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ABSTRACT: LiF−NaF−ZrF4 multicomponent molten salts are
promising candidate coolants for advanced clean energy systems
owing to their desirable thermophysical and transport properties.
However, the complex structures enabling these properties, and
their dependence on composition, is scarcely quantified due to
limitations in simulating and interpreting experimental spectra of
highly disordered, intermediate-ranged structures. Specifically, size-
limited ab initio simulations and accuracy-limited classical models
used in the past are unable to capture a wide range of fluctuating
motifs found in the extended heterogeneous structures of liquid
salt. This greatly inhibits our ability to design tailored compositions and materials. Here, accurate, efficient, and transferable machine
learning potentials are used to predict structures far beyond the first coordination shell in LiF−NaF−ZrF4. Neural networks trained
at only eutectic compositions with 29% and 37% ZrF4 are shown to accurately simulate a wide range of compositions (11−40%
ZrF4) with dramatically different coordination chemistries, while showing a remarkable agreement with theoretical and experimental
Raman spectra. The theoretical Raman calculations further uncovered the previously unseen shift and flattening of bending band at
∼250 cm−1 which validated the simulated extended-range structures as observed in compositions with higher than 29% ZrF4
content. In such cases, machine learning-based simulations capable of accessing larger time and length scales (beyond 17 Å) were
critical for accurately predicting both structure and ionic diffusivities.
KEYWORDS: molten salts, intermediate-range structure, diffusion coefficients, Raman spectral interpretation,
ab initio molecular dynamics, polarizable ion model, transferable neural network interatomic potential, neural network molecular dynamics

Molten salts have promising applications in advanced
clean energy systems such as next-generation nuclear

reactors, solar-thermal storage plants, advanced batteries, and
media for carbon capture due to their desirable heat transfer
properties. Fluoride salts have been previously identified as
good candidates for primary coolant applications in the
advanced high temperature reactor (AHTR)1 and molten
salt reactor (MSR).2,3 Among them, ternary systems
containing BeF2 and ZrF4 were recommended as coolant
salts. While there has been a significant interest in using BeF2-
based salts due to their low neutron absorption, there remain
substantial challenges in using beryllium salts due to their
toxicity and required processing facilities. As such, Zr-salts
present a compelling alternative due to their acceptable
neutron economy, vapor pressures, thermal hydraulics, and
lower costs.3 In order to achieve low vapor pressure at higher
temperatures (<1 mmHg at 700−900 °C), the ZrF4 mole
fraction in the salt mixture should be maintained within ∼20−
45%.3 Here, the eutectic compositions 26LiF−37NaF−37ZrF4
(mol %) and 42LiF−29NaF−29ZrF4 (mol %) with freezing
point around 436 and 460 °C, respectively have been identified
as promising candidates. Due to lack of data in thermophysical

properties databases,4 these salt compositions have been
recommended for further study.2

Precise experimental interrogation of salt structure and
properties is challenged by the radioactive environment, high
temperature conditions, cost, materials handling, and difficul-
ties in interpreting experimental data. Particularly, it is difficult
to access the structure of multivalent cations using techniques
such as Raman spectra and extended X-ray absorption fine
structure (EXAFS) alone due to their existence in multiple
coordination states and intermediate-range ordering.5−7

Specifically, deducing precise local structures from ensemble-
averaged Raman spectra is challenging when there is high
dynamic disorder and heterogeneity in coordination environ-
ments.8 Likewise, concerning the intermediate-range structure,
a previous experimental Raman spectroscopic study by Toth et
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al. suggested no fluorozirconate chain formation, also known as
intermediate-range ordering, even for the composition
involving 40% mol content of ZrF4.

