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Abstract: Antiphospholipid syndrome (APS) is an autoimmune disease characterized by autoreactive
B and T cells against β2-glycoprotein I (B2GPI), with vascular thrombosis or obstetrical complica-
tions. Dendritic cells (DCs) are crucial in the generation of autoimmunity. Here, we conducted
a comprehensive systematic review on the relationship between DC and APS. We performed a
literature search of PubMed as of 26 March 2021. A total of 33 articles were extracted. DCs are pivotal
in inducing inflammatory responses and orchestrating adaptive immunity. DCs contribute to the
local inflammation regarding vascular thrombosis or obstetrical complications. Both B2GPI and
antiphospholipid antibodies (aPL) can promote antigen presentation by DCs and the generation
or maintenance of autoimmunity. In addition, plasmacytoid DC activation is enhanced by aPL,
thereby augmenting the inflammatory response. In line with these findings, DC modulation appears
promising as a future treatment for APS. In conclusion, our review indicated the crucial role of
DCs in the pathogenesis of APS. Deeper understanding of the complex relationship would help in
developing new treatment strategies.

Keywords: antiphospholipid syndrome; autoimmunity; β2-glycoprotein I; dendritic cell;
immune tolerance

1. Introduction

Antiphospholipid syndrome (APS) is an autoimmune disease characterized by the
aberrant production of β2-glycoprotein I (B2GPI)-dependent antiphopholipid autoantibod-
ies (aPL, including lupus anticoagulant, anticardiolipin antibodies, anti-B2GPI antibodies,
etc.), and it manifests as arterial/venous thrombosis or obstetrical complications [1]. The
underlying pathogenesis involves autoreactive T cells and B cells producing these autoanti-
bodies [2]. Vascular APS is associated with detrimental morbidities like stroke, ischemic
bowel disease, and even mortality. All these confer a significant disease burden in affected
patients [3]. Meanwhile, obstetric APS leads to the morbidity of both the mother and
fetus [4]. Unfortunately, treatment for APS is far from satisfactory so far [5]. The treatment
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paradigm is mainly based on antiplatelet agents and anticoagulants [6], associated with
major bleeding risks of 0.57–10% per year [7]. However, 20% of patients with vascular
APS develop recurrent thrombosis despite treatment [8]. The treatment strategy also fails
in 20–30% of patients with obstetric APS [9]. Immune regulation is another way to man-
age this devastating disease. Indeed, therapies using hydroxychloroquine, an anti-CD20
monoclonal antibody (rituximab), and an anti-B-cell activating factor (BAFF) monoclonal
antibody (belimumab) have shown promising results [10–13]. To be noted, one of the
pharmacological effects of hydroxychloroquine is to increase lysosomal pH and thereby
disrupt antigen presentation by dendritic cells (DCs)

DCs are crucial in the elicitation of the adaptive immune response. They pivot the
initiation and polarization of T helper responses. It is no surprise that altered DC profiles,
like its migration, tissue distribution, phagocytosis, antigen presentation, and cytokines
secretion have roles in the generation of autoimmunity [14]. In addition, autoreactive B
cells and T cells are of critical pathogenicity in APS, indicating the importance of DCs.
DCs have also been implicated in the pathogenesis of vascular thrombosis and obstetric
disorders. We have undertaken a comprehensive systematic review on the relationship
between DCs and APS, hoping that the new findings on the immunopathogenesis of APS
could lead to a novel therapeutic approach.

2. Materials and Methods

This systematic review was on the relationship between DCs and APS. Its review
algorithm is shown in Figure 1. We searched MEDLINE on March 26, 2021 using keywords
including dendritic cells and antiphospholipid syndrome. The search strategy was as fol-
lows: (Dendritic Cells[MeSH] OR Dendritic cell*[tiab] OR Dendritic Cells, Follicular[MeSH]
OR Langerhans Cells[MeSH] OR Langerhans*[tiab]) AND (Hughes Syndrome*[tiab] OR
Antiphospholipid*[tiab] OR Anti-Phospholipid*[tiab] OR Anti Phospholipid*[tiab]).
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Figure 1. The selection of studies to be included in the systematic review.

