expression of the highly immunogenic EBNA proteins [37,38]. Latency 0
and I (Latency Programs) are restricted to resting memory B cells and are characterised by the lack of
any viral gene expression, or in the latter only the expression of the weakly immunogenic EBNA-1.
During this phase, EBV epigenome is fully methylated except for the promoter Qp, which drives the
expression of EBNA-1, responsible for latency maintenance [39].

2.4. The Reactivation of EBV Lytic Replication Increases the Pool of Infected B Cells in Immunocompromised Patients

EBV remains in the latent state for most of the host’s lifetime; however, physiological stimuli can
reinduce the lytic infection. The impaired immunosurveillance of immunocompromised patients fails
in monitoring the secondary infection, which eventually causes an increase in newly EBV+ B cells,
increasing the risk of B cell transformation [40]. The causative factors behind this viral awakening can
be differentiated into two primary sources: (i) cellular signalling pathways, including B-cell receptor
(BCR) antigen stimulation and downstream signals, and (ii) cellular stresses induced by external
factors, such as oxidative stress, hypoxia, and inflammation. Among these, it is becoming clear that the
pro-inflammatory state caused by other chronic co-infections is a crucial feature that disturbs the latent
state of the virus.

For example, P. Falciparum malaria is known to interfere with both EBV biology and EBV-specific
immunity, leading to EBV reactivation from its latent state. During the course of malaria, the P. falciparum
erythrocyte membrane protein 1 (PfEMP1) adheres to and activates B cells through the cysteine-rich
interdomain region 1α (CIDR1α). This interaction triggers the expression of Toll-like receptor 7 and
10 (TLR7 and -10) on B cells, inducing a persistent activation of B cells [41]. The pro-inflammatory
signals induced by malaria parasites have been shown to concomitantly induce EBV reactivation in
EBV+B cells [42]. Indeed, a clinical study showed that holoendemic malaria results in elevated EBV
viral loads, and this is eventually associated with higher impact of the endemic Burkitt Lymphoma
(eBL) in sub-Saharan regions [43]. Following the same principles, chronically infected and untreated
HIV+ patients have a higher probability of developing EBV-associated malignancies (reviewed in [44]).
HIV has been long known to hyperactivate B cells, with terminal differentiation into plasmablasts
and plasma cells inducing EBV reactivation and contributing to the increase of its reservoir. However,
the factors contributing to B cell hyperactivation and expansion of EBV-infected B cells remain
largely unknown.

3. Role of Epigenetics in EBV Infection and Cancer Formation

One of the primary mechanisms by which EBV distinctly regulates its transcriptional programs
lies in the ability of this pathogen to manipulate the epigenetic machinery of the host. Given that several
cancers feature epigenetic alterations, it is not surprising that EBV can lead to B cell transformation.

3.1. Latent Proteins Modulate the Host Epigenetic Machinery for Viral Silencing

During latency establishment, the EBV genome undergoes chromatin reorganisation; whereby it
circularises into episomes by recombination of its terminal repeats, it assembles into nucleosomes,
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and methyl groups are deposited on GpG islands [45]. The pre-latent stage is characterised by the
specific repression of the early transactivator genes BZLF1 and BRLF1 by EZH2, the core subunit of
the polycomb repressive complex 2 (PRC2), which is responsible for the deposition of methyl groups
on lysine 27 on the histone H3 tail (H3K27me3) [46–48]. EBV latent proteins, such as EBNA1 and -2,
can directly induce genetic alterations or recruit several chromatin remodelling factors. For example,
EBNA1 can interfere with the function of the maintenance DNA methyltransferase (DNMT1) [49]
and recruit the histone deubiquitylase USP7 [50], resulting in the demethylation to the OriP, the latent
origin of EBV replication. LMP1 and LMP2A act as direct epigenetic modifiers by directly inducing the
expression and activity of DNMT1, 3A and 3B [51–53], and the H3K27 demethylase KDM6B [54].

EBV has evolved to persist in the host by interacting with and manipulating the functions of
several epigenetic modifiers. This peculiarity provides this pathogen with the potential to disrupt the
epigenetic landscape of the infected cells, staging the basis of cancer.

3.2. Molecular Basis of B Cell Transformation

The deterioration of host immune surveillance against EBV, followed by an increased number
of newly infected B cells and the re-establishment of latent programs, are the initial steps preceding
cell transformation. EBV-mediated B-cell immortalisation is associated with the global alteration of
both epigenetic landscape and cell gene expression [55]. Among the EBV viral products, five viral
latent antigens, EBNA2, EBNALP, EBNA3A, EBNA3C, and LMP1, are essential for efficient B cell
transformation [56] (Table 1).

