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Abstract: In recent years, along with the rapid development of relevant biological fields, there has
been a tremendous motivation to combine molecular imprinting technology (MIT) with biosensing.
In this situation, bioprobes and biosensors based on molecularly imprinted polymers (MIPs) have
emerged as a reliable candidate for a comprehensive range of applications, from biomolecule detection
to drug tracking. Unlike their precursors such as classic immunosensors based on antibody binding
and natural receptor elements, MIPs create complementary cavities with stronger binding affinity,
while their intrinsic artificial polymers facilitate their use in harsh environments. The major objective
of this work is to review recent MIP bioprobes and biosensors, especially those used for biomolecules
and drugs. In this review, MIP bioprobes and biosensors are categorized by sensing method, including
optical sensing, electrochemical sensing, gravimetric sensing and magnetic sensing, respectively. The
working mechanism(s) of each sensing method are thoroughly discussed. Moreover, this work aims
to present the cutting-edge structures and modifiers offering higher properties and performances,
and clearly point out recent efforts dedicated to introduce multi-sensing and multi-functional MIP
bioprobes and biosensors applicable to interdisciplinary fields.

Keywords: molecular imprinting technology (MIT); molecularly imprinted polymer (MIP); bioprobes;
biosensors; biomolecular detection; drug tracking; sensing methods; working mechanisms

1. Introduction

As a powerful molecular synthetic strategy, molecular imprinting technology (MIT) has been
studied since first presented by Wulff [1] 40 years ago. It has come a long way in recent decades as a
technique in a broad range of solid phase extraction, chemical reaction catalysis, membrane separation
or chromatographic separation, biosensing and cell recognition applications [2–5]. The molecular
imprinting process is straightforward, typically involving the copolymerization of a functional
monomer or a series of functional monomers, a cross-linker, and an initiator in the presence of
template molecules, whereby the functional monomer possesses special functional groups to bind with
the template molecules. After polymerization, the resulting molecularly imprinted polymers (MIPs)
have stabilized binding moieties and subsequent removal of the template molecules leaves a cavity
with complementary size, shape and chemical moieties to the template and facilitates the capture of
analytes by the MIP [6–9]. A schematic of the whole process is shown in Figure 1.
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Figure 1. The general process of molecular imprinting technology including the copolymerization of 
functional monomers and the removal of template molecules. 

A bioprobe or a biosensor is a sensing kit that translates the first-hand sensing signals, for 
example, optical signals or mass signals, into specific quantitative or semi-quantitative analytical 
information. It is an integrated device containing two major components: the recognition receptor, 
which interacts with the target molecule; and the transducer, which is responsible for converting the 
first-hand signals into measurable information. Most reviews and books utilize the generalized term 
“biosensors” to define bioprobes and biosensors as one. Although they work for the same purpose, 
herein, we use separate terms because we aspire to clarify and stress the distinction that MIP 
bioprobes are fabricated as composite nanoparticles working in dispersed phases, especially in 
solutions, whereas MIP biosensors are manufactured as layer-by-layer physical constructs. 

It is obvious from the literature that researchers are gradually transferring their focus to 
employing MIPs as alternative bioreceptors to build bioprobes and biosensors rather than using 
traditional approaches such as antigen-antibody binding or with the help of enzymes, proteins, even 
whole cells. This is not a coincidence because MIPs have an intrinsic edge over those natural 
recognition elements. As an artificial polymer nanofilm, a MIP is intrinsically stable and capable of 
working in extreme environments such as an organic solvent, acid or base, at high temperature 
and/or high pressure. Besides, MIPs allow more modifiers to work together in a whole system and 
enable innovative tailor-made bioprobe and biosensor structures with further properties.  

The aim of this work is to systemically review recent MIP bioprobes and biosensors applied to 
biological detection and drug tracking. We organized this review by distinct sensing methods, which 
include optical sensing, electrochemical sensing, gravimetric sensing and magnetic sensing, 
presenting thoroughly analyzed mechanisms for each sensing approach. Simultaneously, this review 
presents multifarious cutting-edge structures and the incorporation of distinct modifiers into MIP 
bioprobes and biosensors, and compiles multi-sensing and even multi-functional designs with 
enhanced properties and performance. We believe that this review represents a panoramic sketch as 
well as a continuous incentive for researchers to further exploit the potential of MIP bioprobes and 
biosensors. 

2. Optical Sensing 

Optical sensing is a major sensing approach for MIP bioprobes and biosensors, which involves 
a process of transforming firsthand optical signals into detectable electric signals. Herein, we review 
optical sensing by three optical detecting mechanisms, namely, the fluorescence quenching 
mechanism, fluorescence enhancing mechanism, and surface plasmon resonance mechanism. 
Detailed information about optical sensing with MIP bioprobes and biosensors is summarized in 
Table 1. 

2.1. Fluorescence Quenching Mechanism 

Optical signals are obtained from quantum dots (QDs) as luminescent bioprobes or luminescent 
biosensors. QDs are nanoparticles that have superior properties in the field of biolabeling and 
bioimaging. 

Figure 1. The general process of molecular imprinting technology including the copolymerization of
functional monomers and the removal of template molecules.

A bioprobe or a biosensor is a sensing kit that translates the first-hand sensing signals, for
example, optical signals or mass signals, into specific quantitative or semi-quantitative analytical
information. It is an integrated device containing two major components: the recognition receptor,
which interacts with the target molecule; and the transducer, which is responsible for converting the
first-hand signals into measurable information. Most reviews and books utilize the generalized term
“biosensors” to define bioprobes and biosensors as one. Although they work for the same purpose,
herein, we use separate terms because we aspire to clarify and stress the distinction that MIP bioprobes
are fabricated as composite nanoparticles working in dispersed phases, especially in solutions, whereas
MIP biosensors are manufactured as layer-by-layer physical constructs.

It is obvious from the literature that researchers are gradually transferring their focus to employing
MIPs as alternative bioreceptors to build bioprobes and biosensors rather than using traditional
approaches such as antigen-antibody binding or with the help of enzymes, proteins, even whole cells.
This is not a coincidence because MIPs have an intrinsic edge over those natural recognition elements.
As an artificial polymer nanofilm, a MIP is intrinsically stable and capable of working in extreme
environments such as an organic solvent, acid or base, at high temperature and/or high pressure.
Besides, MIPs allow more modifiers to work together in a whole system and enable innovative
tailor-made bioprobe and biosensor structures with further properties.

The aim of this work is to systemically review recent MIP bioprobes and biosensors applied to
biological detection and drug tracking. We organized this review by distinct sensing methods, which
include optical sensing, electrochemical sensing, gravimetric sensing and magnetic sensing, presenting
thoroughly analyzed mechanisms for each sensing approach. Simultaneously, this review presents
multifarious cutting-edge structures and the incorporation of distinct modifiers into MIP bioprobes and
biosensors, and compiles multi-sensing and even multi-functional designs with enhanced properties
and performance. We believe that this review represents a panoramic sketch as well as a continuous
incentive for researchers to further exploit the potential of MIP bioprobes and biosensors.

2. Optical Sensing

Optical sensing is a major sensing approach for MIP bioprobes and biosensors, which involves a
process of transforming firsthand optical signals into detectable electric signals. Herein, we review
optical sensing by three optical detecting mechanisms, namely, the fluorescence quenching mechanism,
fluorescence enhancing mechanism, and surface plasmon resonance mechanism. Detailed information
about optical sensing with MIP bioprobes and biosensors is summarized in Table 1.

2.1. Fluorescence Quenching Mechanism

Optical signals are obtained from quantum dots (QDs) as luminescent bioprobes or luminescent
biosensors. QDs are nanoparticles that have superior properties in the field of biolabeling
and bioimaging.
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Table 1. Overview of different MIP bioprobes with optical sensing.

QDs Template Fabrication Form
Synthesis

Approach/Imprinting
Techniques

Analytical Method Size Emission Wavelength Linear Range LOD Ref

CdTe Amoxicillin Traditional form Sol-gel/Sol-gel
copolymerization

Fluorescence
microscopy/SEM/

TEM/FTIR
2.5 nm 400–700 nm 0.20–50.0 µg L−1 0.14 µg L−1 [10]

Mn-doped ZnS Cocaine and
metabolites Traditional form

Ultrasound
irradiation/precipitation

polymerization

Spectrofluorimetry/
fluorescence spectrometry/

XRD/FTIR
1.66 nm 400–800 nm 50–400 mg L−1 [11]

InP/ZnS
glucuronic acid (GlcA)/

N-acetyl-neuraminic
acid (NANA)

Traditional form Qds internal excited
photopolymerization

TEM/DLS/epifluorescence
microscopy/confocal

microscopy
125 ± 17 nm 550 nm, 660 nm [12]

CdSe SiO2 Cyhalothrin Enveloped by SiO2
Modified reverse

microemulsion method

Fluorescence
spectrometry/SEM/TEM/

IR spectroscopy
90 nm 550–700 nm 0.1–1000 µM 3.6 µg L−1 [13]

CdTe SiO2 Sulfadimidine Enveloped by SiO2 Sol-gel
Fluorescence

spectrometry/FTIR/
TEM/XRD

130 nm 550–600 nm 10–60 µM 1.9–3.1% [14]

FeSe SiO2

Cyfluthrin in
sendiments and fish

samples
Enveloped by SiO2

Modified reverse
micro-emulsion method

Fluorescence
spectrometry/SEM/

TEM/FTIR
100 nm 435–465 nm 0.010–0.20 mg L−1 1.3 µg kg−1; 1.0 µg kg−1 [15]

CdTe/CdS Diniconazole (DNZ) Enveloped by SiO2 Sol-gel
fluorescence

spectrophotometry/TEM/
SEM/FTIR

100 ± 10 nm 530 and 440 nm 20–160 µg L−1 6.4 µg L−1 [16]

Graphene SiO2 Metronidazole Enveloped by SiO2 Sol-gel polymerization
luminescence

spectrometer/FTIR/
SEM/TEM

100 nm 450 nm 0.2–15 µM 0.15 µM [17]

CdTe SiO2
2,4-Dichloro-phenoxyacetic

acid
On SiO2

nanosphere
Stöber method/sol-gel

polymerization

TEM/FTIR/
Spectro-fluorimetry/
thermogravimetry

50–80 nm 370–670 nm 0.66–80 µM 2.1 nM [18]

Graphene SiO2 Tributyltin On SiO2
nanosphere In-situ polymerization

FTIR/XPS/SEM/TEM/
Raman images and

spectra/AFM

2.37 ± 0.39 nm
(GQDs) 200 nm to

1.2 µm (mSB)