Four of the authors (KT Tang, HH Chen, TT Chen, and CC Lin) independently assessed
the titles and abstracts as identified by the literature search, retrieving the relevant full-
text articles. Two authors (KT Tang and CC Lin) independently assessed the full-text
for eligibility of articles and resolved discrepancies through discussion. In addition, the
references cited in selected articles were also examined for relevance. Finally, a total of
33 articles were selected.
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3. Results
3.1. Background
3.1.1. The Pathogenesis of APS

The pathogenesis of APS appears elusive, despite some progress in recent decades. In
general, two hits are required before disease development [15]. The first hit is the presence
of circulating aPL. Cellular and animal experiments showed that anti-B2GPI autoantibodies
bound to various receptors, like Toll-like receptors, apolipoprotein endothelial receptor 2,
etc., and activated endothelial cells, platelets, and monocytes to sustain a pro-coagulant
phenotype in the body, like expressions of tissue factor and thromboxane, etc. [1]. The
second hit includes infection or inflammatory events, etc. that can be thrombophilic in
triggering the formation of thrombosis in blood vessels. In summary, APS is an immune-
mediated thrombotic disorder. Immunomodulation is theoretically a feasible approach
for treatment.

3.1.2. Dendritic Cells

DCs are professional antigen-presenting cells located mainly in the peripheral tis-
sues. DCs can be divided into three major subsets: conventional DCs, DCs derived from
monocytes, and plasmacytoid DCs [16]. Theses DC subsets induce different types of
immune responses [17]. The differences in immunophenotype and function between
these DC subsets are shown in Table 1. In general, immature DCs patrol the peripheral
tissues to detect pathogens. DCs can capture and process these pathogens, and then
they migrate to lymphoid organs, where DCs become mature and present the pathogen-
derived antigens to naive T cells to initiate the adaptive immune response [18,19]. Mature
DCs are activated through the Toll-like receptor (TLR) signaling pathway, and they pro-
duce inflammatory cytokines [20]. Importantly, DCs maturation involves upregulation of
costimulatory surface molecules (such as CD80, CD86, CD40, OX40L, and major histocom-
patibility complex (MHC) class II molecules) and the production of cytokines, chemokines,
and proteases [21–23]. DCs release distinctive cytokines to activate and regulate T cell
differentiation in response to a variety of environmental stimuli. In particular, DCs or-
chestrate the development of T helper 1 (Th1), Th2, Th17 cells, and regulatory T cell (Treg)
responses [24,25]. Several studies have reported critical roles of DC-derived cytokines in
the polarization of T helper cells [26]. For example, DCs secrete interleukin (IL)-12 to induce
Th1 polarization and IL-4 to induce Th2 polarization from naive CD4+ T cells [27]. The
production of IL-6, IL-23, and transforming growth factor (TGF)-β by DCs promotes the
differentiation of Th17 cells [28]. Furthermore, DCs secrete IL-10 and TGF-β to induce Treg.
These two immunosuppressive cytokines suppress the immune response while promoting
a shift to immune tolerance [29]. Thus, DCs have been proposed as key mediators between
innate and adaptive immunity. They are important for the induction of either tolerance or
immunity against antigens [30,31].

Table 1. The differences in immunophenotype and function between DC subsets.

DC Subsets Immunophenotype Function

Conventional DC1 BDCA-1 Cross-presentation
Activation of T helper 1 (Th1), CD8+ T, and natural killer cells

Conventional DC2 BDCA-1, CD11b, CD11c
Cross-presentation

Responding to lipopolysaccharide, flagellin, and fungal antigens
Activation of Th1, Th2, Th17, and CD8+ T cells

Monocyte-derived DC BDCA-1, CD11c, CD1a Contributing to tissue inflammation
Activation of Th1, Th17, and CD8+ T cells

Plasmacytoid DC BDCA-2, BDCA-4, CD123 Responding to viral antigens
Production of type I and type III interferons

BDCA, blood dendritic cell antigen; DC, dendritic cell.
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3.1.3. Dendritic Cells and Arterial Thrombosis