3.2.1. EBNA2, EBNALP

EBNA2 is mostly expressed during the latent III state and has a crucial role in B cell transformation
found in diffuse large B cell lymphomas (DLBCLs). One of the most studied mechanisms in B cell
transformation is the EBNA2-mediated activation of the MYC proto-oncogene, which promotes cellular
growth [17]. EBNA2 binds at multiple upstream and downstream enhancers and super-enhancers
(SE) in the MYC promoter region. EBNA2 recruits the BRG1 ATPase of the SWI/SNF chromatin
remodeling complex to MYC-targeting enhancers, and organises the DNA loops along a 3 Mb region
of the MYC promoter [57]. TET2, a cellular tumour suppressor involved in active DNA demethylation,
plays a central role in regulating the DNA methylation state during EBV latency. EBNA2 has a dual role
in the regulation of TET2: (i) it activates TET2 expression by directly binding to the EBNA2-dependent
RBP-jκ and EBF1 binding sites in TET2 promoter [58,59], and (ii) it physically interacts with TET2
protein to cooperatively demethylate genes essential for EBV-driven B-cell growth transformation [58].
EBNALP cooperates with EBNA2 to activate viral and cellular gene transcription through removing
repressive complexes from promoters, enhancers, and matrix-associated deacetylase bodies [60].

3.2.2. EBNA3 Family Proteins

Genetic studies revealed that EBNA3A and EBNA3C are necessary for B cell transformation,
whereas EBNA3B seems to be dispensable [61]. EBNA3A and EBNA3C cooperatively act as
predominant viral oncoproteins through regulating cellular gene transcription. In particular, these two
viral products activate the expression of BAFT and IRF4 [62], which are both critical for the EBV
repressive function of the BCL2L11 gene that encodes for the pro-apoptotic factor BIM. It has been
proposed that the BAFT/IRF4 complex can dock EBNA3A/C and other subunits of the polycomb
repressive complex to actively silence BCL2L11 [63]. Moreover, EBNA3A/C interacts with the
transcriptional repressors CtBP1 and 2, and target the cyclin-dependent kinase inhibitor 2A (CDKN2A,
or p16INK4a); this complex represses the expression of this tumour suppressor gene and eventually
leads to the outgrowth of EBV+ cells [64,65].
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Table 1. Summary of EBV latent transcripts and their functions in epigenetic deregulation during
B-cell lymphomagenesis.

Latent Transcripts Latency Program Functions B Cell Lymphoma

EBNA2 III
Major EBV-encoded transcriptional

activator, inducing gene transcription,
such as cMyc.

Diffuse large B cell
lymphomas (DLBCLs),

Immunoblastic lymphomas

EBNA-LP III
Acts as a co-transactivator of EBNA-2

expression by deregulating HDAC
(HDAC4 and HDAC5) activities.

Diffuse large B cell
lymphomas (DLBCLs),

Immunoblastic lymphomas

EBNA3A/C III

BCL2L11 promoter repression through
CpG-methylation and recruiting PRC2

complex, H3K27me3
heterochromatic mark.

Represses CDKN2A through recruiting
CtBP, depositing H3K27me3.

Transcriptional regulation through
interacting with several HATs

and HDACs.
Inhibits CDKN2B transcriptions
through induction of H3K27me3

heterochromatic mark.

Diffuse large B cell
lymphomas (DLBCLs),

Immunoblastic lymphomas

LMP1 III/II/I/0

Interacts with the DNA
methyltransferase DNMT3B, regulating

cellular apoptosis by elevating
antiapoptotic Bcl2 expression

Induces DNMT1, which is involved in
the JNK-AP-1 pathway

Diffuse large B cell
lymphomas (DLBCLs),

Immunoblastic lymphoma,
Hodgkin lymphoma,
Burkitt lymphoma

LMP2A III/II/I/0 Induces DNMT1, which is involved in
the JNK-AP-1 pathway.

Diffuse large B cell
lymphomas (DLBCLs),

Immunoblastic lymphoma,
Hodgkin lymphoma,
Burkitt lymphoma

3.2.3. Latent Membrane Proteins

Among the various latent membrane proteins, LMP1 and LMP2A are the major factors involved in
tumorigenesis processes due to their mimicry feature of the CD40 and B cell receptor signalling
pathway [66]. Besides CD40 signalling, LMP1 works in tandem with the DNA methyltransferase
DNMT3B, regulating cellular apoptosis through activation of the NF-κB pathway by elevating
antiapoptotic Bcl2 expression [67]. LMP1 also induces DNMT1, which is involved in the JNK-AP-1
pathway [68]. LMP2A activates DNMT1 through the STAT3 signalling pathway and increasing IL-10
production to promote cell survival [69].