470 nm (GQDs) 460 nm
(mSGP) 0.0−10 ppm 12.78 ppb (water)

42.56 ppb (seawater) [19]

CdTe Tetracycline Molecularly
imprinted glass Sol-gel polymerization Spectrofluorimetry/

SEM/FTIR 70 µM–2.2 mM 535–560 nm 70 µM–2.2 mM 2.1 µM [20]

Mn2+-doped ZnS Lysozyme
Molecularly
imprinted
membrane

Sol-gel polymerization Spectrofluorimetry/
TEM/XRD/FTIR/AFM

3–4 nm (diameter)
15.2 nm (thickness)

1.55 nm (roughness)
350–700 nm 0.1–1.0 µM 10.2 nM [21]

CdSe/ZnS Histamine
Molecularly
imprinted
nanofibers

Organogelation
process/in-situ
polymerization

Spectrofluorimetry/
FTIR/SEM/TEM 50 nm (diameter) 330 nm, 660 nm 100–700 µg L−1 [22]

CdTe S-fenvalerate On paper-based
devices

Wax printing/screen
printing

FTIR/SEM/TEM/EIS/
EDS/CV

3–5 nm (QDs)/
100 nm (MIPs) 10 nM–1 µM 3.5 nM [23]
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Through the process of fluorescence quenching, the change of QDs’ fluorescence intensity can
be detected as an optical signal when MIP bioprobes or biosensors rebind with template molecules.
Typically, three mechanisms account for the fluorescence quenching of QDs, where template molecules
act as quenchers. The major cause of the QDs quenching is photo-induced electron transfer (PET),
which occurs when excited QDs capture excitons offered by template molecules (donor) through
photo-induced oxidation, or transfer excitons to the template (acceptor) through photo-induced
reduction. By capturing or transferring electrons, QDs relax back to ground state and achieve
fluorescence quenching. The mechanism is shown in Figure 2A,B.

Photo-induced Oxidation:

[QDs]2+ + hν→ [QDs]2+*

[QDs]2+* + donor→ [QDs]+ + donor+

Photo-induced Reduction:

[QDs]2+ + hν→ [QDs]2+*

[QDs]2+* + acceptor→ [QDs]3+ + acceptor−

The other two mechanisms for fluorescence quenching are Dexter electron transfer (collisional
energy transfer) and fluorescence resonance energy transfer (FRET), which can both occur when the
emission spectrum of QDs (donor) overlap the absorption spectrum of template molecules (acceptor).
The mechanism is shown in Figure 2C.
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QDs fluorescence quenching process follows Stern-Volmer relation:

F0

F
= 1 + KSVCq

where F0 and F are the fluorescence intensity in the absence and presence of quencher, respectively,
Ksv is the quenching constant (Stern-Volmer constant) for the quencher, and Cq is the concentration of
the quencher.

Traditional organic dyes and typical fluorophores are in a trend to be replaced by QDs bioprobes
and biosensors due to their superior performance in biolabling and bioimaging. Preponderance of
QDs can be generalized as:

1) Large Stokes Shifts of QDs avoid fluorescence self-quenching.
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2) Regularly sized QDs possess the emission spectrum with sharper and narrower peaks than
typical fluorophores.

3) QDs do not have the long-wavelength tail which interfere with the application of
multi-fluorophores imaging or multi-analyte measurements.

4) The emission spectrum of the QDs are roughly symmetrical on the wavelength scale.
5) Their absorption spectrum at broad wavelength ranging from shorter wavelength than the onset

of the absorption spectrum of organic dyes, which means QDs can be excited by a spectrally
broad light source and use the same excitation light source to excite various size of QDs, make it
accessible for easy muti-labeling as well as simultaneously detecting.

6) QDs possess strong photoluminescence with the fluorescent intensity tenfold more than
traditional organic dyes.

7) The photostability of QDs exhibites 100 times more than traditional organic dyes.

To make the best use of QDs, combining QDs with MIP to fabricate QDs@MIP bioprobes or
biosensors has become a research focus. Following the fluorescence quenching mechanism, QDs@MIP
biological probes or biosensors are fabricated as various structures in different strategies to maximize
the preponderance of QDs in optical signals for biolabeling and biosensing.

In order to functionalize as MIP bioprobes or biosensors, QDs should be fabricated in core-shell
structures. High surface area is always an important parameter for nanoparticles, but this property
may be problematic for QDs because it leads to reduced luminescence efficiency and photobleaching.
However, the core-shell structure can solve the problem. The core-shell structure has high quantum
yields and enhanced photochemical stability, and by enclosing the core QDs with another material
having a larger bandgap, we can confine the excitation to the core, reducing nonradiative relaxation
pathways and avoiding photobleaching. Another reason for fabricating a core-shell structure is that the
QD core is always a heavy metal, and the shells can serve as protective shields to prevent toxicity due
to leakage, making in-vivo or in-vitro studies possible. Sol-gel polymerization is the traditional and
classical method to synthesize MIP bioprobes, which involves conversion of monomers into a colloidal
solution (sol) that acts as the precursor for an integrated network (or gel) of either discrete particles
or network polymers. In recent years, many advanced synthesis strategies have also appeared, such
as ultrasound irradiation combined with precipitation polymerization, which help synthesize doped
QDs and MIP-coated composites. This strategy ensures the whole synthesis can be accomplished
within 4 h. Another advanced synthesis strategy is micro-emulsion polymerization. The advantages of
this strategy can be generalized as involving a thermodynamically stable emulsion, high surfactant
concentration, and lower monomer concentration. Table 1 shows detailed information of the synthesis
approach and imprinting techniques used to produce MIP bioprobes and biosensors for optical sensing.

Concretely, metal atoms (including heavy metals) are almost always selected to be the core
materials, and few studies have reported other core materials like SiO2 nanoparticles or polymer
nanoparticles. Silica and polysilane are optimum shell materials due to several reasons. First, the band
gaps of silica are strictly larger than those of metals, which means a silica shell allows the excitation
to be confined to the metal core, thus avoiding photobleaching of QDs. Second, the multivalency of
extended polysilane ensures the solubility of QDs. Third, the multivalency of extended polysilane
offers various bonding options with polymers, by contrast, the single direct bond of thiols on core
metals limits the possibility to bind with various polymers. In a standard polymerization process,
3-aminopropyltriethoxysilane (APTES) and tetraethoxysilane (TEOS) as polymeric monomer and
cross-linker, respectively, form a SiO2 nanolayer through hydrolysis and condensation reactions, finally,
the MIP layer is polymerized at the SiO2 nanolayer followed by the elution of template molecules to
produce complementary rebinding cavities.
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2.1.1. QDs as the Core

Typical heavy metals, for example, CdSe [14], CdTe [15,24,25], InP [13,26], compounds not metals
are most widely used as QDs core. Light QD metals such as FeSe [10] are also reported these days.
Polymerizing the SiO2 layer on the surface of the QD metal core is followed by fluorospectrometry
for analysis of sensing and rebinding of the QD bioprobes. Doped metal composites have gradually
replaced pure metals as QD cores. Doped QDs maintain all the advantages of QDs but are free of
self-quenching due to the large Stokes shift. Adjacent QDs may experience a fluorescence resonance
energy transmission process and result in fluorescence quenching, but doped QDs with smaller band
gaps avoid the quenching. Doped QDs also have longer lifetimes and lower cytotoxicity. The long
lifetime of doped QDs make it possible to produce longer emission times eclipsing the background
fluorescence interferences, while the introduction of light metals as dopants offers great opportunities
to lower the toxicity of QDs.

To dat, the host QDs are those with large band gaps, especially ZnS (Eg ~ 3.6 eV), and dopants
could be CdSe [27], CdTe [28] or Mn [10,11,13,29], among which, Mn doped ZnS QDs has been
thoroughly studied and most widely used for producing QDs@MIP bioprobes and biosensors.

Tan fabricated Mn doped ZnS QDs@SiO2@MIP bioprobes [30] for the detection of bovine
hemoglobin (BHb). The probes, with a diameter of 7 nm, emit a strong orange phosphorescence
with a sharp emission peak at 580–590 nm, which is attributed to the 4T1-6A1 transitional emission.
Fluorospectrometry clearly exhibits the decrease of fluorescence intensity when the probe rebinds with
BHb. High selectivity is demonstrated by a high imprinting factor (IF) of 3.1, which is the ratio of KSV
(Stern-Volmer constant) of the MIP- and NIP-probes, indicating that the molecular imprinting process
greatly promotes the quenching efficiency of QDs as well as enhances the spectral sensitivity of the
MIP probes to the template protein.

In recent years, carbon materials have been introduced as QD bioprobe cores due to their
unique advantages. Carbon quantum dots (CQDs) [31,32], fullerene quantum dots (FQDs) [33]
and graphene quantum dots (GQDs) [17,34] are the most widely studied examples. QDs made of
carbon materials offer unique optical and biological superiority while retaining the good properties of
typical semiconductor QDs. First, QDs made of carbon materials have characteristic photoinduced
electron transfer (PET) properties, because carbon materials are available both as electron donors and
electron acceptors, which enables more efficient fluorescence quenching. Second, QDs made of carbon
materials have no cytotoxicity, which makes them good alternatives to the typical semiconductor QDs
containing heavy metals. Furthermore, QDs of carbon materials have been demonstrated to have high
solubility, robust chemical stability and photostability, in addition to high biocompatibility.

With the increasing requirement of accuracy and multifunction, QDs@MIP bioprobes are no
longer limited to the single emission wavelengths of single-QDs materials, and different dual- [12,16]
or multi-QDs@MIP bioprobe structures have been successfully fabricated to reduce errors and achieve
multiplexed imaging. According to the Stern-Volmer equation, F0 is the emission fluorescence intensity
of bioprobes in the absence of the quencher, however, when measuring F0, it is inevitable that
fluorescence quenching of the bioprobe in fact occurs in the presence of quenchers through a collisional
or PET quenching mechanism, inducing inaccurate measurements of F0 (the reference signal). In order
to eliminate the error, Amjadi [16] replaced the initial Stern-Volmer equation with a modified method,
the ratiometic method. The group designed a novel core-shell structure of a dual-QDs@MIP bioprobe
by enclosing CDs in an inner silica core with CdTe/CdS QDs and MIP cavities surrounded by the
outer silica shell, as shown in Figure 3A, CTAB as surfactant produced a mesoporous silica outer layer
and enhanced the surface area of the dual-QDs@MIP bioprobe. In this structure, the emission of CDs is
stable and is set to be the reference signal, while the outer CdTe/CdS QDs experience collisional or PET
fluorescence quenching, serving as the responsive signal label. The fluorescence emission spectrum
demonstrates that with the increasing concentration of DNZ (the target analyte), the fluorescence
intensity of CdTe/CdS QDs (the response signal) obviously decreases while the fluorescence intensity
of CDs (the reference signal) hardly changes. In this situation, the study specifically measured the
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change of the ratio of QDs’ fluorescent intensity to CDs fluorescent intensity. Since the intensity of CDs
is stable, it avoids involving F0 and the consequent possible error. Panagiotopoulou et al. [12] designed
another dual-QDs@MIP bioprobe system by separately using two InP/ZnS QDs of different colors to
biolabel human keratinocytes simultaneously as shown in Figure 3B. This multiplexed sensing strategy
paves the way for further applications in biomolecular detection as well as clinical diagnosis.