There have been a number of studies focusing on the role of DCs in atherosclerosis.
Anatomically, DCs are located in the walls of large blood vessels [32]. Both the myeloid and
pDC are present in atheroma lesions, typically in rupture-prone areas at the atherosclerotic
plaques [33,34]. In patients with acute coronary syndrome or advanced coronary heart
disease, circulating myeloid DC precursors reduce in number but increase within the
vulnerable plaques [35,36]. Furthermore, in patients with coronary heart disease, the circu-
lating number of pDCs was inversely correlated with the development of cardiovascular
events [36]. These findings suggested the recruitment of these cells to the artherosclerotic
lesions. Most of these DCs are activated; express CD80, CD86, and inflammatory cytokines;
and present in clusters with T cells [33]. Notably, in the blood vessels, immature myeloid
DCs interact with activated platelets under low shear stress, a condition resembling that
around an advanced atherosclerotic plaque [37].

In mice, resident intimal DCs in the artery, similar to macrophages, can take up lipids
and contribute to the formation of an atheroma [38]. Moreover, oxidized low-density
lipoproteins can stimulate DCs by binding with CD36 and TLR4 to enhance cytokine
secretions [39]. A deficiency in costimulatory molecules, like CD80 and CD86, reduces
the size of atherosclerotic plaques, supporting the involvement of antigen presentation
by DCs [40]. In mice, interferon-β enhances macrophage–endothelial cell adhesion and
accelerates atherosclerosis [41]. To be noted, pDC is a rich source of interferon-β. Altogether,
accumulating evidence has indicated that DCs may act locally to promote the development
of atherosclerosis.

3.1.4. Dendritic Cells and Venous Thrombosis

In this area, the research is scarce. Cherian et al. performed an immunohistochemical
examination of veins obtained at operation. They found no DCs in the normal saphenous
veins, but they found DCs in veins affected by thrombophlebitis, and the DCs there
colocalized with T lymphocytes [42]. Immature myeloid DCs could interact with activated
platelets in the areas of blood vessels with low shear stress [37], a condition resembling the
venous stasis in Virchow’s triad. These findings imply that DCs promote local inflammation
in venous thrombosis, which is similar to the condition in atherosclerosis.

3.1.5. Dendritic Cells and Pregnancy

DCs change their number and function during different stages of pregnancy, which
renders it difficult to reach solid conclusions in previous resaerches. Preliminarily, conven-
tional, monocyte-derived, and pDCs have been found in the deciduas in pregnancy [43,44].
Several studies demonstrated an increase in cDCs with or without a decrease in pDCs in
blood and deciduas among pregnant women [43,45,46]. Changes in cDCs during pregnancy
were accompanied by a predilection toward a Th2 response [43], reduced antigen-specific
responses [47], as well as increased Treg cells [46,48,49]. Furthermore, disrupted adaptive
changes of cDCs are associated with obstetric disorders, including recurrent spontaneous
abortion [46] and preeclampsia [45,50]. Taken together, to sustain gestation, DCs participate
in the generation of immune tolerance at the maternal–fetal interface. Its disruption could
lead to obstetric complications.

3.2. DC in the Pathogenesis of APS

Accumulating evidence has demonstrated the relationship between DCs and APS.
The potential pathogenic role of DCs in APS is summarized in Figure 2. Different DC
subsets contribute to the generation and propagation of APS.