9 However, while the
local coordination states reported in this Raman study were
found to be in good agreement with our previous ab initio
molecular dynamics (AIMD) findings, AIMD simulations for
salts with 29% and 37% ZrF4 content revealed fluorozirconate
chain formation.10 Such an intermediate-range structural
ordering effect was also previously reported from NMR and
EXAFS experimental observations and classical molecular
modeling for LiF−ZrF4, NaF−ZrF4, and KF−ZrF4 salts
where higher ZrF4 mole content was present.11,12

In light of the challenges encountered in experimental
measurements and their interpretation, AIMD simulations can
be used to interpret experimental data and predict temper-
ature-dependent structure, transport, and thermophysical
properties of multicomponent molten salts.13,14 However,
accurately simulating the structure and properties of multi-
component molten salt containing multivalent cations still
remains challenging due to fundamental limitations in
electronic structure methods based on density functional
theory (size-limited). As such, the classical molecular dynamics
(CMD) simulations have been proven efficient when studying
the larger system sizes. However, our previous study showed
that the traditional Rigid ion model (RIM) parameters
overpredict the zirconium coordination numbers as well as
the intermediate-range ordering when ZrF4 mol % is higher in
the melt, which in turn lead to up to 2−3 orders of magnitude
differences in the diffusion coefficients and viscosities values.10

Such issues at higher ZrF4 mol % content can be essentially
fixed by including the polarization effects leading to the
development of Polarizable ion model (PIM).15 Here, this
addition of polarization term requires accurately capturing the
charge-dipole and dipole−dipole polarizability,16 which has
seen many applications in the simulation of multicomponent
salts.15,17−20

While the fitted PIM parameters were used by Salanne et
al.21 to study electrical conductivities of molten LiF−NaF−
ZrF4 mixtures, a detailed study to validate the PIM-generated
salt structure and transport properties using AIMD and
experimental data is yet to be reported. Even though the
transferability of classical interatomic potentials is an attractive
trait, their further development for material screening is often
overshadowed by the tedious challenges in parameter fitting,
namely, ensuring excellent quality fit for both force and dipole
values, the quality of experimental and first-principles data used
for parameter optimization, and excessive human interven-
tion.15 Here, density functional theory (DFT)-accurate as well
as nearly CMD-efficient neural network interatomic potentials
(NNIPs) can overcome these limitations and can be trained
directly on the AIMD data without requiring any significant
human intervention in defining and fitting parameters that are
extensible to arbitrarily complex systems. Previously, Lam et
al.22 and Chahal and Lam23 have shown the robustness and
versatility of NNIP when employed to study multicomponent
molten salts containing multivalent cation species. Along this
line, Rodriguez et al.24 used the smooth edition of DeePMD-
kit (DeepPot-SE)25,26 to develop an NNIP to generate an
accurate salt structure for the prediction of transport and
thermophysical salt properties. As the properties such as
diffusion coefficients, conductivity, and viscosity of the salt
melt, etc. are strongly influenced by the formation of
coordination complexes, their lifetime, and the degree of

their connectivity (chain formation),20 the NNIP trans-
ferability across different salt compositions entail the require-
ment for accurate prediction of short to intermediate-range
structure.
It has been previously shown that the greater is the