Sensors 2018, 18, x FOR PEER REVIEW  8 of 37 

 

collisional or PET fluorescence quenching, serving as the responsive signal label. The 
fluorescence emission spectrum demonstrates that with the increasing concentration of DNZ 
(the target analyte), the fluorescence intensity of CdTe/CdS QDs (the response signal) 
obviously decreases while the fluorescence intensity of CDs (the reference signal) hardly 
changes. In this situation, the study specifically measured the change of the ratio of QDs’ 
fluorescent intensity to CDs fluorescent intensity. Since the intensity of CDs is stable, it avoids 
involving F0 and the consequent possible error. Panagiotopoulou et al. [12] designed another 
dual-QDs@MIP bioprobe system by separately using two InP/ZnS QDs of different colors to 
biolabel human keratinocytes simultaneously as shown in Figure 3B. This multiplexed sensing 
strategy paves the way for further applications in biomolecular detection as well as clinical 
diagnosis.  

  

 

Figure 3. Representative architectures of QDs-MIP bioprobes by fluorescence quenching 
mechanism. (A) Schematic illustration of dual-QDs-MIP bioprobes for DNZ with CDs and 
CdTe/CdS QDs work simultaneously. (B) Confocal microscope image of dual-QDs-MIP 
bioprobes with InP/ZnS QDs of different two colors staining human keratinocytes 
simultaneously. GlcA-bioprobe (green), NANA-bioprobe (red), blue areas are nucleus stained 
by DAPI. (C) Schematic illustration of GQDs-MIP magnetic bioprobes for dopamine with 
GQDs embedded on a magnetic silica bead. (D) Synthesis process of dual-QDs-MIP bioprobes 
for dopamine with GQDs as the core and Pln QDs dispersed in the shell. (A is reproduced with 
permission from [19], B is reproduced with permission from [20], C is reproduced with 
permission from [23], D is reproduced with permission from [7]). 

2.1.2. Other Materials as the Core 

QDs as the core of MIP bioprobes is the typical structure, but other materials are also 
eligible for use as cores due to their unique properties. To date, only silica/magnetic silica 
nanoparticles [11,16,35] and polymeric nanoparticles [26] have been designed to be the core of 
MIP bioprobes. Jia [18] fabricated a sandwich-like bioprobe structure by putting CdTe QDs in 
the middle of a silica core and a silica layer; in this structure, one nanoparticle can be treated 
with plenty of QDs, enhancing the fluorescent intensity. Moreover, CTAB serves as surfactant 
producing a mesoporous silica layer, with extremely enhanced binding efficiency. Zor [19] 

Figure 3. Representative architectures of QDs-MIP bioprobes by fluorescence quenching mechanism.
(A) Schematic illustration of dual-QDs-MIP bioprobes for DNZ with CDs and CdTe/CdS QDs
work simultaneously. (B) Confocal microscope image of dual-QDs-MIP bioprobes with InP/ZnS
QDs of different two colors staining human keratinocytes simultaneously. GlcA-bioprobe (green),
NANA-bioprobe (red), blue areas are nucleus stained by DAPI. (C) Schematic illustration of GQDs-MIP
magnetic bioprobes for dopamine with GQDs embedded on a magnetic silica bead. (D) Synthesis
process of dual-QDs-MIP bioprobes for dopamine with GQDs as the core and Pln QDs dispersed in
the shell. (A is reproduced with permission from [19], B is reproduced with permission from [20], C is
reproduced with permission from [23], D is reproduced with permission from [7]).

2.1.2. Other Materials as the Core

QDs as the core of MIP bioprobes is the typical structure, but other materials are also eligible for
use as cores due to their unique properties. To date, only silica/magnetic silica nanoparticles [11,16,35]
and polymeric nanoparticles [26] have been designed to be the core of MIP bioprobes. Jia [18] fabricated
a sandwich-like bioprobe structure by putting CdTe QDs in the middle of a silica core and a silica
layer; in this structure, one nanoparticle can be treated with plenty of QDs, enhancing the fluorescent
intensity. Moreover, CTAB serves as surfactant producing a mesoporous silica layer, with extremely
enhanced binding efficiency. Zor [19] synthesized a novel bioprobe structure by using magnetic silica
nanobeads as the core covered by graphene QDs, finally polymerizing and producing MIP cavities on
the outermost layer as shown in Figure 3C. QDs cannot be directly grafted onto the surface of magnetic
nanoparticles, however, in this study, silica was involved to serve as the intermediate nanolayer
connecting QDs to the magnetic nanocore. As a consequence, this novel structure combines optical
sensing with magnetic properties to simultaneously bioimage the target analyte while capturing and
preconcentrating it. Moreover, polymeric nanoparticles are also available to serve as the core. Zhou [26]
used polyindole (PIn) as the nanocore as shown in Figure 3D, which possesses attributes including
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slow degradation rate, good thermal stability, and high redox activity. Based on these advantages, the
group successfully sythesized PIn/GQDs@MIPs bioprobes for dopamine.

2.2. Fluorescence Enhancing Mechanism

Fluorescence quenching is the major mechanism applied in QDs@MIP bioprobes and biosensors,
whereas the fluorescence enhancing mechanism is also desirable. Several groups have reported
the successful synthesis of QDs@MIP bioprobes on the basis of the fluorescence enhancing
mechanism [36–46]. The Stern-Volmer equation is still applicable for the fluorescence enhancing
mechanism, but Cq here means the concentration of template molecules instead that of quenchers.
The Langmuir binding isothermal equation also can be used to describe the relationship between the
fluorescence enhancing and the concentration of template molecules. The equation can be linearized
to take the following form:

C
I
=

(
1

BImax

)
+

(
1

Imax

)
C

where Imax and I are the maximum fluorescence intensity and the intensity at a given concentration
of template molecules, respectively. Although the fluorescence enhancing mechanism is even more
complex than the common fluorescence quenching mechanism, this process can be basically attributed
to the FRET system, the PET system, and the surface passivation process of QDs.

2.2.1. PET System

The PET system is the major system of the fluorescence enhancing mechanism [36–41]. In a
PET process, lone electrons or lone pair electrons of the fluorescent organic functional monomers
can experience a PET process to transfer electrons away, and fluorescence enhancement occurs when
the rebinding of bioprobes to analytes inhibits PET. The core idea of this method is to deliberately
choose suitable fluorescent organic functional monomers. Wang [36] introduced nitrobenzoxadiazole
(NBD) as the detection signal source to fabricate QDs@SiO2 bioprobes as shown in Figure 4A. The
amine group of APTES with nitrogen lone-pair electrons can quench an adjacent NBD by a N-to-NBD
PET process. However, the PET process is inhibited when the amine group rebinds with analytes,
and an obvious fluorescence enhancement is exhibited. Also using NBD as fluorescent monomers,
Wan [37] synthesized “light up” bioprobes with a silica core and a MIP shell exhibiting same efficient
fluorescence enhancing. Kubo [41] used 2-acrylamidoquinoline as fluorescent monomer, and when
the monomer rebinds with target molecules, the formation of a hydrogen bond to the nitrogen is
similar to protonating the nitrogen, inhibiting the PET process of the quinoline nitrogen, and achieving
fluorescence enhancing as shown in Figure 4B. Other groups [38–40] have also developed different
MIP bioprobes by displacing different organic monomers, however, the basis of this method is by
inhibiting PET system.

2.2.2. FRET Systems

FRET is process of energy transfer from a donor to an acceptor. Fluorescence enhancement occurs
when FRET is inhibited. Gao [43] and Xia [42] both synthesized the same fluorescence enhancing MIP
bioprobe structure on the basis of FRET as shown in Figure 4C. In the absence of template molecules,
FRET occurs from the QDs (energy donors) to Au NPs (energy acceptors), leading to the energy
loss of QDs whose fluorescence intensity stays at a low level. However, in the presence of template
molecules, the rebinding process of bioprobes with analytes inhibits the FRET process from QDs to
Au NPs, thus enhancing the fluorescence intensities of QDs. The expected result was demonstrated
by fluorospectrometry, which shows an enhancement of FL peak with the increasing concentration
of analytes.
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2.2.3. Surface Passivation System

It is also reported that the fluorescence enhancing mechanism can be attributed to the restoration
of QD surface defects, namely through the surface passivation system [45] as shown in Figure 4D.
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Figure 4. Representative architectures of QDs-MIP bioprobes by fluorescence enhancing
mechanism. (A) Synthesis process of QDs-MIP bioprobes for 2,4-dichlorophenoxyacetic acid with
nitrobenzoxadiazole (NBD) as the fluoresence functional monomer for enhancing PET process.
(B) Schematic illustration of QDs-MIP bioprobes for cyclobarbital with the functional monomer
nitrobenzoxadiazole (NBD) as signaling receptors for enhancing PET process. (C) Schematic
representation of the QDs-MIP bioprobe by means of FRET from QDs (energy donor) to Au NPs
(energy acceptor). (D) Synthesis process of CdTe QDs-MIP bioprobes for cysteine under the surface
passivation system. (A is reproduced with permission from [24], B is reproduced with permission
from [29], C is reproduced with permission from [30], D is reproduced with permission from [33]).

Wang [44] synthesized CdTe QDs capped with thioglycolic acid (TGA)@MIP bioprobes for the
detection of cysteine (Cys). The terminal thiol groups of Cys are easily grafted to the surface of CdTe
QDs, inducing plenty of Cys conjugated to CdTe QDs which leads to the decrease of the surface defects
of QDs. The surface passivation system has been demonstrated by Wang through fluorescence titration
experiments by L-alanine and L-tryptophan, where the resultant fluorescent spectra shows obvious
increases of the emission peaks with the increasing concentration of Cys.

