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a b s t r a c t

GM2 gangliosidoses are autosomal recessive lysosomal storage diseases (LSDs) caused by mutations in
the HEXA, HEXB and GM2A genes, which encode the human lysosomal β-hexosaminidase (Hex) α- and β-
subunits, and GM2 activator protein (GM2A), respectively. These diseases are associated with excessive
accumulation of GM2 ganglioside (GM2) in the brains of patients with neurological symptoms. Here we
established a CHO cell line overexpressing human GM2A, and purified GM2A from the conditioned
medium, which was taken up by fibroblasts derived from a patient with GM2A deficiency, and had the
therapeutic effects of reducing the GM2 accumulated in fibroblasts when added to the culture medium.
We also demonstrated for the first time that recombinant GM2A could enhance the replacement effect of
human modified HexB (modB) with GM2-degrading activity, which is composed of homodimeric altered
β-subunits containing a partial amino acid sequence of the α-subunit, including the GSEP loop necessary
for binding to GM2A, on reduction of the GM2 accumulated in fibroblasts derived from a patient with
Tay-Sachs disease, a HexA (αβ heterodimer) deficiency, caused by HEXA mutations. We predicted the
same manner of binding of GM2A to the GSEP loop located in the modified HexB β-subunit to that in the
native HexA α-subunit on the basis of the x-ray crystal structures. These findings suggest the effec-
tiveness of combinational replacement therapy involving the human modified HexB and GM2A for GM2
gangliosidoses.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

GM2 gangliosidoses, including Tay-Sachs disease (TSD, variant
B), Sandhoff disease (SD, variant O), and GM2 ganglioside (GM2)
activator protein (GM2A) deficiency (variant AB), are neurode-
generative lysosomal storage diseases (LSDs) associated with ex-
cessive accumulation of GM2 [1]. GM2A is known as a co-factor of
β-hexosaminidase A (HexA, αβ heterodimer) involved in the
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degradation of GM2 [2–4]. Recently, intravenous enzyme re-
placement therapy involving recombinant human lysosomal en-
zymes produced by CHO and human HT1080 cell lines was clini-
cally applied for several LSDs [5,6], so GM2A-based protein re-
placement therapy should be applicable to patients with variant
AB. Previously, we developed a modified human HexB (modB) [7]
composed of homodimeric altered β-subunits containing amino
acid substitutions, the DL (β452–453) to NR (α423–424) se-
quences, which are necessary for anionic substrate recognition by
the native α-subunit, and the RQNK (β312–315) to GSEP (α280–
283) loop sequence, which is required for interaction with GM2A.
We also revealed that the modB has GM2-degrading activity in
fibroblasts derived from TSD and SD patients. Here, we first de-
monstrated that co-administration of recombinant GM2A could
significantly enhance the reduction of intracellular GM2 accumu-
lated in TSD fibroblasts mediated by modB in the culture system.
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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2. Materials and methods

2.1. Antibodies

Anti-GM2 mouse monoclonal antibodies (GMB28: IgM) were
established previously [8].

2.2. Cells

The CHO-K1 cell line was provided by the RIKEN BioResource
Center (Ibaraki, Japan). The use of cultured skin fibroblasts from
patients with TSD (F218) [7] and variant AB (F582) [9], and normal
ones (F258) were approved by the ethics committee of our in-
stitution. The fibroblasts were cultured in nutrient mixture Ham's
F-10 (Sigma-Aldrich, St. Louis, MO, USA) medium containing 10%
(v/v) fetal bovine serum (FBS; Thermo Fisher Scientific, Waltham,
MA, USA), 100 μg/mL streptomycin (Sigma-Aldrich), and 70 μg/mL
penicillin G (Sigma-Aldrich) at 37 °C in a humidified incubator
continuously flushed with a mixture of 5% CO2�95% air.

2.3. Establishment of CHO cell lines expressing GM2A

A DNA fragment encoding GM2A with a histidine-tag (10xHis)
and the signal sequence of human lysosomal α-galactosidase A
(GLA) was ligated into the pCXN2-Hygro and pCXN2-Neo vectors
[10]. Then each vector was used to transform MAX Efficiency
DH5α Competent Cells (Life Technologies, Carlsbad, CA, USA).
Plasmid DNA-Lipofectamine 2000 (Life technologies) complexes
were transfected into CHO cells according to the manufacturer's
instructions. Drug-resistant cell lines were established by double
selection with hygromycin (Wako, Osaka, Japan) and G418 (Sigma-
Aldrich). The CHO cell line stably expressing GM2Awas cultured in
EX-CELL ACF CHO medium (Sigma-Aldrich). The conditioned
medium (CM) derived from each cell line was collected.