3.2.1. B2GPI and Dendritic Cells

B2GPI is a plasma protein that binds to negatively charged phospholipids [51]. In APS,
B2GPI is considered a major autoantigen based on the following findings: (a) the detection
of aPL requires the presence of B2GPI [52]; (b) immunization of mice with human B2GPI
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could produce APS-like manifestations, including fetal loss and vascular thrombosis [53];
(c) passive transfer of an anti-BPGPI antibody to mice could produce APS-like manifesta-
tions [54]. Interactions between B2GPI and DCs were reported in several studies. Buttari
et al found that oxidized B2GPI induced DC maturation, manifested in the expressions of
CD80, CD86, and human leukocyte antigen (HLA)-DR and the secretion of inflammatory
cytokines [55]. Such interactions involve interleukin receptor-associated kinase (IRAK)
phosphorylation and nuclear factor-κB (NF-κB) activation. Furthermore, these DCs dis-
play allostimulatory capabilities to prime naïve T cells toward Th1 polarization. A report
from Liu et al. is compatible with our recent work, which demonstrated maturation and
activation of murine bone marrow-derived dendritic cells (BMDC), isolated from the bone
marrow and then cultured with granulocyte–macrophage colony-stimulating factor to
induce their differentiation, after B2GPI stimulation [53,56]. These activated DCs then stim-
ulated the proliferation of antigen-specific T cells. Liu et al. further stimulated immature
BMDC in TLR4-intact (C3H/HeN) mice with B2GPI. They found greater maturity and
higher production of inflammatory cytokines compared with TLR4-defective (C3H/HeJ)
mice. Moreover, the ability of BMDC from C3H/HeN mice in stimulating proliferation of
allogeneic mixed lymphocytes was higher than that from C3H/HeJ mice. These authors
concluded that DC maturation depends on TLR4. Taken together, B2GPI activates DCs
through IRAK/NF-κB and TLR4. Higher oxidative stress in APS patients may further
promote such activation [57], thereby facilitating the generation and propagation of APS.
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Figure 2. An illustration of the pathogenic role of dendritic cells in antiphospholipid syndrome and
potential therapeutics. β2GPI, β2-glycoprotein I; aPL, antiphospholipid antibodies; BDCA, blood
dendritic cell antigen; cDC, conventional dendritic cell; EPCR, endothelial protein C receptor; HLA,
human leukocyte antigen; IRAK, interleukin receptor-associated kinase; LBPA, lysobisphosphatidic
acid; moDC, monocyte-derived dendritic cell; NF-κB, nuclear factor-κB; pDC, plasmacytoid dendritic
cell; PS, phospholipids; ROS, reactive oxygen species; TLR, Toll-like receptor.

3.2.2. Dendritic Cells and Generation of APS

The importance of DCs in the generation of APS has been uncovered in several studies.
Apoptosis is implicated in the pathogenesis of APS. Some controversy exists, since exposed
anionic phospholipids during apoptosis may provide B2GPI binding sites, which then
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induce the generation of aPL [58]. Bondanza et al. reported that autoimmunity, including
anti-B2GPI IgG, would develop in mice only when apoptotic cells/B2GPI are injected along
with syngeneic DCs [59]. Ubiquitin is one of the major pathways for intracellular protein
degradation. Kool et al. found that the ubiquitin-editing enzyme, A20, suppresses BMDC
activation through the nuclear factor-κB (NF-κB) pathway [60]. A20-deficient DCs enhance
the uptake of apoptotic cells and antigen presentation to T cells, leading to the downstream
Th1 and Th17 responses. Moreover, these A20-deficient DCs directly stimulate B cells,
resulting in their proliferation and differentiation into antibody-producing cells. These
authors also genetically deleted A20 in mice and demonstrated in vivo DC activation and
expansion and B and T cell activation. In addition, A20-deficient mice develop systemic
autoimmunity, including the production of anticardiolipin IgG, thrombocytopenia, and
fetal loss, all resembling APS. These findings mimic the generation of APS. Another study
by Asano et al. showed that mutated milk fat globule-EGF-factor 8 (MFG-E8), which is
originally expressed by DCs and macrophages to bind with phosphatidylserine (an anionic
phospholipid) to promote phagocytosis, can inhibit macrophages in the phagocytosis
of apoptotic cells [61]. When intravenously injected, the mutant protein induces the
production of autoantibodies, including the anticardiolipin antibody, which is enhanced by
the simultaneous injection of syngeneic apoptotic thymocytes. However, whether or not
APS manifestations developed in these mice were not mentioned. Kuwana et al. initially
discovered that CD4+ T cells, autoreactive to a cryptic peptide encompassing amino acid
residues 276–290 of B2GPI, are restricted to HLA-DR53+ APS patients. They further treated
blood monocyte-derived DCs with B2GPI bound to anionic phospholipids [62]. A co-
culture of these DCs and T cells generated autoreactive CD4+ T cells to the same peptide
in an HLA-DR-restricted manner ex vivo. Nonetheless, we did not identify any study
showing the effect of DC elimination on the generation of APS in mice. A direct link
between DC and generation of APS is therefore lacking. Taken together, DC is critically
involved in the antigen presentation by apoptotic cells, which could generate autoreactive
B and T cells in APS.