2.3. Surface Plasmon Resonance Mechanism

It is reported that the surface plasmon resonance (SPR) mechanism has become a widely used
strategy to build MIP bioprobes and biosensors. Unlike the fluorescence mechanism, as an optical
sensing method, SPR lacks a self-emitting light and instead works by means of detecting the changes
of angles of incidence. Plasmons are oscillations of conduction band electrons occurring at the
metal-dielectric interface; these oscillations induce an electric field whose intensity declines extremely
in a dielectric medium. When an incident beam reaches the surface of a metal at a specific angle, an
evanescent field comes into being. If the evanescent field is resonant with surface plasmons, which
means energy is transferred from photons to electrons, a surface plasmon resonance occurs, followed
by a tremendous decay of the reflected light intensity at a specific incident angle which can be detected
by a SPR detector. To excite the surface plasmon over the metal-dielectric interface, an incident beam is
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typically passed through a gold-coated glass. With the decoration or addition of a film onto the planar
metal surface, the dielectric area become thicker and the refractive index changes, which induces the
resonance curves shift to a higher angle, and this shift exhibits the assembly process of the SPR MIP
biosensors. For the same reason, at a certain incidence angle, SPR signals are enhanced when the MIP
biosensors rebind with template molecules. MIP biosensors have a series of advantages over those
of QDs such as real-time sensing and direct, label-free detection. However, a classical SPR device
involving a gold or silver film to induce a SPR process only enables sensing for macro-biomolecules,
the detection limit is not sufficiently low in terms of sensing light weight biomolecules including DNA,
or hormones. When rebinding with light biomolecules, the change of refractive index is too small to be
observable. As a result, further decorations must be added onto the classical gold or silver films for
enhancing their bio-sensibility and accuracy in terms of light biomolecules detection.

2.3.1. Nanoparticle Decorations

Nanoparticles (NPs) decorated on a Au film is the most widely used strategy to enhance SPR
signals. Metallic nanoparticles such as Au or Ag NPs have been demonstrated as amplifying labels
for SPR@MIP biosensors. Electric coupling occurs to the localized surface plasmons of Au NPs with
the surface plasmon waves produced by the Au film, shifting the SPR energy which induces an
obvious decay of SPR signals, thus enhancing the SPR signal change [47]. Selecting thioaniline as
the functional monomer, Riskin [48–50] built a SPR@MIP biosensor in a series of studies for different
analytes where molecularly imprinted Au NPs were successfully grafted to a gold-coated glass surface.
Based on this structure, the group fabricated a SPR@MIP biosensor for the detection of different
amino acids by introducing cysteine as another functional monomer associated with Au NPs to bind
with different amino acids through complementary zwitterionic electrical interactions and hydrogen
bond interactions. Results from the sensogram indicated that Au NP decoration enhanced the SPR
signals greatly.

Besides metal NPs, semiconductor QDs are also involved for the decoration of SPR metal
films. It was demonstrated that semiconductor QDs will experience an electric separation process by
transferring the conduction band electrons to Au NPs [51–53]. In this charging process of Au NPs,
because the localized surface plasmon (LSPR) of Au NPs experiences electric coupling with surface
plasmon of the gold film along the metal-dielectric interface, not only Au NPs will exhibit LSPR
shifts, but also the surface plasmon of the Au film will be altered, inducing changes in SPR signals.
Since Zayats [51] first integrated SPR spectroscopy with CdS QDs charging of Au NPs, many groups
have managed to introduce QDs into SPR biosensors. Sensorgrams indicate the great properties of
these new SPR biosensors including apparent enhancement of SPR signals. However, as far as we
know, antibodies have been the only decoration type for this novel QDs-SPR biosensor so far. As a
result, MIP decoration of biosensors should be further exploited, and we firmly believe that with MIPs
combined with QDs-SPR biosensors, the properties, including SPR bio-sensitivity, will be exploited to
a higher level.

2.3.2. Layer Decorations

It has been demonstrated that layer decoration is an even better approach to exploit properties
of SPR biosensors compared with NPs decoration. According to reported studies [54–57], graphene
sheets (GO) and graphene oxide sheets (GOS) are two major materials for layer decoration of SPR
biosensors. Considering multiple oxygen-containing functional groups on the terminal of GOS which
increase the dielectric constant, Chiu [57] decorated GOS onto the typical Au film of a SPR glass prism.
Results indicated enhanced properties compared with a typical gold film-coated SPR, including a
5.2 times higher affinity constant, 2 time higher SPR angle shifts and 1/100th lower detection limits.
Zeng [55] replaced GOS with pristine graphene due to its higher electron transfer rate and higher
optical transparency. With Au NPs decorated on GO, a fourfold sensitivity enhancement was achieved
compared to a typical SPR. Because the longitudinal band of Au naonorods (NRs) is very sensitive
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to causing electron oscillations along the long axis of Au NRs, thus inducing rather stronger SPR
signals, Zhang [54] replaced Au NPs with Au NRs managing to achieve a 32-fold lower detection
limit. Recently, inspired by the great optical absorption property of MoS2 for enhancing charge transfer
efficiency, Zeng [56] even enhanced the sensitivity by more than 500 times by decorating a MoS2

nanolayer between graphene layer and gold film. Unfortunately, so far all reported studies have been
limited to using antigen-antibody sensing, as a result, there is a tremendous urgency to upgrade the old
antigen-antibody sensing to the decoration with MIPs, which would certainly enhance the selectivity
and other properties of SPR biosensors to a higher level.

2.3.3. New Structures

A series of novel SPR@MIP biosensors based on optical fibers [58–62] has aroused great interest
due to its absence of complex electric devices compared to the typical sandwich-like SPR@MIP
biosensor. This SPR@MIP-fiber biosensor can be prepared by removing a small part of the cladding
and decorating it with a metal film and a MIP film, and then white light is launched at one terminal
of the fiber and detected at the other end of the fiber, the decrease of light intensity through the
transmission in the fiber being collected as the SPR signal. Although it is reported that this structure
does not enhance the selectivity, it enables on-line and remote sensing while reducing the cost and
dimensions due to the absence of complex electric devices. Verma [58] used a silver layer to fabricate
the biosensor for successfully detecting melamine and vitamin B3, respectively. Cennamo [59–61]
improved the properties of optical fiber SPR@MIP biosensors by successively replacing the typical
optical fibers (POF) with tapered optical fibers and substituting the typical Au film or Au NPs with
five-branch gold nanostars (GOS) as shown in Figure 5A. A tapering process led to the modification of
the diameter and the core refractive index, causing an enhancement of the SPR signals. GOS enables a
higher surface area while presenting multiple resonances which enhance the sensitivity. The results
indicated that the sensitivity of this novel structure is about three (vs not-tapered POF) or thirty (vs
tapered POF) times that of POF biosensors based on MIPs decorated on a bare gold layer.

Another representative structure of MIP biosensors based on SPR is the hybrid microgel. The
motion of microgels is not restricted to a substrate, so they have superior performance in the solvent
phase compared with other structures. When exposed to stimuli, microgels are apt to swell or shrink
due to rebinding with or separation from analytes (stimuli), inducing a phase volume transition and a
change of SPR signals. Wu [63] designed a novel molecularly imprinted glucose-responsive microgel
as SPR bioprobe made of Ag NPs and NIPAM-AAm-VPBA as functional monomer as shown in
Figure 5B. When binding with glucose, the microgel undergoes a swelling of phase volume, resulting
in an expansion of the distance between Ag NPs, hence followed by a SPR signal shift induced by the
changing vicinal environment of the Ag NPs. Amazingly, this novel microgel enables one to determine
glucose concentration levels without instrumental aid by changing color from yellow to red when the
glucose concentration reached 20.0 mM. As demonstrated by real sample analysis, this MIP microgel
displays sufficient accuracy comparable to the clinical standard.

Recently, another cutting-edge hollow plasmonic nanostructure has been designed based on gold
nanocages (AuNCs) [64] as shown in Figure 5C, exhibiting even higher refractive index sensitivity
over that of the AuNPs and AuNRs reviewed above, as a result of highly tunable localized surface
plasmon resonance into the near infrared region. Compared to the visible spectral range, the
endogenous absorption coefficient of living tissue is nearly two orders of magnitude smaller within
this near-infrared area. Furthermore, AuNCs exhibit drastic scattering and absorption cross-sections
which are significant properties for photoacoustic imaging and photothermal therapy. Combined
with molecular imprinting technology, the AuNCs are polymerized with APTES and TEOS as the
sillanization process to fabricate a AuNCs@MIP bioprobe based on SPR. Results showed that the
bioprobe achieved more than an order of magnitude lower detection limit for sensing urinary proteins
which enables the detection of a kidney injuries down to the concentration of 25 ng mL−1.
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Figure 5. Novel architectures of SPR-MIP bioprobes and biosensors. (A) Schematic representation of
the SPR-MIP biosensor with tapered optical fibers and decorated with five-branchedgold nanostars in
MIP film. (B) Schematic illustration of SPR-MIP bioprobes for glucose with Ag NPs surrounded by
poly(NIPAM-AAm-VPBA) to form the microgel which control the distance of Ag NPs with each other
and ensure them to display SPR property. (C) Schematic representation of QDs-MIP gold nanocages,
(A is reproduced with permission from [47], B is reproduced with permission from [49], C is reproduced
with permission from [50]).

3. Electrochemical Sensing

Electrochemical sensing is the most widely used sensing method for all sorts of biosensors,
MIP biosensors are without exception, and because of the sensitivity of MIP and the sensibility
of the electrochemical sensing method, they have attracted considerable attention to the efforts to
combine MIPs with electrochemical sensing to build electrochemical-MIP-biosensors [65,66]. In a
standard structure, a MIP nanofilm is polymerized through electrochemical or chemical methods
and immobilized on the electrode to fabricate a sandwich-like assembly. The process of producing
electrochemical-MIP biosensors is shown in Figure 6. Electrochemical sensing is directly based on the
electrochemical signals produced in the sensing process of redox reaction between template molecules
and modifiers on the working electrode or the electrode itself, namely the electron transportation of
redox reaction. Detailed information about electrochemical sensing with MIP biosensors is summarized
in Table 2.
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Table 2. Overview of different MIP biosensors with electrochemical sensing.