Immunoblotting for the expressed GM2A was performed with
anti-hGM2A polyclonal antibodies (HPA008063, Sigma-Aldrich).
Briefly, aliquots of GM2A fractions were subjected to sodium do-
decyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) on
12.5% (w/v) acrylamide gels. The proteins were transferred to
Immobilons-P PVDF membranes (Merck, Darmstadt, HE, Ger-
many). After blocking with 50% (v/v) Blocking One (Nacalai Tesque,
Kyoto, Japan) in TBS [25 mM Tris (Sigma-Aldrich), 137 mM NaCl,
2.7 mM KCl, pH 7.4] at room temperature (rt) for 1 h, each mem-
brane was treated with anti-hGM2A antibodies diluted with
Blocking One/TBS (1:1,000 dilution) overnight at 4 °C. After
washing with TBS containing 0.1% (v/v) Tween 20 (Sigma-Aldrich),
the membrane was treated with horseradish peroxidase (HRP)-
linked anti-rabbit IgG antibodies (#7074, Cell Signaling Technol-
ogy, Danvers, MA, USA, 1:1000 dilution) at rt for 1 h. After wash-
ing, detection of antibody binding was carried out with ECL (Per-
kinElmer, Waltham, MA, USA) according to the manufacturer's
instructions. The protein levels were determined by the DC™
Protein Assay or Bio-Rad Protein Assay (Bio-Rad, Hercules, CA,
USA) with BSA (Sigma-Aldrich) as a standard.

For assaying of the presence of N-glycans attached to re-
combinant GM2A, CM containing GM2A was treated overnight
with or without PNGase F (New England BioLabs, Hitchin, Herts,
UK) according to the manufacturer's protocol, and then im-
munoblotting with anti-hGM2A antibodies was performed.

2.4. Purification of recombinant GM2A

For Ni-column chromatography, 5N NaOH (Sigma-Aldrich) was
added to the CM to adjust the pH to 8.0–8.3, and then the CM was
filtered with a Minisart

s

Syringe Filter 0.45 mm (Sartorius, Göt-
tingen, NI, Germany). Then samples were applied to Ni Sepharose
6 Fast Flow (GE Healthcare, Little Chalfont, BKM, UK) equilibrated
with 25 mM sodium phosphate buffer (NaPB), 0.3 M NaCl (pH 8.0).
After washing with 25 mM NaPB, 0.3 M NaCl (pH 7.0 and 6.0), the
bound proteins were eluted with 50 mM sodium acetate buffer,
0.3 M NaCl (pH 4.0). Each fraction was subjected to SDS-PAGE on a
12.5% (w/v) acrylamide gel and silver staining with a Dodeca Silver
Stain Kit (Bio-Rad). The molecular weight of GM2A was calculated
based on those of the APRO markers (APRO Science, Tokushima,
Japan).

2.5. Preparation of modified HexB

CHO cell line stably expressing modified HexB [7] was cultured
in EX-CELL ACF CHO medium and the CM was collected. Then
samples were applied to a TOYOPEARL AF-Blue HC-650 column
(Tosoh, Tokyo, Japan), and the bound proteins were eluted with
0.6 M NaCl (Nacalai tesque)/0.1 M Tris-acetate buffer (pH 7.5). The
eluate was applied to Phos-tag agarose (Wako) and the bound
proteins were eluted with 0.2 M NaPB (pH 6.0). The eluate was
applied to a HiTrap SP HP column (GE Healthcare). The eluted
fractions containing β-Hex activity were collected.