3.2.3. Conventional Dendritic Cells and Propagation of APS

Typically, anionic phospholipids exposed on apoptotic cells may exert immunosup-
pressive signals, and their blockade inhibits the phagocytosis of these cells by macrophages
while promoting an inflammatory response [63]. Meanwhile, the blockade of anionic
phospholipids has no influence on phagocytosis of these apoptotic cells by DCs, thus
shaping a microenvironment facilitating autoantigen presentation and resultant autoim-
munity toward cryptic antigens. Antiphospholipid antibodies, through their binding of
exposed anionic phospholipids, may theoretically promote this process in the same manner.
Furthermore, Rovere et al. reported that aPL could recognize apoptotic cells and bind to
their membranes, which opsonized the apoptotic cells to be internalized by DCs [64]. To
summarize, the presence of circulating aPL, the so-called “first hit”, could enhance antigen
presentation of apoptotic cells by DCs and sustain the autoreactive B and T cells in the
body, awaiting the “second hit” to develop vascular thrombosis.

3.2.4. Plasmacytoid Dendritic Cells and APS

The interferon (IFN) signature is the hallmark for several autoimmune diseases, such
as systemic lupus erythematosus and Sjogren’s syndrome [65,66]. The signature was
detected in 50% of primary APS patients [67] and associated with their endothelial dys-
function [68]. Plasmacytoid DCs are a rich source of type I IFN in the human body. From
APS patients, van den Hoogen et al. isolated blood pDCs and showed downregulation of
microRNA related to the activated pDCs [69]. In addition, the type I interferon signature
was noted in these pDCs, which was correlated with that in blood monocytes. MicroRNA
was reduced more markedly in these type I IFN-high pDCs and associated with pDC
activation based on the pathway enrichment analyses. Hurst et al. demonstrated that
when stimulated with a TLR7 ligand, resiquimod, aPL synergistically induced pDCs to
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secrete IL-1β [70]. Later, the same research group found that aPL induced the expression
of TLR7 and likely its translocation from the endoplasmic reticulum to the endosome in
pDC [71]. In line with this, an increased expression of TLR7 was found in peripheral
blood mononuclear cells isolated from APS patients. This finding indicated sensitized
responses of pDC to TLR7 ligands. In addition, they found that aPL treatment increased
RNA uptake in pDC, which further sensitized these cells. Treatment with aPL also induced
the generation of reactive oxygen species in the endosomes of pDC. This finding may be
related to the activation of DC, since the defective NADPH oxidase, NOX1, could abolish
the aPL stimulation of splenic CD11c+ DCs from mice. More recently, they discovered a
self-perpetuating cycle, in which aPL signaled through the engagement of the endothelial
protein C receptor (EPCR)-lysobisphosphatidic acid (LBPA) on the cell membrane to pro-
mote IFN-α production by pDC and downstream expansion of aPL-producing B cells [72].
In summary, pDC could be activated by aPL through multiple mechanisms involving
TLR7, reactive oxygen species, and the EPCR–LBPA complex. This may contribute to a
pro-inflammatory type I IFN response in APS patients.