complexity of the machine learned potentials, such as in Neural
network (NN) and Gaussian approximation potential (GAP),
the greater is the issue with their transferability when deployed
outside training thermodynamic conditions.27 To enhance
their transferability, previous studies suggested implementing
an active learning loop based on the desired uncertainty
quantification approach.28−30 This further increases the
complexity of NNIP development in addition to increasing
the count of expensive AIMD calculations in the regions of
higher uncertainty. In this Letter, we present a systematic
approach for the development of NNIP trained in the limited
phase-space of LiF-NaF-ZrF4 salt that can accurately reproduce
the short-range coordinated complexes and intermediate-range
ordering effects across a wider phase-space. The fitted NNIP is
used to study the short to intermediate range salt structure of
five compositions of LiF−NaF−ZrF4 salts: 38−51−11 (A),
40−46−14 (B), 42−29−29 (C), 26−37−37 (D) and 28−32−
40 (E) mole% of LiF−NaF−ZrF4 at 750 °C, 650 °C, 727 °C,
700 °C, and 550 °C, respectively. The NNIP training was
performed using VASP-generated data for composition C and
D at 1000K and 973 K, respectively using DeepPot-SE.25 The
DeepPot-SE model learns a mapping between local environ-
ment of each atom within 8 Å cutoff to a per-atom energy, such
that the sum of atomic energies corresponds to reference DFT
energy. The gradients of the NNIP-predicted energies are then
used to compute the atomic forces. Both the reference energies
and forces are included to evaluate the loss function which is
minimized during training of an DeepPot-SE model. Specific
details on the cutoff radius, network size, and tunable
prefactors in loss function are provided in the Supporting
Information (SI). The training data is selected based on
training−validation−augmentation procedures previously used
to create robust NNIPs that are able to accurately predict
structures and common thermophysical properties of molten
salt.31 Specifically, it was found that, in addition to including
the relaxed (near zero pressure) AIMD configurations, a few
compressed and expanded configurations were also crucial to
include in the NNIP training. This is also in agreement with ref
24, where the structure, transport, and thermophysical
properties of LiF and LiF-BeF2 molten salts were studied.
Complete details of the data set for NNIP training are
provided in the SI. The trained NNIP potential was then used
to study the structure and ionic diffusivities for compositions A
(11% ZrF4), B (14% ZrF4), and E (40% ZrF4) in which the
ZrF4 content, and consequently the degree of structural
ordering, is outside the range of the training data set (29% and
37% ZrF4).
Specifically, the short to intermediate-range structure of LiF-

NaF-ZrF4 salt is explored using AIMD (plane wave, DZVP,
TZV2P), PIM, and NN-based molecular dynamics (NNMD)
simulations. The effect of increasing ZrF4 content on the salt
structure is studied. Thereafter, the appropriate cell size for
each composition is explored to accurately capture the
intermediate-range ordering effects in compositions containing
higher ZrF4 mol %. Further, the effect of cell parameter on the
structural ordering and transport properties (self-diffusion
coefficients) of the salt is discussed. The coordination states
and structural ordering are validated using experimental and
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theoretical Raman spectral analysis. Here, an updated
interpretation of experimental Raman spectra is provided
based on the observed fluorozirconate chain formation for
higher ZrF4 content compositions in our simulations.
The trained NNIP potential is first used to study the short to

intermediate range salt structure, which is validated by the
Raman spectral observations. The cation−anion coordination
numbers are evaluated and compared within the NNMD, PBE-
D3 VASP (plane wave), Quickstep/CP2K (DZVP, TZV2P),
and PIM simulations. Additional details of LAMMPS MD
simulations,32,33 DFT calculations,22,34,35 and CP2K calcu-
lations36,37 are provided in the SI. All methods agree well with
the observations made in the Raman study which confirmed
the occurrence of predominately 6- and 7-coordinated
fluorozirconate complexes with a relatively small amount of
8-coordinated complexes (Figures 1b and S2). However, the

observed trend for the average fluoride coordination number of
Zr (CN) in PIM simulations deviates from that suggested by
the shift in Raman spectra, whereas both plane wave and
NNMD simulations closely capture this trend (Figure 1a). In
general, the shift to the higher frequency in Raman spectra
indicates a decrease in the average F−Zr CN upon increasing
the ZrF4 content. This trend is generally predicted by the
AIMD (plane wave, TZV2P, DZVP) and NNMD simulations
for all compositions except B. The observed exception in CN
trend can be explained from the perspective of difference in
simulation temperatures. It is known that temperature plays a
pivotal role in the F−Zr coordination number (CN increases
as temperature decreases).38 Here, the comparatively lower
temperature for composition B is responsible for the slight
increase in average Zr CN for composition B, which only has a
slightly higher ZrF4 content than composition A. Going from
composition D to E, plane wave and NNIP simulations show a
decrease in average Zr CN (in agreement with Raman spectra
observation), while CMD predicted value suggests a slight
increase in average Zr CN. This anomaly in average Zr CN
prediction using PIM parameters was also previously reported
by Pauvert et al. for a LiF−ZrF4 system.38