2.6. Replacement assay for GM2 gangliosidosis fibroblasts

Each type of fibroblast was seeded onto a collagen type I-coated
35mm dish (AGC Techno Glass, Shizuoka, Japan). GM2A (5 μM) was
added, followed by incubation for 4 d. The cells were dissociated and
sonicated with phosphate-buffered saline [PBS; 8.1 mM Na2HPO4

(Sigma-Aldrich), 1.5 mM KH2PO4 (Wako), 137 mM NaCl, 2.7 mM KCl,
pH 7.4] containing 1% (v/v) Nonidet P-40 and protease inhibitors [1 mM
pepstatin A (Peptide Institute, Osaka, Japan), 20 mM leupeptin (Peptide
Institute), 2 mM EDTA (Sigma-Aldrich) and 200 mM PMSF (Wako)].
Then each sample (9 mg protein/ lane) was subjected to SDS-PAGE, and
immunoblotting with anti-hGM2A (1:1000 dilution) and anti-β-actin
antibodies (A5316, Sigma-Aldrich, 1:2000 dilution). The Image J soft-
ware program (Ver.1.46) [11] was used to quantify the signal intensity.

For immunostaining, variant AB fibroblasts (F582) were seeded
onto 8-well Lab-Tek chamber slides (Thermo Fisher Scientific)
coated with 0.05% (w/v) atelocollagen (Koken, Tokyo, Japan). Then,
GM2A (5 mM) was added, followed by incubation for 7 d. The fi-
broblasts were fixed with 4% (w/v) paraformaldehyde (PFA, Wako).
After blocking with 5% (v/v) goat serum (Cedarlane Labs, Bur-
lington, Ontario, Canada), 1% (w/v) BSA/PBS at rt for 2 h, the in-
tracellular GM2 and LAMP-1 were detected with anti-GM2 (1:20
dilution) and anti-LAMP-1 antibodies (ab24170, Abcam, Cam-
bridge, MA, USA., 1:200 dilution) overnight at 4 °C. After washing,
FITC-mouse IgGþM (ab47830, Abcam) and Cy3-rabbit IgG (111-
165-006, Jackson ImmunoResearch, West Grove, PA, USA) were
treated at rt for 1 h. Nuclei were stained with Hoechst33258
(Sigma-Aldrich). Specimens were viewed under the LSM700 (Carl
Zeiss, Oberkochen, BW, Germany).

For GM2-ELISA [12], TSD fibroblasts were seeded onto a col-
lagen type I-coated 96-well plate (AGC Techno Glass,
5�103 cells/well), followed by incubation for 3 d. Then GM2A
(4 μg) was added to the culture medium, followed by incubation
for 2 d. After a medium change, modified HexB [7] (4-methy-
lumbelliferyl-6-sulfo-N-acetyl-β-D-glucosaminide-degrading ac-
tivity, 3 μmol h–1) was added, followed by incubation for 2 d. The
cells were fixed with 4% (w/v) PFA/PBS overnight at 4 °C. After
washing with PBS, the cells were treated with 0.6% (v/v) H2O2

(Sigma-Aldrich)/PBS for 30 min, and 5% (v/v) goat serum/1% (w/v)
BSA/PBS at 37 °C for 2 h. Then the cells were immunostained with
anti-GM2 antibodies (1:100 dilution) at rt for 1 h. After washing,
the cells were treated with biotin-conjugated anti-mouse IgG, IgM
antibodies (31,807, Thermo Fisher Scientific, 1:1000 dilution) at rt
for 1 h. After washing, the cells were treated with HRP-conjugated
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streptavidin (P0397, Dako, Glostrup, Hovedstaden, Denmark,
1:2000 dilution) at rt for 1 h. After washing, a peroxidase assay kit
for ELISA (Sumitomo Bakelite, Tokyo, Japan) was used with a mi-
crotiter plate reader at 450 nm.
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Fig. 1. Expression and purification of GM2A-His with CHO cell lines. (A) Schematic draw
GM2A without a signal sequence. (B) Immunoblotting of CM with anti-hGM2A antibodies
signal intensity of GM2A. 1 V: one vector, 2 V: two vectors transfected. (D) Immunoblo
contained 50 μL of CM. (E) Purification of GM2A by Ni-column chromatography. Each frac
contained 5 μg of protein. CM: conditioned medium. Elu: eluted fraction.
2.7. Computation modeling of modified HexB/GM2A complex

The proposed model of the modB/GM2A complex was con-
structed by means of the protein-protein docking and homology
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modeling. We first simulated protein-protein docking of the x-ray
structure of GM2A (Protein Data Bank ID code: 1pub) with
that of the HexA αβ-heterodimer structure (PDB ID code: 2gjx, A &
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score within the top 1%, and the molecular connectivity of GM2
between GM2A and the active site of the HexA α-subunit. The
GM2 binding position was refined into the interface between
GM2A and the HexA α-subunit with restricted docking to the re-
ference position of the lipid molecule bound in GM2A using MOE
(Chemical Computing Group, Montreal, Quebec, Canada). Finally,
the HexA αβ-heterodimer structure was replaced with modB in-
cluding GM2A and GM2 molecules using the homolog modeling in
MOE.