Functional Monomers Template Method of Polymerization Electrode Electrochemical
Analytical Method Linear Range LOD Ref

o-PD GSH/GSSG In-situ electrochemical Au CV/EIS 0.04–20 nM(GSH)/0.04–10 nM(GSSG) 1.33 × 10−2 nM [67]

MAH/HEMA E. coli UV-polymerization/micro-contact
imprinting method Au CV/capacitance

testing 1.0 × 10−2–1.0 × 10−7 CFU/mL 70 CFU/mL [68]

NPEDMA Catechol/dopamine Electrochemical/photochemical Au on glass CV 228 nM–144µM 228 nM [69]

Prussian blue Oxytetracycline Electrochemical Pt CV/DPV 0.1–1.0 µM 230 fmol/L [70]

o-PD Metronidazole Electrochemical Nanoporous Au-Ag alloy
microrod CV 8.0 × 10−5–1.0 × 103 nM 2.7 × 10−5 nM [71]

Methacrylic acid Dopamine
Surface-initiated

photopolymerization/
electrochemical

AuNPs/Au SWV 0.1–10 nM 0.35 nM [72]

ATP CPF Electrochemical AuNPs/GCE CV/EIS 50–100 µM 25 µM [73]

Phenol Tyrosine Electrochemical cAuNPs/GO/GCE CV/EIS/DPV 1.0–20.0 nM 0.15 nM [74]

Aminothiophenol/dopamine Cholesterol Electrochemical Au
microflowers/graphene/GCE CV/EIS/DPV 10−9–10−4 nM 3.3 × 10−10 nM [75]

Pyrrole/o-PD Dopamine Electrochemical hNiNS/GCE CV/EIS 5 × 10−5–5 × 10−2 nM 1.7 × 10−5 nM [76]

o-PD Metronidazole Electrochemical 3D nanoporous Ni/Au CV/EIS 6 × 10−5–1.0 × 10−6 nM 2 × 10−5 nM [77]

Pyrrole Bovine serum
albumin Electrochemical CS/IL/graphene/GCE CV/EIS/DPV 1.0 × 10−7–1.0 × 10−1 mg L−1 2 × 10−11 mg L−1 [78]

Chitin Cholesterol Chemical MWCNT/CCE CV/LSV 1.0 × 10−2–3.0 × 10−1 µM 1 nM [79]

o-PD Olaquindox Electrochemical AuNPs/MWCNT/GCE CV/DPV 10.0–200.0 nM 2.7 nM [80]

Aminothiophenol Cholesterol Electrochemical AuNPs/MWNTs/GCE CV/DPV 1.0 × 10−4 – 1.0 nM 3.3 × 10 −5 nM [81]

Phenol Atrazine Electrochemical PtNPs/C3N4NTs/GCE CV/EIS/SWV 1.0 × 10−3–1.0 × 10−1 nM 1.5 × 10−4 nM [82]

p-ABA/Prussian blue Metolcarb Electrochemical PB/CMK-3/GCE CV 5.0 × 10−4–1.0 × 102 µM 9.3 × 10−2 nM [83]

Pyrrole Urea Electrochemical CdS QDs/Au CV/EIS/DPV 5.0 × 10−3–7.0 × 10 nM 1.0 × 10−3 nM [84]

N-Acryloyl-4-aminobenzamide Ifosfamide Chemical GQDs/screen-printed carbon CV/DPV 0.25–121.35 µg L −1 0.177 µg L −1 [85]

Pyrrole Bisphenol S Electrochemical hNiNS/GQDs/GCE CV/DPV 0.1–50 µM 0.03 µM [86]

APTS E. coli Chemical Ag-ZnO/GO/GCE SWV 10–109 CFU mL−1 5.9 CFU mL−1 [87]

o-PD Propyl gallate Electrochemical PtAu/CNTs/graphene/GCE CV 7 × 10−2–1.0 × 10 µM 2.51 × 10−2 µM [88]

Vinyl acetate Glucose Chemical MnO2/CuO/GO/copper wire CV 0.5–4.4 mM 53 µM [89]

Pyrrole Cefixime Electrochemical Fe@AuNPs/MWCNs/GCE CV/EIS/SWV 1.0 × 10−4–1.0 × 10−2 µM 2.2 × 10−5 µM [90]

Acrylic acid Pyrazinamide Chemical FeAg/RGO/PGE CV/SWV 1.996 to 740.74 ng L−1 0.66 ng L−1 [91]

Acrylic acid Py/PLP Electrochemical FeCu magnetic NPs/PGE CV/EIS/SWV 0.099–196.0 µg L−1 (Py)/0.199–157.4 µg L−1 (PLP) 0.04 µg L −1 (Py)/0.043 mg L −1 (PLP) [92]

Methacrylic acid Kanamycin Chemical Fe3O4/MWCNTs/carbon
electrode CV/EIS/DPV 1.0 × 10−4–1.0 µM 2.3 × 10−5 µM [93]

Gsh Estradiol Chemical Fe3O4@Au/GCE CV/DPV 0.025–10.0 µM 2.76 nM [94]

Aniline Amaranth Electrochemical Fe3O4/rGO/GCE DPV 0.05–50 µM 50 nM [95]

Methacrylic acid Chlorotoluron Chemical magnetic NiHCF NPs/GCE CV 5 × 10−3 to 1 × 10−1 µM 9.27 × 10−4 µM [96]
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3.1. Electrochemical Analytical Method

Voltammetry and impedance are two major ways to monitor the whole fabrication process
and reflect sensing behaviors of electrochemical-MIP-biosensors. Voltammetry involves recording
the current generated with the varied potential, specifically, it includes Cyclic Voltammetry (CV),
Differential Pulse Voltammetry (DPV), and Square Wave Voltammetry (SWV). CV is the most selective
method which involves linear potential of triangular waveform, achieved by cyclic sweep scan. Because
with the increasing electron transfer, comes higher redox peaks, with the help of detecting the electron
transfer between the redox probes, for example [Fe(CN)6]3−/4− ions, and the working electrode, one
can use CV to monitor the whole fabrication process of the MIP biosensor. Pre-polymerized decoration
to the electrode is accompanied with the rising of redox peaks, since grafting modifiers like metal
nanoparticles or carbon materials will enhance the conductivity and facilitate electron transportation
on electrode interface. On the contrary, the following step by polymerizing MIP nanofilms onto the
electrode will suppress the electron transfer and lead to the decrease of redox peaks. But after the
extraction of template molecules, the redox peak will rise again because it allows redox probe to get
through and participate in the redox reaction again. When sensing and rebinding with analytes, the
redox peak will decrease again for the same reason. DPV and SWV are advanced Voltammetry using
different applied potential function, which offer higher sensitivity. As for DPV, the potential function
is obtained by superimposing a series of regular voltage pulse to a linear sweep voltammetry or a
staircase voltammetry, while SWV is combined with a symmetric square wave and staircase potential,
the plotted current is measured by subtracting the reverse current waveform from the forward current
waveform, since the plotted current is higher than either of the forward or the reverse current, SWV
offers even higher sensitivity than DPV. Furthermore, Electrochemical impedance spectroscopic (EIS)
is the most widely used impedance method in this field, the EIS includes a semicircle portion at high
frequency and a linear portion at low frequency, which corresponds to the electron-transfer restriction
and diffusion process.

3.2. Electrochemical Sensing Mechanism

To evaluate the performance of electrochemical-MIP-biosensors, one can use the same analytical
methods as discussed above. However, to illustrate the sensing mechanism, basically we need to
classify it into three separately mechanisms. In the first case, the redox current is generated by the
redox reaction between the analytes and the electrode after the rebinding of template molecules to
the biosensor. Under this mechanism, with the increasing analyte concentration, more rebinding
will cause a stronger redox reaction and lead to an increase of the peak. In another case, also named
“gate-controlled” mechanism or the “gate effect”, the redox current could be produced by the redox
reaction between the redox probes and the electrodes, redox probes in the solution will pass through
the MIP nanofilms to react with the electrode when template molecules are absent or extracted. As a
result, it is obviously that the increasing analytes concentration will lead to the decrease of current peak,
since template molecules impede the electron transportation between redox probe and the electrode.
Furthermore, the competitive mechanism, is to employ a structurally similar analyte derivative to
compete with the analyte, the electroactive competitors always bind with the MIP film first, which
induce an initial current peak, after adding the analyte, current peak is changed because of the
competitive mechanism between the analyte and the competitor.

3.3. Electrochemical-MIP-Biosensors

In the last decade, most works have been dedicated to enhancing the performance of
electrochemical-MIP-biosensors, namely the sensitivity of the biosensor. Various sorts of new designs
have emerged, but to generalize, the overall ideology is to improve the biosensor’s conductivity,
specifically focus on two facets:
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1) Conductivity of the MIP nanofilm, which refers to the selection and polymerization of
functional monomers.

2) Conductivity of the transducer, which refers to the selection of the electrode material as well as
modifiers decorated on the electrode.

Electrochemical polymerization is the traditional and classical method for synthesizing
electrochemical-MIP-biosensor, which is a straightforward means of obtaining MIP films with a
certain thickness by controlling the number of cycles or the current that is applied to the electrode
as discussed above. In recent years, some photo-induced polymerization methods have been
combined with electrochemical polymerization for synthesizing electrochemical-MIP-biosensor, such
as UV-polymerization and surface-initiated photopolymerization, which are simple, fast and versatile;
they provide MIP nanofilms with well characterized chemical structures. Table 2 shows detailed
information of the synthesis approach and imprinting techniques to produce MIP biosensors for
electrochemical sensing.

3.3.1. Electroactive MIP Nanofilms

Classic organic polymeric materials, especially functional monomers, for instance acrylic acid,
vinyl acetate, and pyrrole, offer great advantages of easy manufacture, decent reproducibility and
ease of controlling the thickness of MIP nanofilms through electropolymerization. Nevertheless, it is
obviously that these classic functional monomers are electric insulators, which is detrimental to the
electron transport, so needless to say other organic polymeric materials are involved in the process
such as the cross linker and the initiator. Under such circumstances, exploiting new displacements has
become a research hotspot in recent years, and several studies have shown that some electroactive
functional monomers can be involved and manage to participate in polymerizing MIP nanofilms, which
means MIP nanofilms can be employed as a contributor rather than a blocker of biosensor conductivity.
Aryl compounds and their derivatives have drawn great attention, and several studies have managed
to enhance the MIP conductivity with the use of methacrylic acid [72,93,96], and an aryl diazonium salt,
which offers stable aryl bonds. In another study, N-acryloyl-4-aminobenzamide [85] was applied as the
functional monomer polymerized with graphene quantum dots; Furthermore, other studies indicated
that the involvement of Prussian Blue [70] serves the same purpose as electron transfer facilitator. CV
has demonstrated the contribution of these functional monomers to the conductivity of the biosensor
by showing a clearly increasing current peak after MIP polymerization. Lakshmi [69] designed a new
monomer, N-phenylethylenediamine methacrylamide (NPEDMA), which has the intrinsic electron
transport nature and simultaneously possesses both aniline group and methacrylamide functions. After
electro-photo polymerization with NPEDMA, the MIP nanofilm serves as an electroactive “molecule
wire” and thus extremely enhances the sensitivity of the electrochemical-MIP biosensor.