3.3. Dendritic Cells-Based Therapy for APS

Tolerance induction has emerged recently as a promising treatment strategy for au-
toimmune diseases [73]. An earlier study on APS mice demonstrated less severe vascular
and obstetric complications after being fed with B2GPI. The mechanism was through the
induction of tolerance, albeit the role of DC was not clear [74]. Moreover, DCs can be engi-
neered ex vivo using the autoantigen of interest, as well as tolerance-inducing agents, such
as 1,25 dihydroxyvitamin D3, dexamethasone, and interleukin (IL)-10 [75]. The resultant
tolerogenic DCs were then infused back to humans to induce the Treg response and thereby
ameliorating autoimmune diseases. In fact, the therapeutic potential of tolerogenic DC
in RA patients has been examined in a human trial, showing some preliminary efficacy
with no noticeable side effects [76]. Zandmann-Goddard et al. took a similar strategy in
treating APS [77]. They pulsed mouse BMDC with dexamethasone and vitamin D3, as
well as B2GPI or its domain I (the major B cell epitope in APS) during lipopolysaccharide-
induced maturation. Administration of these tolerogenic DCs suppressed the production
of the anti-B2GPI antibody and fetal loss in APS mice, especially with the B2GPI domain
I-tolerogenic DCs. Furthermore, adoptive transfer of Treg from these tolerogenic mice could
induce tolerance in other APS mice. In addition, Torres-Aguilar et al. produced tolerogenic
DCs from blood monocytes isolated from APS patients after treatment with IL-10 and
TGF-β [78]. They found that these tolerogenic DCs had induced B2GPI unresponsiveness
in autologous effector/memory T cells and with a concomitant increase in Treg cells or
greater apoptosis of effector/memory T cells. Could this strategy be utilized for treatment
of APS patients? Further human trials are required. To be noted, therapeutic induction of
tolerogenic DCs is highly customized, labor-intensive, and costly, which may all limit its
clinical application. However, increasingly more medical institutions are equipped with
facilities for cell-based therapies. The access of patients to this kind of novel therapy is
expected to become more common in the near future. Our recent work utilized a natural
compound, crassolide, extracted from soft corals for APS treatment [53]. We found that
crassolide had a suppressed activation of murine BMDC ex vivo. The suppression of DCs in
APS mice could, in part, translate into their amelioration APS manifestations, including the
production of anti-B2GPI antibody, Th1, and Th17 responses toward B2GPI and vascular
and obstetric complications. BDCA2 is a pDC-specific receptor, and its binding hinders
IFN-response gene expressions. BIIB059, a humanized monoclonal antibody that binds to
BDCA2 [79], has been speculated to inhibit the IFN response in patients with autoimmune
diseases. Indeed, a pilot study on eight SLE patients demonstrated that a single dose of
BIIB059 improved their skin lesions through the suppression of immune cells infiltrate [80].
The results of two phase 2/3 trials in SLE patients are still awaited (NCT02847598 and
NCT04895241). Its therapeutic potential for APS should be examined thereafter. Taken
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together, these findings imply that APS could be effectively treated through DC modulation.
However, human trials are needed to prove its efficacy.

4. Discussion

DCs are pivotal in the elicitation of an inflammatory response, and they orchestrate the
adaptive immunity. DCs contribute to the local inflammation at the atherosclerotic plaque
and may also participate locally in the development of venous thrombosis. Moreover, the
alterations in DCs may underlie certain obstetric complications, such as recurrent abortion
or preeclampsia. In terms of APS, both B2GPI and aPL promote antigen presentation by
DCs and generation or maintenance of autoimmunity against B2GPI. In addition, pDCs
activation can be enhanced by aPL, thereby augmenting the inflammatory response. In line
with the above findings, DC modulation and tolerance induction are promising options
in the treatment of APS, as shown in mouse models. Our review has limitations, as most
findings are based on mouse models rather than humans. Extrapolating findings to humans
should be cautious. In addition, research on the relationship between DCs and APS is
relatively scarce amid numerous APS studies, perhaps due to the low number of DCs
in mice and humans. Therefore, the pathogenic role of DCs in APS cannot be clearly
elucidated based on the literature. Furthermore, no study has investigated the pathogenic
role of DCs in APS using either mice with DC elimination or mice lacking functioning DCs.
The lack of such direct supporting evidence undermines our conclusions. However, the
induction of tolerogenic DCs has indeed been promising for autoimmune diseases in recent
years, with the hope of completely reverting the pathogenic process, and producing fewer
side effects compared with conventional treatment. It is of great importance to further
delineate DCs pathology in APS.

5. Conclusions

In conclusion, DCs contribute to both the generation and propagation of APS through
their antigen presentation and pro-inflammatory properties. DCs modulation has the
therapeutic potential for APS.
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