2.8. Statistics

Statistical analyses were performed using the SigmaPlot11
software program (Systat Software, San Jose, CA, USA), Po0.05
being considered to be significant. For comparisons of three or
more groups, we used one-way ANOVA with a Tukey post-hoc test.
We used the 2-tailed unpaired t-test to compare two groups.
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Fig. 3. Combined replacement effect of modified HexB and GM2A on TSD fibro-
blasts. Reduction of the GM2 accumulated in TSD fibroblasts was evaluated by
GM2-ELISA after treatment with modB or GM2A. Error bars show means 7SEM
(n¼6–7)., ANOVA with a Tukey post-hoc test,*Po0.05.
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Fig. 4. Homology model of the modified HexB and GM2A complex. Proposed model fo
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the A chain of modB. The GSEP-interacting loop region (I66–C75) of GM2A is shown in
3. Results

3.1. Production of GM2A by CHO cell lines and its purification

We twice introduced the GM2A gene containing a 10xHis-tag
and the GLA signal sequence by utilizing plasmid vectors con-
taining different drug-resistance genes (Fig. 1(A)), and established
CHO cell lines stably expressing GM2A by sequential selection with
hygromycin and G418. Although the recombinant GM2A-His pro-
teins were secreted from the CHO cells, marked increases in the
GM2A level was observed on immunoblotting with anti-GM2A
antibodies in serum-free CM derived from the CHO cell line re-
peatedly transfected with the GM2A expression vectors. The se-
creted GM2A-immunoreactivity in serum-free CM of the CHO cell
line transfected with two different vectors (Fig. 1B, C, lane 2V) was
about two times higher than that for the cell line transfected once
(Fig. 1B, C, lane 1V). The expressed GM2A migrated to the 23 kDa
position. After digestion with PNGase F, non-glycosylated GM2A
gave a 20 kDa band, indicated the GM2A contains N-glycans
(Fig. 1D). We purified the recombinant GM2A-His by Ni chroma-
tography, and then subjected it to SDS-PAGE. We obtained 6.1 mg
of purified GM2A-His per 1 L of CM (Fig. 1E).

3.2. GM2A replacement and GM2 reduction in patient fibroblasts

We evaluated the GM2A function in the culture system. Cul-
tured fibroblasts derived from a variant AB patient were treated
with recombinant GM2A, and then examined by immunoblotting
with anti-GM2A antibodies and immunostaining with anti-GM2
antibodies. Significant restoration of the GM2A-immunoreactivity
in a cell extract was observed after treatment with recombinant
GM2A (Fig. 2A and B). We detected excessive accumulation of GM2
in lysosomes as punctate fluorescence, co-localized with LAMP-1,
in untreated variant AB fibroblasts. After treatment with GM2A,
the punctate fluorescence due to GM2 was markedly reduced
(Fig. 2C).
GM2
S313

G312

E314

P315

r the modB/GM2A complex. (A) Overview of the model. Amino acid substitution
with labels (GSEP and NR). (B) Close-up view of the substitution region of GSEP in
red.
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3.3. Combined replacement effects of modified HexB and GM2A on
Tay-Sachs disease fibroblasts

Next, we evaluated the combinational replacement effect of modB
and GM2A. TSD fibroblasts were treated with modB and GM2A, and
then reduction of the GM2 accumulated in the cells after adminis-
tration of the recombinant proteins was examined by GM2-ELISA.
Accumulated GM2 was not significantly decreased by single re-
placement with modB or GM2A. In contrast, GM2 was significantly
reduced by combinational replacement with modB and GM2A
(Fig. 3).