3.3.2. Selection of Electrodes

Selection of proper electrodes is an indispensable step for any conductivity enhancement since the
intrinsic properties of electrode materials play a decisive role in the overall transducer conductivity.

Noble metals are eligible for electrode materials, among which Au [67–69,72] and Pt [70] are the
most widely used. Noble metals possess excellent electron transfer properties and a large anodic
potential range. Thiol groups can be easily grafted to the gold electrode surface, which facilitates further
decorations of the electrode. However, metal oxide films always form at the surface on electrodes
which induces a strong background current and interferes with electrochemical analysis. Other metals
such as copper wire [89] are also selected to be electrode. Song [71] synthesized nanoporous Au-Ag
alloy microrods as the working electrode, which have extremely large surface areas for enhancing
electron transfer and show extremely low LOD of 2.7 × 10−14 M for detecting metronidazole.

Carbon-based electrodes are more widely used due to their wide potential window, good chemical
inertness, rich surface properties, low background current and low price. Glassy carbon electrodes
(GCEs) are the most frequently applied carbon-based electrodes, since besides the superior properties
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listed above, GCEs possess high hardness and good electrical conductivity. Other carbon-based
electrodes such as pencil carbon electrode [91,92], ceramic carbon electrode [79], and screen-printed
carbon electrode [85] have also been involved in fabricating electrochemical-MIP biosensors in recent
years. Nevertheless, the biggest drawback of carbon-based electrodes is their electron transfer rate
compared with metal electrodes. As a result, decorations and modifications of electrodes have become
a necessity for new era biosensors.

3.3.3. Decorations and Modifications to Electrodes

Metal nanoparticles are involved in electrode decoration and modification due to their good
biocompatibility, and large specific surface area which leads to high conductivity. Especially for Au
naonoparticles (AuNPs), plenty of works [73–75] employed AuNPs also because it is easily grafted to
the surface with the control of Au-S bonds through silanes and thiols. Some modified Au NPs were
also reported to be involved such as cubic AuNPs [74] as shown in Figure 7A, and Au microflowers [75]
formed by using bionic polydopamine film to wrap AuNPs as shown in Figure 7B, which could not
only enhance the conductivity but also help firmly immobilize MIP films. Other metal NPs including
Pt [82] and Ni [76,77,86] NPs are also investigated for decorations and modifications to electrodes. To
extremely enhance the conductivity, hollow nickel nanospheres [76] (as shown in Figure 7C) and 3D
nanoporous nickel skeleton [77] were fabricated and attached to GCE and gold electrodes surfaces,
respectively, as a result of their high surface area where electron transfer is further facilitated.
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Figure 7. Representative metal NPs in electrochemical-MIP bioprobes and biosensors. (A) Synthesis
process of decorating cubic Au NPs on GCE. (B) Synthesis process of decorating microflowers Au NPs
on GCE. (C) Synthesis process of cultivating hollow nickel nanospheres on GCE by extracting Cu. (A is
reproduced with permission from [70], B is reproduced with permission from ref. [71], C is reproduced
with permission from [75]).

A number of sp2 hybridized carbonaceous nanomaterials have drawn more and more attention
for functional decorations and modifications to electrodes [97], including 0D graphene quantum
dots (GQDs) [26,34,85,86] and fullerene [98], 1D carbon nanotubes (CNTs) [79–82,88,90,99], 2D
graphene [75,78,88] and graphene oxide sheets [74,87,89]. Semiconductor quantum dots are mainly
used for fabricating bioprobes which function on optical signals, but some recent studies also employed
QDs, such as CdS QDs [84], for electrochemical-MIP biosensors, where they mainly play the role of
“amplifier” for electron transfer. Graphene quantum dots (GQDs) are a new generation of nontoxic
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QDs [100] which not only serve as electron transportation pathways, but also possess carboxylic
moieties at the edge which help water dispersibility and facilitate the reactions of monomers and other
modifier compounds with each other.

Graphene and graphene oxide nanosheets are used because of their large surface area with
low dimensions, fast electron transportation and good absorption capacities, especially for graphene
oxide, the sharp edge of which was found to be capable of destroying bacteria, and has abundant
functional groups and moieties that also ensure graphene oxide is an eligible anchor for other modifiers.
Carbon nanotubes are also being widely utilized for the same purpose, including single-walled
carbon nanotubes as well as multi-walled carbon nanotubes. Furthermore, other novel carbonaceous
derivatives are introduced to the area, for example, highly ordered mesoporous carbon [83] with large
pore volume offering a great surface area; Graphitic carbon nitride (g-C3N4) [82] with C-N bonds
which has atomic-scale thickness and facilitates electron transfer.

Neither metal nanoparticles nor carbonaceous nanomaterials are expected to be used exclusively,
but rather combined with other sorts of modifiers to fabricate compounds which will always lead
to good results beyond expectations and even endow the sensing process with new functions.
To illustrate, graphene sheets help immobilize and stabilize metal NPs, while NPs enhance the
system conductivity and prevent graphene sheets from face-to-face aggregation. Rao [86] mixed
hollow Ni nanoparticles with graphene quantum dots, Yola [74] let cubic AuNPs work with graphene
oxide while Yang [75] decorated Au microflowers onto graphene. Not limited to the function of
improving electron transportation rates, the metal NPs-carbonaceous nanomaterials model has already
been justified of great significance for photothermal therapy [87,101], which is another motivation
for compounding metals and carbonaceous nanomaterials. For example, CNTs have been proved
to be capable of killing bacteria through a photothermal process [102], Wang [80] and Ji [81] both
fabricated AuNPs grafted to MWCNTs for detecting olaquindox and cholesterol, respectively, through
which Ji achieved impressive low LOD of 3.3 × 10 −14 mol·L−1. G-C3N4 is also revealed to be
helpful to photothermal therapy [103], but the pristine g-C3N4 still lacks electron transfer ability, so
to advance the performance, Yola [82] fabricated g-C3N4 nanotubes and managed to embed Pt NPs
on g-C3N4 nanotubes and electropolymerized them on a GCE electrode for detecting atrazine at a
very low LOD of 1.5 × 10−13 M. In recent years, studies have transferred their focus on replacing
classic metal NPs modifiers to bimetal, alloy, metal oxide systemd, or the combinations of one with
each other. Specific properties will be enhanced for bimetallic NPs due to the synergistic effects
between distinct metals. While both Ag and ZnO are demonstrated to individually possess high
performance in photothermal therapy, Roy [87] combined Ag-ZnO bimetallic NPs (BMNPs) with
graphene oxide to synthesize a Ag–ZnO BMNPs@GO nanocomposite as shown in Figure 8A, and after
modification of a GCE electrode, this novel electrochemical-MIP biosensor functioned as three-in-one
kit for bacteria detection, removal and killing, where the detection and removal are dependent on the
MIP film while the killing is achieved by photothermal therapy. Similar novel systems also include
PtAu/CNTs/graphene/GCE [88] as shown in Figure 8B, Fe@AuNPs/MWCNs/GCE [90] as shown in
Figure 8C, and MnO2/CuO/GO/copper wire [89] as shown in Figure 8D.

Another distinctive compound system is obtained by the involvement of magnetic NPs, especially
the most commonly used Fe3O4 NPs, due to their intrinsic magnetic properties with low cost [104].
There are two general advantages of the magnetic system over other compound systems:

(1) It helps with easy control and aggregates analytes which facilitates subsequent collection and
further study of analytes.

(2) The synthesis procedure is rather simple since Fe3O4 NPs can be controllably added or removed
by an external magnetic field.

So far, there has been several compound structures such as Fe3O4/MWCNTs/carbon
electrode [93,105], Fe3O4@Au/GCE [94], Fe3O4/rGO/GCE [95]. Bimetallic magnetic particles are
also successfully employed, for instance, the structure of FeAg/RGO/PGE [91] as shown in Figure 9A,
or FeCu magnetic NPs/PGE [92] as shown in Figure 9B.
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Figure 8. SEM images of bimetallic-carbonaceous composites as decoration on electrode. (A) The SEM
image of Ag-ZnO bimetallic NPs decorated on graphene oxide, for building the Ag–ZnO BMNPs@GO
nanocomposite on GCE. (B) The SEM image of PtAu NPs decorated on CNTs and grafted to graphene
sheets for building the PtAu/CNTs/graphene/GCE. (C) The SEM image of Fe@Au NPs modified
on 2-AET functionalized MWCNT for building the Fe@AuNPs/MWCNs/GCE. (D) The SEM image
of CuO and MnO2 loaded on graphene sheets for building the MnO2/CuO/GO/copper wire. (A is
reproduced with permission from ref [84], B is reproduced with permission from [82], C is reproduced
with permission from [79], D is reproduced with permission from [65]).
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from [67], B is reproduced with permission from [68]).
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4. Gravimetric Sensing

Gravimetric sensing is one of the most mature and traditional working approached for MIP
biosensors, which has been demonstrated and improved by numerous studies through the past
decades. By detecting the mass change, MIP biosensors transfer firsthand mass signals to analyzable
electronic signals, namely through piezoelectric effect using QCM (quartz crystal microbalance). The
detailed information of gravimetric sensing with MIP biosensors is summarized in Table 3.

4.1. Piezoelectric Sensing Mechanism

A quartz crystal microbalance (QCM) is a supersensitive gravimetric detector based on the
piezoelectric effect, which can be used to precisely detect minute mass changes through the variation of
the QCM frequency [106–111]. Bearing preponderant sensibility but limited by its own selectivity, QCM
can be readily combined with molecular imprinting methods, to date, always a molecularly imprinted
film, to build a QCM-biosensor. Generally, a QCM-biosensor is fabricated as a micro-sandwich
structure, with a Au or Ag electrode coated on both sides of a quartz crystal oscillator as shown in
Figure 10. First, the gold electrode should be treated with thiols, which can form an ultrathin thiol
film to ensure strong links between the gold electrode and the imprinting polymeric film through –SH
bonds. Basically, the imprinting method can be divided into surface imprinting with soft lithography
(stamping) and micro-contact imprinting with whole cells. The former presses the stamp directly into
the achieved polymeric film to build cavities by using the pressure of template molecules. This method
applies to a wide range of both microbiomolecules of macrobiomolecules. The latter one requires
immobilization of template molecules on the substrate in advance of polymerization, hence, cavities
form within the polymerization process when polymers avoid template sites. This method applies
mainly to macrobiomolecules. Table 3 shows detailed information of the imprinting techniques used
to produce MIP biosensors for gravimetric sensing.
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Based on the piezoelectric effect of quartz crystal oscillators, when binding or rebinding with
template molecules, the surface mass change results in a piezoelectric effect in the QCM, leading
to a crystal oscillation frequency shift, or to be specific, a decrease of the frequency, following the
Sauerbrey equation:

∆ f = −2.6× 106 f 2
0 ∆m/A

where f 0 is the resonant frequency (Hz), ∆m is the mass change, A is the piezoelectrically active crystal
area, and ∆ f is the frequency change of QCM.
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4.2. Gravimetric Sensing Application

QCM has a relatively rich history compared with other materials fabricated with MIPs, as
the usage of QCM-biosensors can be certainly dated back to the 1980s. To date, the applications
of QCM-MIP-biosensors have been widely used for different types of biological substances from
micro-biological molecules like glucose [112], to macro-biological molecules, for instance, DNA [113],
proteins [114–116], bacteria [117,118] and virus [119], furthermore it has been reported that whole cells
can be also imprinted for QCM-MIP-biosensors [120,121].