In addition to the NNIP’s ability to accurately predict the
average CN, the NNMD predicted population of the 6-, 7-,
and 8-fold fluorozirconate complexes show better agreement
with AIMD (plane wave, TZV2P, DZVP) when compared to
CMD computed values. The stability of the different
coordination states in the melt can be further explored using
free energy calculations. Here, while Figure 1 reveals the
average coordination environment, Figure 2 illustrates
distributions and metastability of different coordination
structures in terms of their free energies (see SI, eq S2, for

definition). All simulations indicate that the fluoride
coordination number of a zirconium ion is dominated by 6
and 7 while 8 is less likely to occur. The AIMD data suggests
that the composition with 14 mol % Zr (composition B)
prefers the 7-coordinate state more and is required to
overcome a high barrier of 6 kcal/mol to transit to the 6-
coordinate state. On the other hand, the composition with 40
mol % Zr (composition E) prefers the 6-coordinate state
slightly more than the 7-coordinate state and the barriers
between them are much smaller (2−2.5 kcal/mol), indicating
their frequent interconversions. The NNIP data agree well with
this preference of coordination number of Zr, even though the
change in the Zr mol % is rather less drastic from composition
C (29 mol %) to D (37 mol %) to E (40 mol %). The PIM
data do not exhibit this sensitivity. For the zirconium
coordination number of a fluoride ion, all simulations agree
with the distributions of coordination numbers and their
relative stabilities: the 1-coordinate state is the most-likely state
while the 2-coordinate state is like to occur with increasing mol
% of Zr. Here, the observed existence of 2-coordinate state
corresponds to the sharing of fluorine ion among two
fluorozirconate complexes leading to the intermediate-range
ordering effects.
In order to explore such an intermediate-range structure

formation in LiF-NaF-ZrF4 in training (Figure 3) as well as in
testing (Figure 4) regimes, Zr−Zr RDF, Zr−F−Zr angular
distribution, and structure visualization (Figures 3 and 4 inset)
are employed. When analyzing the Zr−Zr RDF, the first peak
at ∼4 Å represents the ([ZrFx]4−x)n chain formation due to
edge- and corner-sharing [ZrFx]4−x complexes. As no first peak
is observed for compositions A and B, the salt structure mainly
comprises of isolated 6-, 7-, and 8-coordinated [ZrFx]4−x

complexes (Figure 4a, b inset). As the ZrF4 mol % increases,
the first peak in Zr−Zr RDF becomes more significant,
representing an increase in fluorozirconate chain formation
(Figure 3a, b inset). All the simulation methods used in this
study agree well on predicting the Zr−Zr RDF at lower ZrF4
content. However, in the cases where ([ZrFx]4−x)n chain
formation is observed (compositions C−E), the intermediate-
range ordering is more accurately predicted by NNMD when

Figure 1. NNIP Transferability and comparison of local structure via
(a) average F−Zr coordination number and (b) population of
fluorozirconate complexes in composition B.

Figure 2. Free energy profiles highlighting the distributions of fluoride
coordination number of Zr4+ (left) and zirconium coordination
number of F− for different composition with creasing zirconium
content (black to blue) obtained from different molecular dynamics
simulations.
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compared to the PIM simulation. For composition C, PIM
underpredicts the ([ZrFx]4−x)n chain formation (Figure 3a),
which is also evident from the lower count of Zr−F−Zr in
ADF (Figure 3c). As ZrF4 mol % further increases
(composition C and D), PIM generated structure is more
dominated by the edge-sharing complexes, as observed from
the Zr−F−Zr angles and the shift to the left in the first peak in
Zr−Zr RDF. The dominant edge-sharing chain connection can
be attributed to the higher F− polarizability effect captured by
PIM, which allows more shielding of Coulombic repulsive
interactions between Zr−Zr from the adjacent complexes in
the chain. This, in turn, decreases the Zr−F−Zr angle which
leads to the decrease in Zr−Zr distance (left shift in first peak
in Zr−Zr RDF). We have previously found that omitting the
polarization contribution results in the chain primarily

connected via corner-sharing complexes following the same
reasoning provided above.10 Here, NNMD is able to accurately
predict the fluorozirconate chain connected via both corner-
sharing and edge-sharing complexes for both training and test
compositions.
The predicted salt structure in the simulations can be