3.4. In silico models of the modified HexB and GM2A complex

We constructed a complex model composed of modB and
GM2A based on the crystal structures of human HexA (PDB ID:
2GJX) [14] and GM2A (PDB ID: 1PUB) [15] in silico (Fig. 4A and B),
and predicted the quite similar manner of binding of the GSEP
loop sequences located in the altered β-subunit of modB with the
loop region (I66–C75) of the mature GM2A compared to that in the
Hex α-subunit [16].
4. Discussion

Recently, several therapeutic approaches have been developed for
clinical application and trials for LSDs on the molecular bases of the
enzymology and structural biology of lysosomal enzymes, including
enzyme replacement therapy (ERT) [7,17], gene therapy [18–20],
pharmacological chaperone therapy [21], and substrate reduction
therapy [22,23]. However, these therapies are not clinically available
for GM2 gangliosidoses (TSD, SD and variant AB) at present. In recent
years, clinical trials of intrathecal and intracerebroventricular ERT as
well as intracranial gene therapy for neurodegenerative LSDs, includ-
ing mucopolysaccharidosis types I, II and IIIA, Batten disease and
metachromatic leukodystrophy, have been performed in the U.S.A. and
E.U. according to ClinicalTrials.gov (https://clinicaltrials.gov/, accessed
March 3, 2016). These strategies are expected to be applicable to the
GM2 gangliosidoses therapy.

GM2 is known to be physiologically degraded in lysosomes by
HexA (αβ heterodimer) in co-operation with GM2A [4]. Previously,
we developed a genetically engineered human HexA carrying N-
glycans with high contents of terminal mannose 6-phosphate
(M6P) (Om4HexA) produced by an MNN4-introduced methylo-
trophic yeast Ogataea minuta strain [17]. We also designed a hu-
man modified HexB (modB), which contains substitutions of six
amino acids in the α-subunit, based on homology modeling of
human HexA (αβ heterodimer, PDB ID: 2gjx) and HexB (ββ
homodimer, PDB ID: 1nou), and produced a recombinant modB
with a CHO cell line, which can degrade GM2 through interaction
with GM2A [7], for brain-directed ERT for TSD and SD. We also
demonstrated that both Om4HexA and modB could reduce the
GM2 accumulated in the brains of SD (Hexb–/–) mice after in-
tracerebroventricular administration.

In this study, we established a CHO cell line that stably ex-
presses and secretes human GM2A (410 mg/L CM). The purified
GM2A with terminal M6P residues was taken up mainly via CI-
M6PR [24] by the fibroblasts derived from a variant AB patient
(GM2A deficiency), and reduced the GM2 accumulated in lyso-
somes of the patient cells. However, in the presence of 5 mM M6P
in the CM, not only was the intracellular GM2 reduction partly
inhibited but also the GM2A protein level became lower (data not
shown). Since there are two mechanisms involved in recapture of
extracellular GM2A via CI-M6PR and sortilin receptor [25], the
purified recombinant GM2A was considered to be incorporated by
the variant AB fibroblasts via both receptors.
Although human GM2A is produced by Escherichia coli [26],
methylotrophic yeast Pichia pastoris [27], insect cells [28], and the
CHO cell line [9,25] and through chemical synthesis [29], as pre-
viously reported, the only form derived from the CHO cell line
contains an N-glycan with M6P residues at the non-reducing ter-
mini [25]. So, we examined the combined replacement effect of
recombinant modB and GM2A on TSD fibroblasts. It took about
7 days for the modB treatment to reduce the accumulated GM2
(data not shown). In contrast, combined replacement with modB
and GM2A had a significant synergistic effect on the reduction of
the GM2, it taking only 4 days.

We also predicted through in silico analysis the molecular in-
teraction between the altered Hex β-subunit containing the sub-
stituted GSEP loop sequence and GM2A based on the structural
information of the human HexA and GM2A complex model. Both
of the GSEP loop structures in modB and HexA were suggested to
be commonly recognized by the loop domain (Ile66–Cys75) of
GM2A, and are responsible for the synergistic effect of co-ad-
ministration of modB and GM2A on GM2 reduction in TSD fibro-
blasts. From these findings, we propose a novel combinational ERT
involving co-administration of the modified HexB and GM2A for
not only TSD and SD but also variant AB patients, although the
latter GM2 gangliosidosis is known to be an exceptionally ultra-
rare disease. Additional modifications of the Hex protein or GM2A
to enhance the protein-protein interaction predicted on in silico
analysis may be more effective for this combinational replacement
therapy. Furthermore, the combination of GM2A protein replace-
ment and modified HEXB single gene therapy may become an al-
ternative therapy as a more effective therapy for GM2 gang-
liosidoses in the future.
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