Plenty of studies using QCM-MIP-biosensor sensing for micro-biological molecules have been
reported since the end of the last century. Sensing for small molecules, such as monosaccharides,
hormones, or glucose, is relatively simple for QCM sensors considering the easy imprinting and
coating process for small molecules. Using QCM sensors, Ersöz [112] managed to detect glucose
and achieve continuous glucose monitoring; the group controlled the LOD under 0.07 mM, which
represents better sensing ability than traditional glucose binding proteins.

Unlike the ease of imprinting small biological molecules, it is much more difficult to imprint
macro-biomolecules like DNA, proteins, bacteria and virus, and especially whole cells. As mentioned
above, MIP selectivity is attributed to both physical factors and chemical moieties, so imprinting
larger analytes is more contingent on both the physical shape of MIP cavities and chemical recognition
of binding ligands. However, in recent years, more and more studies show that the obstacles have
been gradually overcome, as researchers have managed to build QCM-MIP-biosensors by imprinting
large biomolecules on whole cells. On the other hand, QCM itself is more suitable for sensing large
biomolecules instead of small ones, because when sensing micro-biomolecules, mass changes are
always incapable of generate sufficient electrical signals, which will result in inaccuracies.

Chunta [116] fabricated QCM-MIP-biosensors for lipoprotein, and high selectivity was
demonstrated through a competitive assay, with the LOD of 4 mg/dL. Ma [114] built a QCM biosensor
for the epitope of human serum albumin; the LOD can be controlled under 0.026 µg mL−1, which is
comparable or even better than some electrochemical biosensors. Lee [115] managed to detect three
different proteins simultaneously by a QCM-MIP-biosensor with the LOD of 0.1 mg/mL. The sensor
can be used in real mixed protein samples and achieves comparable effectiveness to that of a commercial
ARCHITECT ci 8200 chemical analysis system. Poller [118] succeeded in building a QCM sensor for
E. coli, while Yilmaz [117] compared the QCM E. coli sensor to the SPR one as shown in Figure 11A,
demonstrating a smaller LOD and LOQ of 3.72 × 105 CFU/mL and 1.24 × 106 CFU/mL respectively,
and a shorter response time of 56 s. Studies for detecting other analytes including viruses and whole
cells, for example yeasts [120,121], substantiate the broad applicability of QCM-MIP-biosensors.

Traditional QCM biosensors have been maturely combined with MIP for sensing different analytes.
However, the structures of biosensors still need continuous improvements to further eliminate errors
and enhance their sensitivity. Traditional QCM biosensors require two separate quartz crystals in
order to measure MIP and NIP, respectively, resulting in larger sensor size, and an increased price tag;
moreover, crystal-induced errors are magnified by the non-identical crystals of MIP and NIP due to
the imperfect fabrication process, which leads to further measurement errors. Croux [122] managed
to solve the problem by combining four separate electrodes on a single piece of quartz to build a
4-channel QCM-MIP biosensor as shown in Figure 11B. Based on finite element analysis modeling
and the introduction of mesa-like structures on the crystal surface, crosstalk of frequency coupling
between four channels are successfully avoided, and the biosensor was used for detecting L–nicotine
with a LOD of around 15 mM.
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Table 3. Overview of different MIP biosensors with gravimetric sensing.

Functional Monomers Template Imprinting Techniques Linear Range LOD Analytical Method Advantages Ref

MAH α-D-glucose Drop coating 0.07–8 mM 0.07 mM QCM Successful involvement of metal
coordination (metal–ligand chelate) [112]

AA/MAA/VP Low-density
lipoprotein (LDL)

Stamp imprinting/
spin coating 4–400 mg dL−1 4 mg dL−1 QCM/AFM Fast easy and cost-effective testing [116]

Zinc acrylate
C- terminus epitope of

human serum
albumin

Drop coating 0.050 µgmL−1–0.500 µgmL−1 0.026 µg mL−1 QCM/AFM/SEM/
UV-vis/HPLC

Easy and cheap/good selectivity and
sensibility/low-cost, time-saving [114]

Ethylene/vinylalcohol Salivary proteins Thermally induced phase
separation (TIPS) 0.29–0.46 µg mL−1 0.1 mg mL−1

QCM/AFM/
ARCHITECT ci 8200

system
Accurate, feasible and economical [115]

Urethane
Human rhinovirus

(HRV)/foot-and-mouth
disease virus (FMDV)

Stamp imprinting/soft
lithography/spin-coating

QCM/AFM/
Brunauer-Emmett-Teller

(BET) analysis
Rapid analysis high cross-sensitivity [119]

Epon1002F E. coli

Surface
imprinting/nanoimprint

lithography
(NIL)/spin-coating/PDMS

stamp

0.4–7.3 × 107 CFU mL−1 1.4 × 107 CFU mL−1 AFM/QCM

Superior sensitivity and signal
intensities, Easy reproducibility and

further shortening of imprint
fabrication time

[118]

HEMA/EGDMA/
MAH/AIBN E. coli Micro contact imprinting 0.5–3.0 McFarland 3.72 × 105 CFU mL−1

QCM/SPR/AFM/
ellipsometer

measurements

Real-time detection capabilities and
total detection of 1 h or less and low

organism detection limits/high
stability and reusability

[117]

Urethane/vinylpyrrolidone Artificial
yeast/erythrocyte

Master stamp/stamp-less
imprinting AFM/QCM Feasible for process monitoring/high

cross-selectivity [120]
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Figure 11. Classic and original structures of MIP-QCM biosensors. (A) Synthesis process of the
QCM-MIP biosensor by contact imprinting, and representative scheme of the finished E. coli imprinted
QCM-MIP biosensor. (B) Multi-chanel QCM (four channels)‘s finite element model. (C) Schematic
illustration of the MIP structure decorated on QCM with the template 1 and three different fullurene
derivatives 2,3,4 as functional monomers. (A is reproduced with permission from [100], B is reproduced
with permission from [105], C is reproduced with permission from [78]).

4.3. Gravimetric Sensing with Electrochemical Methods

Gravimetric techniques based on piezoelectric effect are still incapable of supplying sufficient
sensing signals, and some studies have revealed that the LOD using a gravimetric technique alone is
much higher than that of using electrochemical sensing under the same conditions. Consequently, in
recent years, gravimetric sensing has begun to be used to assist with electrochemical analysis methods
such as CV [98,123,124], SWV, DPV [125], and EIS [126–128] to further enhance the sensitivity of
MIP biosensors. Besides, more modifiers will be available if the gravimetric technique is combined
with electrochemical methods. The structure of the biosensor is virtually identical to that of
electrochemical-MIP biosensors discussed above, except that the substrate here is a QCM. Kong [127]
grafted AuNPs to the QCM while Fang [128] constructed AuNPs on mesoporous carbon CMK-3
and used the composite to modify the electrode. Sharma [98] described an innovative representative
structure by employing three distinct fullerene derivatives as functional monomers to polymerize with
Pt NPs for the detection of adenosine-50-triphosphate as shown in Figure 11C. While a few works
report using fullerene for fabricating MIP bioprobes [33,129], this work was the first attempt to involve
fullerene in producing MIP biosensors and has been the only one up to now. The LOD in this work
was 0.3 and 0.03 nM, based on piezoelectric microgravimetry and capacity impedance respectively,
which indicates that there are still many opportunities to enhance gravimetric sensing.
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5. Magnetic Sensing

Magnetic sensing is an emerging approach that combines magnetic analysis methods with
molecular imprinting technology. By means of magnetometry, magnetic-MIP bioprobes or
biosensors enable one to reflect specific magnetic properties including saturation magnetization,
paramagnetism, remanence, etc. So far, the applications of magnetic sensing have mainly focused on
magnetic-MIP bioprobes.

5.1. Magnetic-MIP Bioprobes

In a classic structure, magnetic-MIP bioprobes are fabricated as core-shell NPs, with magnetic
NPs, especially Fe3O4 NPs, as the core substrate, and a MIP film as the shell. Figure 12 shows the
production process of a magnetic-MIP bioprobe. Detailed information about magnetic sensing with
MIP bioprobes is summarized in Table 4.
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Magnetic-MIP bioprobes have obvious advantages over other devices in several aspects:

1) The magnetic MIP composite allows external-magnetic-field isolation and enrichment of analytes,
which extremely enhances the bioprobe’s capability to not only detect analytes, but also
aggregate analytes.

2) Magnetic NPs preserve the advantages of NPs such as high surface area which is favorable for
the selectivity.

3) Magnetic-MIP bioprobes exhibit significant durability, permitting good reusability for more times.

Magnetometry shows that the saturation magnetization will decrease after Fe3O4 are covered
with a MIP film, which is ascribed to the NP surface effects such as disorder in magnetically inactive
films in oposition to the total magnetic field [104], however, the saturation magnetization is sufficient to
enhance the adsorption of analytes. Gao [130] fabricated a Fe3O4@MIP magnetic bioprobe for bovine
hemoglobin as shown in Figure 13B, where magnetometry showed that the saturation magnetization
reached 25.47 emu/g, which helped the amount of absorbed analytes reach 110.5 ± 0.83 mg/g.
The bioprobe was proved to capable of recycling at least six times. Kan [131] employed the same
structure for the same analytes and demonstrated that the adsorption of the magnetic-MIP bioprobe
was 4.6 times higher than that of a NIP one. Zhang [132] synthesized a bioprobe by using a microwave
heating method, which attained an atrazine adsorption amount of 144.0 ± 2.2 mL/g. As shown in
Figure 13C,D, the bioprobe was still activate after working 100 times. Still using Fe3O4 NPs, some
works have even combined magnetic sensing and optical sensing together. Magnetic-MIP bioprobes
were fabricated by Li [133] based on the FRET mechanism between MIP films and template molecules,
where the Fe3O4 NPs was not only serve as magnetic substrate to enrich the adsorption, but also favor
enhanced electron transfer for the FRET process. Zhou [134] devised a Ru@SiO2@Au magnetic MIP
composite as a bioprobe for hemoglobin.
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Table 4. Overview of different MIP bioprobes with magnetic sensing.