directly validated via Raman spectroscopy,40−42 which has
been traditionally employed to probe the local structure of
molten salts and to understand how the structure of melts
changes by varying composition and temperature. Spectral
shifts in the Raman bands by varying ZrF4 from 14 to 40% in
the early work of Toth et al. were interpreted as changes in the
preferred coordination of zirconium from eight to five with no
fluoride bridging between Zr polyhedra. This picture was
challenged and substantially refined in a more recent work of
Papatheodorou and co-workers.7 From the Raman spectra of
ZrF4−KF mixtures and related compounds they inferred a two
species equilibrium between the seven- and six-coordinated
zirconium ions

+FZrF ZrF F7
3

6
2

and a propensity of forming more extended chain structures in
melts rich in ZnCl4. The AIMD and NNMD generated
structures in molten salts containing mostly 7- and 6-
coordinate zirconium complexes (Figures 1 and 2) support
the proposed equilibrium. The simulated Raman spectra
(Figure 5) generated from the TZV2P basis set agree well

with the experimental spectra, both in terms of the overall
shape and the shift of the main totally symmetric stretching
bands to higher frequencies with increasing ZrF4 concen-
tration. The latter is a consequence of decreasing coordination
number and increasing fluoride bridging, in which the Zr−Ft
frequency with the terminal fluoride anions (Ft) is blue-shifted
relative to the band of the monomeric species.7,43 Besides the
shift of the main peaks, simulations reproduce the flattening of
the bending band at ∼250 cm−1 and the shift to lower
frequencies in going from 14 to 40% ZrF4. This is a direct
result of inhomogeneous broadening associated with the
depletion of the intensity coming from pure monomer species
and a superposition of multiple bands at lower frequencies due
to multiple chains formed by zirconium polyhedra. A shoulder
in the experimental spectrum or a broader spectral feature in
the simulated spectrum at ∼330 cm−1 in dilute ZrCl4 was
assigned to the E2′ vibration mode of the pentagonal
bipyramidal ZrF7

3− species.7 Underestimation of the absolute

Figure 3. Comparison of NNMD-predicted (a, b) RDF and (c, d)
ADF with AIMD and PIM simulations for compositions in training
regime. The snapshots of the corresponding representative salt
structure as viewed in VESTA39 are shown next to the Zr−Zr first
peak in Zr−Zr RDF.

Figure 4. NNIP Transferability and comparison of intermediate-range
structure ordering across a wide phase-space via (a, b) Zr−Zr RDF
and (c, d) Zr−F−Zr ADF. The snapshots of the corresponding
representative salt structure are shown next to the Zr−Zr first peak in
Zr−Zr RDF.

Figure 5. (a) Experimental vs (b) simulated unpolarized Raman
spectra calculated using TRAVIS42 for compositions B and E
generated based on the AIMD trajectories using the TZV2P basis
set. All Raman spectra are normalized for the main totally symmetric
stretching band. Simulation spectra calculation details are discussed in
the SI.
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positions of the experimental bands, which is <30 cm−1 in all
cases, is presumably due to a slight overprediction of the
stability of ZrF7

3− over ZrF6
2−. This underscores high

sensitivity of the position of the Raman bands to changes in
the coordination, providing useful experimental metrics to
benchmark the accuracy of DFT in describing local structure of
molten salts.
Given the formation of extended range structures as

observed from simulations and interpretation of Raman
spectra, the periodic boundary conditions in small simulation
cell sizes can result in structural artifacts. Here, the trained
NNIP potential is used to investigate the influence of
simulation cell parameter on the structure and transport
properties of each composition. The simulation cell size
influence on the local structure is investigated using the
average value of Zr CN as well as the population of existing
coordination states. We found that as the cell size reaches
∼12.43 Å (C), the average Zr CN and population of large
[ZrFx]4−x complexes increases and remains unchanged upon
further increasing the cell size (Figures 6 and S3). This trend

follows as observed from the plane wave AIMD values for
composition C and D (Figures 6a and S3). It can be attributed
to the improved averaging over an increased number of Zr
complexes as the cell size increases. The inaccurate population
of different coordination complexes due to restrictions on cell
size and simulation trajectory length has been previously
discussed in other AIMD studies.44