Overall, EBV encodes the capacity to manipulate the host epigenetic machinery through several
viral effectors. The uncontrolled EBV replication and the modulation of the epigenetic landscape
eventually lead to the development of lymphomas.

4. Inflammation, Epigenetics, and Tumorigenesis

A secondary aspect, though equally important, to be taken into account during B cell transformation
is that EBV infection, especially during lytic reactivation, induces strong inflammatory responses.
Studies on other chronic infection, such as HBV [70,71] and Helicobacter Pilory [72], have suggested that
persistent inflammatory environments can be causative of epigenetic dysregulation and could ignite
tumorigenesis processes. The main events that induce chronic inflammation during EBV pathogenesis
might interfere with the epigenetic regulation of B cells, which eventually promotes neoplastic lesions.
Given that EBV secondary infection is not controlled in patients with impaired immune responses,
understanding the molecular aspects that drive the inflammatory response and its persistence is
crucial in the design of new therapeutic strategies to prevent the induction of B cell transformation by
this virus.
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4.1. How Can Chronic Inflammation Drive Cancer Development?

The immune system plays a distinct role during tumour initiation, promotion, and progression,
which is often referred to as “cancer-promoting inflammation”. Chronic inflammation, which usually
occurs during persisting infections or chronic inflammatory diseases, has a significant impact on
the composition of the tumour microenvironment (TME) [73]. Indeed, while the inflammatory
environment is reduced to normal levels following a typical response to a pathogen or tissue damage,
a persistent chronic inflammatory reaction might induce tumorigenesis through several mechanisms.
Chronic inflammatory diseases are characterised by epigenetic changes, including altered histone
modifications, DNA methylation, and ncRNA expression. While there is limited direct evidence,
it is hypothesised that inflammation induces these epigenetic alterations that then contribute to cell
transformation. One of the proposed mechanisms for this is that the persistent source of inflammation
induces high levels of reactive oxygen species (ROS) [74], which in turn affects the expression and
functionality of various epigenetic modifiers [75].

Infections with certain bacteria, viruses, or parasites have been associated with epigenetic
alterations, DNA damage, and the development of cancer. For example, infection with Helicobacter Pylori
is associated with chronic inflammation of the stomach (gastritis) and increased risk of gastric cancer and
mucosa-associated lymphoid tissue (MALT) lymphoma [76]. The persisting inflammation caused by this
bacterium is associated with a dysregulation of the epigenetic landscape, including genome-wide DNA
hypomethylation [77], global de-phosphorylation of the histone residue H3Ser10, and deacetylation
of the histone residue H3K23 [78]. Hepatitis B and C viruses are well-known etiological agents
for hepatitis, and they are associated with increased risk of cirrhosis and hepatocellular carcinoma.
Hepatitis viral infection causes a high level of ROS-induced DNA base damage [79], increasing the
DNA methylation at the promoter of tumour suppressor genes including Cyclin-dependent kinase
inhibitor 2A (CDKN2A, or p16) [80], E-cadherin (CDH1) [81], and Insulin-like growth factor binding
protein 1 (IGFBP-1) [82]. The persistent infection also induces the tri-methylation of the histone residue
H3K4, driving the expression of the oncogene Myc [83].

It has been hypothesised that P. falciparum in holoendemic areas is likely carcinogenic in humans,
given the higher incidence of Burkitt Lymphoma among infected individuals [43]. The series of events
that leads to lymphoma formation could be through the reactivation of EBV latency, which bears the
oncogenic potential, or through the direct dysregulation of the host immune response. GC B cells
isolated from tonsils in patients chronically infected with P. falciparum or from uninfected individuals,
showed how this population was primarily amplified in chronically infected individuals. The majority
of these cells were latently infected with EBV and displayed overexpression of activation-induced
cytidine deaminase (AID) [84], suggesting an indirect role of malaria-mediated inflammation in
harbouring a suitable environment for EBV latency and increased risk of developing endemic Burkitt
Lymphoma [85].

Together, these examples show that alterations in the epigenetic landscape are initiated and
driven by the chronically inflamed environment established by specific pathogenic agents, which can
eventually lead to tumour formation and development.