Functional Monomers Template Magnetic Analysis
Method

Saturation
Magnetization Value

Amount of
Absorbed Analytes Ref

Tetraethoxysilane Bovine
hemoglobin VSM 25.47 emu g−1 110.5 ± 0.83 mg g−1 [130]

γ-Aminopropyltrimethoxysilane/
tetraethyl orthosilicate

Bovine
hemoglobin VSM 50 emu g−1 10.52 mg g−1 [131]

3-(Triethoxysilyl)propyl
isocyanate Estrone VSM 44.63 emu g−1 183.4 µmol g−1 [135]

Nitrobenzoxadiazole Rhodamine B VSM 37.8 emu g−1 29.64 mg g−1 [133]

Methacrylic acid Atrazine VSM 0.491 emu g−1 144.0 ± 2.2 mL g−1 [132]
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Figure 13. Images of magnetic-MIP bioprobes. (A) TEM image of magnetic Fe3O4-MIP bioprobes.
(B) Separation process of Fe3O4-MIP bioprobes with an external magnet. The SEM image of magnetic
MIP bioprobes with Fe3O4 NPs wrapped by PEG (C) and after reusing by 100 times (D). (A is
reproduced with permission from ref [117], B is reproduced with permission from [113], C and D are
reproduced with permission from [115]).

As shown in Figure 13A, this magnetic-optical-MIP bioprobe displayed an adsorption amount of
264.60 ± 0.04 mg/L for a real sample, and even exhibited optical sensing of increasing luminescence
intensity with the increasing analyte concentration.

5.2. Magnetic-MIP Biosensors

Magnetic nanomaterials are widely used in MIP biosensors, however, most works barely involve
magnetic NPs as modifiers and decorations to the electrode of electrochemical-MIP biosensors as we
have discussed above, for the purpose of enhancing conductivity of the transducer. Indeed, works on
MIP biosensors functioning by magnetometry are extremely rare. For sensing pyridoxine, Patra [92]
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fabricated an electrochemical-MIP biosensor with Fe/Cu bimetallic magnetic NPs as modifiers grafted
onto the electrode, and magnetometry was applied to ensure the change of magnetic properties in
the polymerization process. The result showed a fairly low LOD of 0.040 µg/L by this method. This
work is one of the few studies we have found about the involvement of magnetic sensing in MIP
biosensors, indicating that the magnetic sensing still has a long way to go to be truly combined with
MIP biosensors.

6. Critiques and Outlook

Over the last few decades, molecular imprinting technology has attracted great attention, and the
rapid development of relevant biological fields has tremendously motivated a continuous involvement
of MIP in bioprobes and biosensors. In this work, we have systematically reviewed recent MIP
bioprobes and biosensors applied to biomolecular detection and drug tracking from four dimensions,
namely, the optical sensing, the electrochemical sensing, the gravimetric sensing and the magnetic
sensing. The working mechanisms of each sensing method were thoroughly analyzed. Optical sensing
is based on a series of mechanisms including fluorescence quenching and enhancing mechanisms
as well as PET and FRET. Electrochemical sensing is based on the “gate-control” mechanism or
a counterpart. Gravimetric sensing is based on the piezoelectric effect, while magnetic sensing
is based on analyzing magnetic properties. One of the reasons studies focus on MIP rather than
traditional approaches such as antigen-antibody binding is that the MIP bioprobes and biosensors
are easily decorated for further modifications to produce unique structures. We have reviewed the
types of modifiers that have emerged in recent years, including the original functional monomers,
metal nano-NPs, and carbonaceous nanomaterials. We can firmly conclude that after either of the
modifications, or with new-designed structures, a number of changes will be observed in the properties
of the MIP bioprobes and biosensors, including enhancements of existing properties or complementary
new properties. Indeed, more works have attempted to mix distinct modifications and they did
achieve higher performance. Furthermore, the desire to unite different sensing methods in a single
study is getting stronger. This review discusses examples of the combination of optical sensing with
magnetic sensing, electrochemical sensing with gravimetric sensing, and electrochemical sensing with
magnetic sensing.

Challenges and pending concerns still exist with the development of MIT in both sample studies
and market expansion. For sample studies in the laboratory, first, the issue of simultaneously attaining
high selectivity and high sensibility must be addressed. Combining MIT with bioprobes and biosensors
is the original idea of attaining both high selectivity and sensibility, after that, several approaches
had been applied to go further, including the decoration and modification to transducers and some
new structures. However, we need more than that. New synthesis approaches are urgently needed
for thicker and mesoporous shells of MIP bioprobes and thinner films for biosensors; The signal
change for optical sensing to trace template molecules should be large enough to be observable
even by the naked eye. Second, as mentioned above, sensing for macromolecules such as proteins,
DNA, cells, bacteria, viruses will continue to be a serious issue, especially for optical sensing by SPR,
and gravimetric sensing by QCM. Different imprinting strategies must be continuously developed
for synthesizing MIP films. Computational or combinatorial tools are also expectedly adopted for
preparing “smart” MIP films. Third, detection of small molecules, especially gaseous molecules, is
rarely attempted, because of the too small size of molecules, the gaseous state at room temperature and
uncontrollable operation parameters. As the applications become broader, gaseous molecule detection
and sensing will become the next challenge to be solved. Unlike the widespread application in real
samples, large scale production of MIPs for the market is rarely reported, and the huge difference
between lab-scale production and industry-scale production of MIP is mainly attributed to the different
synthesis conditions, production amounts, total costs, and environmental factors. The issue can be
alleviated with a few of the proposed methods by using existing mature synthesis methods, though
sacrificing selectivity, or by developing intelligent preparation methods which enable industry-scales
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production. The commercial exploitation, though still in its infant phase, possesses huge potential in
the future.

Despite the limitations, the prospective outlook of MIT should never be ignored. As the
introduction of molecular imprinting technology to bioprobes and biosensors gradually becomes
mature, researchers are not satisfied with the sole function of biosensing. Instead, more and more
studies are trying to develop prototypes into multi-functional kits which are practicable for much
broader applications. For example, as we have reviewed above, MIP biosensors have been successfully
combined with photothermal therapy to fabricate a three-in-one kit providing sensing, enrichment and
killing of bacteria. Indeed, the application of MIP bioprobes and biosensors has gone far beyond simple
biomolecule detection and drug tracking, and they manage to be even applied to food engineering and
environmental engineering, for food assays and environmental monitoring, respectively. Moreover,
there is a clear trend of updating 2D MIP biosensors to 3D bioMEMs. Cutting-edge bioMEMs originated
from MIP biosensors, such as MIP electronic tongues [136] and MIP handheld analyzers [137], are
continuously appearing in recent years. Electronic tongues are usually an array of low-affinity
recognition units. By merging with MIT, the MIP electronic tongues permit simultaneous sensing
and discrimination of several analytes in complex solutions with more reliable analytical signals.
High-performance liquid chromatography and ion mobility spectrometry are two traditional methods
employed for clinically detecting propofol concentrations in blood in hospitals. These conventional
instruments are bulky, expensive, and difficult to access, whereas, the MIP handheld analyzer is an
ideal alternative with the advantages of compact size, high selectivity, low cost, rapid response, and
single-step detection. Not limited to the lab, MIT has been successfully and closely applied in the
market, as more and more universities and institutes cooperate with commercial companies and
startups to convert them into products. Columbia BioSystems, Inc cooperated with the University of
Maryland [138] to develop a dialysis system consisting of custom synthesized MIPs packaged into
plastic discs (cartridges) that are compatible with commercially available hemodialysis devices, which
enables hospitals, clinics, and other healthcare organizations to turn existing dialysis systems into virus
removal systems capable of lowering the viral load in patients with HIV, hepatitis B, hepatitis C, or other
blood-borne viruses. New Jersey–based startup Semorex Inc., founded by the MIP pioneer Wulff [139],
is collaborating with a pharmaceutical company to screen a group of the latter’s potential drug leads
against an MIP model of a drug target. The Semorex team is even focusing on the development of
MIPs for detecting chemical weapons, and they have shown that MIPs can distinguish analogs of
chemical warfare agents from insecticides, a feat that available technology cannot readily accomplish.
After going through all these references and facts, we can safely conclude that there is a sufficient
development niche for MIP bioprobes and biosensors both in the laboratory and the market. Although
more challenges must be addressed, we are looking forward to their rising positions in wider fields
as well as more profound integration with other technologies to explore the maximum potential in
the future.
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Abbreviations

GQDs, graphene quantum dots; mSB, molecular silica beads; mSGP, magnetic silica beads/graphene quantum
dots/molecularly imprinted polypyrrole; EIS, electrochemical impedance spectroscopy; FTIR, Fourier Transform
infrared spectroscopy; SEM, Scanning electron microscope; TEM, Transmission electron microscope; AFM,
Atomic force microscope; EDS, Energy Dispersive Spectroscopy; EDS, Energy Dispersive Spectroscopy; CV, cyclic
voltammetry; DLS, dynamic light scattering; o-PD, o-phenylenediamine; GSH, glutathione; GSSG, glutathione
disulfide; MAH, N-methacryloyl-L-histidine methylester; HEMA, 2-Hydroxyethyl methacrylate; NPEDMA,
N-phenylethylene diamine methacrylamide; APTS, amino propyltriethoxy silane; ATP, p-aminothiophenol; CPF,
organophosphate pesticide; CCE, ceramic carbon electrode; p-ABA, para aminobenzoic acid; PB, Prussian blue;
CMK-3, mesoporous carbon; hNiNS, hollow nickel nanospheres; Py, pyridoxine; PLP, pyridoxal-5′-phosphate;
Fe-Cu MNPs, Fe-Cu, magnetic nanoparticles; PGE, pencil graphite electrode; RGO, reduced graphene oxide;
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NiHCF, nickel hexacyanoferrate; MAH, Methacryloylamidohistidine; AA, acrylic acid; MAA, methacrylic acid;
VP, N-vinylpyrrolidone; VSM, Vibrating sample magnetometer.
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