In order to explore the effect of cell parameter on the
intermediate-range structure of LiF−NaF−ZrF4, the Zr−Zr
RDF, Zr−F−Zr angle distribution, and fluorozirconate cluster
size (([ZrFx]4−x)n) distribution are employed. When a lower
ZrF4 mol % is present (compositions A and B), the Zr−Zr
RDF essentially remains unchanged as the cell size increases
(Figure 7a and b). Here, as no ([ZrFx]4−x)n cluster formation
occurs, the corresponding Zr−F−Zr ADF plots are not shown.
Further, as the ZrF4 mol % increases, the first peak in the Zr−
Zr RDF rapidly rises with the increase in cell size of ∼10.73−
12.43 Å (C) and 10.65−13.45 Å (D). This indicates an
increase in the formation of more ([ZrFx]4−x)n clusters, which
were previously restricted due to a smaller simulation cell
lengths. This increase in chain formation upon larger cell
length is also reflected from the increase in the frequency in
Zr−F−Zr angle distribution, where the area under the curve is
proportionate to the ([ZrFx]4−x)n clusters formed. Here, even
though the ([ZrFx]4−x)n cluster formation changes upon a
change in cell parameter, the chains stay connected via both
edge- and corner-sharing complexes. The convergence of Zr−
Zr RDF and Zr−F−Zr angle distribution past cell sizes of

∼12.43 Å (C), 13.45 Å (D), and 14.47 Å (E) implies these cell
sizes are sufficient for the respective compositions (Figure 7).
As both the Zr−Zr RDF and Zr−F−Zr angles unfold the
structure up to the second coordination shell while providing
only the system average, a further investigation is required to
identify and quantify the ([ZrFx]4−x)n clusters sizes and their
distribution.
In addition to dimers, we identified the ([ZrFx]4−x)n clusters

of various sizes throughout the equilibrated trajectory by
searching for their connectivity based on the cutoff value equal
to Zr−F bond length (minima in Zr−F RDF = 2.84 Å). The
probability of finding ([ZrFx]4−x)n clusters of sizes greater than
2 for compositions C, D, and E is plotted in Figure 8. Here, we
noticed that even though both Zr−Zr RDF and Zr−F−Zr
angles distribution converges for cell sizes ∼12.43 Å (C), 13.45
Å (D), and 14.47 Å (E), the distribution of ([ZrFx]4−x)n
clusters keep developing until cell size reaches more than
nearly 17 Å (C), 21 Å (D), and 23 Å (E). Therefore, while the
comparatively smaller simulation cell size is sufficient to
capture the accurate salt structure in the cases where ZrF4 is
low, the cell size hinders the representation of intermediate-
range structural ordering when more ZrF4 content is present
(as is the case with reactor-relevant compositions).
As the intermediate-range ordering has been previously

reported to affect the transport properties like diffusion

Figure 6. Exploring cell size effect of short-range structure using
NNMD via (a) average Zr CN and (b) population of [ZrFx]4−x

complexes in composition C.
Figure 7. Exploring cell size effect on intermediate-range ordering
using NNMD via (a−c,e,g) Zr−Zr RDF and (d,f,h) Zr−F−Zr angle
distribution. Figure S9 shows full RDFs from large box simulations.
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coefficients and viscosities,20,10 it is crucial to choose the
appropriate cell parameter based on the convergence in
intermediate structure ordering. It is also shown in our study
by evaluating the diffusion coefficients for each cell size for the
considered salt compositions using block-diffusivity method.45