4.2. Cross-Talk between EBV-Mediated Inflammation and Epigenetic Regulation

As described in Section 2.2, EBV has adopted several strategies during its evolution to recall but
evade the host immune system in order to establish the different phases of infection without killing the
host. Indeed, the peculiarity of this virus is that, while it can dampen antiviral defences, it maintains
high levels of inflammation.

During the lytic cycle or reactivation, EBV is recognised by the different TLRs expressed on both
epithelial cells and lymphocytes, and downstream signalling through these receptors induces the
production of type I interferon and other pro-inflammatory cytokines. Among them, TLR9 is the major
TLR expressed in B cells and is responsible for the induction of IFNs, IL-6, and TNF-α [86]. However,
the lytic protein BGLF5 targets TLR9 mRNA for degradation in infected B cells, inhibiting type I
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IFN production [87]. This mechanism is also maintained during latency, when LMP1 targets TLR9
by inhibiting its promoter activity [88]. On the other hand, LMP1 is also able to interact with
TRAF proteins [89], which are identified as adaptor proteins in TLR signalling, thereby activating
downstream NF-κB signalling to promote cell growth and survival. While EBV effectively suppresses
the antiviral effect of TLR signalling, the pro-inflammatory response triggered by TLR signalling is
still prominent under some circumstances, and it remains to be elucidated how these signals can
regulate the expression of epigenetic modifiers. It has been demonstrated that the function of EZH2
(PRC2) is involved in the direct repression of EBV lytic genes BZLF1 and BRLF1 for the initiation of
the latent phases [46–48], but it is not clear how this subunit is regulated during EBV pathogenesis.
A few selected studies have shown that chronic activation of NF-kB can induce EZH2 expression
in CD40L-stimulated cells from Chronic Lymphocytic Leukemia patients [90]. This pathway might
provide a mechanism through which microenvironment induced NF-kB can inhibit tumour suppressor
functions and promote tumorigenesis.

When expressed in cells, IFNs execute their antiviral functions via the JAK-STAT signalling
pathway, leading to the expression of interferon stimulated genes (ISGs). It is, therefore, not surprising
that EBV has developed multiple strategies to counteract not only IFN production but also IFN signalling.
LMP1 has an N-terminal transmembrane domain, which directly interacts with TYK2 kinase involved
in type I and type III IFN signalling and suppresses phosphorylation of both STAT1 and STAT2 [91].
LMP1 can then block IFN-mediated antiviral responses in infected cells. However, in addition to STAT1
and STAT2, other STATs also play roles in cytokine signalling. Again, LMP1 is able to interact with and
activate STAT3 without the typical induction of the cytokine IL-6 [92]. This interaction increases the
production of other pro-inflammatory cytokines (such as IL-17), but most importantly, induces cellular
growth and survival. Notably, cancer genome landscape studies have implicated mutations and
dysregulation in various epigenetic modifiers as well as the JAK–STAT pathway as underlying causes
of many cancers, particularly acute leukemia and lymphomas. It has been recently reported that STAT3
can bind to the promoter region of the EZH2 gene in gastric cancer cells, implicating STAT3 as a direct
regulator of EZH2 [93]. STAT3 also mediates oncogenesis by recruiting DNA methyltransferase 1
(DNMT1) to gene promoters to silence tumours suppressor genes, such as PTPN6, IL-2Rγ, CDKN2A,
DLEC1, and STAT1 by CpG methylation in malignant T lymphocytes and breast cancer cells [94,95].
It has also been shown that STAT5 can recruit the DNA demethylases TET2 [96], which is also involved
in the establishment of EBV latency. In light of these findings, it is crucial to understand the interplay
between EBV-mediated inflammation, STAT proteins, and regulation of chromatin remodelling factors
and how these can various aspects interact to promote cancer.

5. Open Questions

We have described here how the uncontrolled immune response to EBV, triggered by co-infection
or other exacerbating diseases, leads to B cell malignancies that arise due to dysregulation of the
epigenetic landscape in B cells. We have also discussed how chronic inflammation mediated by
other persistent infections alters the expression and function of epigenetic modifiers, leading to
tumorigenesis and cell transformation. While there is an understanding of how EBV viral products
mimic the functions of epigenetic modifiers for lymphoma development, there is a major gap in
knowledge regarding the dysregulation of these molecules driven by the EBV-mediated inflammatory
state. Which specific cytokines are involved in the regulation of epigenetic modifiers in the context of
EBV infection? Which epigenetic modifiers specifically target tumour-related genes? Exploring the
biology behind the direct link between the EBV-mediated inflammation and epigenetics represents
an exciting field of research, which may lead to the design of new therapeutic strategies to fight B
cell lymphomas.