Notably, as the smaller cell sizes were sufficient to accurately
represent the relatively simplified salt structure (isolated
fluorozirconate complexes: [ZrFx]4−x) in composition A and
B, the calculated diffusion coefficients are insensitive to the
increase in the cell parameter (Figures 9a,c, S4, and S5). On

the contrary, when significant structural ordering effects are
present, the ionic diffusion coefficients are found to vary by up
to 130% as the cell sizes increase (Figures 9b,d and S6−S8). As
soon as a representative cell size is attained for each
composition, a plateau is observed in the values of diffusion
coefficients, which agrees with our observations from the
([ZrFx]4−x)n cluster distribution. The observed strong agree-
ment in the trend in convergence of different cluster sizes and
the diffusivity values upon reaching a certain cell size
emphasizes the significance of accurately predicting inter-
mediate-range fluorozirconate structures toward accurate
prediction of ionic diffusivities. Therefore, deciding on the
appropriate cell size solely based on second coordination shell

analysis (Zr−Zr RDF and Zr−F−Zr angles) would result in
inaccurate self-diffusivity values. Here, it should be emphasized
that such an exploration of appropriate cell sizes and
calculation of long trajectories for equilibrium properties
would not be feasible solely from the AIMD simulations due to
limitations on practical cell size and simulation times. It can be
further noticed that as the ZrF4 mol % varies from 11% (A) to
29% (C), the self-diffusivity values drastically decrease. This is
due to the formation of previously discussed intermediate-
range structure motifs (([ZrFx]4−x)n) as ZrF4 mol % increases.
Further, the self-diffusivity values consistently decrease as the
ZrF4 mol % varies from 29% (C) to 40% (E), which can be
attributed to the increase in the count of large fluorozirconate
chains (e.g., n ≥ 7) as ZrF4 content increase from 29% to 40%
(Figure 8). Such an increase in intermediate-range structural
ordering is also evident from the increase in the height of first
peak in the Zr−Zr RDF (Figure 7c, e, g) as ZrF4 content
increases. Overall, the observed trend in diffusivities and
fluorozirconate chain formation indicates a direct relationship
between the intermediate-range structural ordering and
transport properties. Such differences in structure and
diffusivity may further contribute to the differences in other
important transport and thermophysical properties. In this
respect, the effect of limited cell size on the density, heat
capacity, thermal conductivity, and viscosity needs to be
further studied using the developed NNIP potential. Further, it
should be noted that the truncation of long-range interactions
in a system may also affect property prediction. In this study,
the intermediate structures, and atomic transport can be
accurately predicted despite the 8 Å cutoff of the NNIP likely
due to sufficient charge screening of the electrostatic potential.
However, other properties and systems may be particularly
sensitive to long-range interactions, including dispersion forces,
or Coulomb interactions of ions separated by distances greater
than the cutoff radius. In such cases, the explicit treatment of
these interactions in the model should be considered.46,47

Despite these challenges, NNIP-based modeling demonstrated
here, shows significant promise in simulating a wide range of
complex solvent structures, which lends itself well to
compositional screening and structure−property analysis in
molten salts.
Overall, this work explored the existence of structural

ordering in multicomponent molten salts that is often
overlooked in understanding transport property trends.
Specifically, the intermediate-range ordering effects in the
LiF−NaF−ZrF4 salt were explored using the NNIP potential

Figure 8. Appropriate cell size exploration using ([ZrFx]4−x)n cluster size distribution using NNMD simulations. The snapshots of cluster size 2, 3,
and 4 are shown to guide the reader. Figure S10 shows snapshots of all cluster sizes. The x corresponds to 6-, 7-, and 8-coordination states of
individual fluorozirconate complex ([ZrF6]2−, [ZrF7]3−, [ZrF8]4−).