Cancers 2020, 12, 3037 10 of 16

6. Conclusions and Future Perspectives

Over the past two decades, the field of epigenetic regulation and functions has received
great attention due to the intricate interplay between viruses, cellular transcription factors,
and histone-modifying enzymes. Importantly, it has been revealed that mutations and dysregulation
of epigenetic modifiers lead to several types of cancers, due to their transforming ability in inducing
cell survival and proliferation. Numerous oncogenic viruses, such as EBV and hepatitis viruses,
have a direct role in manipulating the expression of these molecules, and their particular viral persistent
feature has the potential to transform target cells and the infected tissue. Many viral products bear
the ability to mimic or recruit epigenetic modifiers to cellular target genes for the establishment
and maintenance of distinct infectious stages, including latency. Moreover, in response to the host
immune system, these viruses have evolved evasion strategies by hijacking various cellular regulatory
mechanisms. As discussed in this review, the modulation of the host epigenetic machinery represents
a crucial step for EBV to evade the immune response and initiate the latency programs.

As most epigenetic modifications are reversible, manipulating this complex machinery could
be critical in determining the outcome of the viral pathogenesis and the induction of tumorigenesis.
For example, several studies in HIV patients have focused on the eradication of viral reservoirs by
reactivating the latent virus using a wide range of epigenetic inhibitors followed by conventional
antiviral therapy to neutralise the reactivated virus, otherwise known as “shock and kill” strategy [97].
The use of epigenetic inhibitors has been proposed for the treatment of HBV-mediated hepatocellular
carcinoma (HCC). The regulatory HBV X protein (HBx) is a viral multifunctional molecule that
enhances HBV replication, and it is implicated in the induction of HHC [98]. In particular, this protein
is involved in several posttranslational modifications (PTM) by recruiting epigenetic modifiers, such as
DNMTs and HDACs, and increasing the levels of H3K4me3 in target genes that are essential for
cellular migration, invasion, and growth. Several epigenetic inhibitors targeting DNMTs (azacytidine,
5-AZA) and HDACs (trichostatin A, TSA) have been tested in the treatment of HBV-mediated HCC;
however, they have had controversial results. While the administration of 5-AZA or TSA resulted
in the reactivation of tumour suppressor genes, on the other hand, they increased HBV viral load
and oncogene expression [99–101]. Similar approaches have been tested in the context of EBV-related
lymphomagenesis, by targeting epigenetic modifiers as oncolytic therapy during both lytic and latent
cycles. The lytic cycle reactivation by HDAC inhibitors, including trichostatin A, sodium butyrate,
valproic acid, and SAHA, can lead to enhanced apoptosis in NPC and gastric carcinoma cells [102,103].
Comparably, HDACs inhibitors have been shown to stimulate apoptosis of the EBV+ B cells in Burkitt
lymphomas in latency III stage by inducing the expression of p21WAF1 [104]. Similar approaches have
been exploited for the clinical management of Hodgkin’s Lymphoma and DLBCL during latency II.
The non-selective HDAC inhibitor Panobinostat exhibited a great anti-proliferative effect through
activation of the caspase pathway in the HL cell line [105]. A recent clinical trial using Panobinostat,
in combination with the cell cycle inhibitor Lenalidomide, has shown promising results in patients
with relapsed or refractory HL [106]. The use of DNMT inhibitors azacitidine and decitabine as
monotherapy or in combination with other epigenetic-modulating therapies is still under investigation,
given the high toxicity of these drugs. However, chemo-resistant cells from refractory DLBCL patients
became sensitive to chemotherapy after prolonged administration of low-dose decitabine, showing its
potential application in the treatment of DLBCL [107].

An improved understanding of the modulation of the epigenetic machinery is revealing a
tremendous array of novel targets; however, this potential proves to be a double-edged sword. To wit,
in the context of HBV, the available epigenetic therapies lack specificity, which raises concerns about
their cytotoxic side effects due to unintended global epigenetic modifications and complicates the goal
of a therapeutic index within the acceptable toxicity levels. While the direct role of EBV viral proteins
in the dysregulation of epigenetic modifiers has been broadly unveiled, it will be crucial to understand
how other factors, such as the chronically inflamed environment, can affect the expression and function
of these molecules. Revealing the molecular basis underlying these mechanisms could pave the way
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for new therapeutic approaches targeting epigenetic players and lead to major clinical breakthroughs
in the future.
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