Figure 9. Effect of cell parameter on self-diffusivity using NNMD
when (a) isolated [ZrFx]4−x exist (composition B) and (b) extended-
range structures are formed (composition E).
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trained on 29% and 37% ZrF4 compositions. It was found that
as the mol % of multivalent cation species (ZrF4) increases in
the melt, the extended fluorozirconate chain clusters were
formed, which resulted in a commensurate decrease in the
ionic diffusion. Further, when such extended structures exist in
the melt, a simulation cell parameter of at least 17 Å was found
to be critical to correctly represent the extended-range
structure as well as the ionic diffusivities. The increased
simulation cell sizes, improved sampling, and DFT-level
accuracy of developed NNIP allowed for an accurate
prediction of intermediate-range structure and ionic diffusiv-
ities, which consistently surpassed the CMD predictions
obtained using physics-based polarizable ion models. Besides
the extended-range structure prediction, the developed NNIP
showed excellent agreement for average coordination and the
stability of 6-, 7-, and 8-coordinated fluorozirconate species
when compared to ab initio calculations and Raman spectral
observations. In addition to validating the NNMD predicted
structure, the theoretical Raman spectral calculations also
revealed the shift and flattening of the bending band at ∼250
cm−1, which correspond to the structural ordering effects
previously misinterpreted in the experimental spectral
observations. As such, the demonstrated transferability of
NNIP across a wide range of compositions (11−40% ZrF4)
and thermodynamics conditions opens up the possibility of the
development of robust and reliable neural network potentials
to advance the screening of new and unseen chemical
compositions of many structurally complex liquids.

■ METHODS

Data Set Generation: AIMD Simulations

The accuracy of neural network models is limited by the
quality of ab initio data used for network training and
validation.22 As such, the data for 42−29−29 and 26−37−37
mol % of LiF−NaF−ZrF4 was taken from our previous study.10

In brief, we performed Born−Oppenheimer AIMD simulations
using the Vienna Ab Initio Simulation Package (VASP) with
the projector augmented wave (PAW) method, a plane wave
basis set, and the Perdew−Burke−Ernzerhof (PBE) general-
ized-gradient-approximation (GGA) exchange correlation
functional.34 PAW−PBE potentials provided by VASP were
used for Li_sv (1s22s1), Na_sv (2s22p63s1), Zr_sv
(4s24p64d25s2), and F_s (2s22p5). A large plane wave cutoff
of 650 eV with a 1e-5 eV convergence criterion for electronic
self-consistent steps. A 1 × 1 × 1 k-point mesh was
implemented at the gamma point. The parameters chosen
yield convergence within 2 meV/atom. The density functional
theory (DFT)-D3 formulation proposed by Grimmes35 was
used to account for the effect of dispersion interactions. All
calculations were performed allowing for spin polarization. The
canonical ensemble (NVT) using a Nose−́Hoover thermo-
stat33 was employed while maintaining the periodic boundary
conditions. The 42 LiF-29 NaF-29 ZrF4 data set contains
16 268 configurations with 89 atom supercells at 1000 K,
whereas 26 LiF-37 NaF-37 ZrF4 contains 11,993 config-
urations with 84 atom supercells at 973 K. Both the supercells
were at the respective AIMD calculated densities evaluated by
fitting an equation of state.48 During network training, the data
sets were shuffled and were split 80−20% for training and
validation.
The training data set included 5718 8% compressed, 7123

6.83% compressed, and 6725 13.7% expanded, 16 268 relaxed

configurations of 42LiF−29NaF−29ZrF4 at 1000 K, and
11 993 relaxed configurations of 26LiF−37NaF−37ZrF4 at
973 K. The relaxed configurations are referred to as the
supercells size evaluated by fitting an equation of state. During
network training, the data sets were shuffled and were split in
80% and 20% for training and validation, respectively.
CMD Simulations
Polarizable Ion Model potential is used to study the previously
mentioned compositions as well. It can be noted that the
simulation cell volume considered for PIM-IPMD calculations
for all three compositions was 8 times that considered in
AIMD (plane wave, DZVP, TZV2P) and NNMD simulations.
CP2K is employed for classical molecular simulations.36 The
interatomic interactions are defined using PIM potential
parameters developed by Salanne et al.15 For direct
comparison with the First-principles calculations, the simu-
lations were also conducted for cell parameter corresponding
to additive molar volume density (for Composition A) and
AIMD equilibrium densities (for compositions B and C). With
2 fs as the time step, at least 2 ns simulations were performed
using constant volume ensemble (NVT) using Nose−́Hoover
chains thermostat37 while maintaining the periodic boundary
conditions. These simulations were used for sampling from
over 4 ns trajectories each to compare the salt structure with
that of AIMD calculations.
NNIP Training
For training of interatomic potential, DeePMD-kit (DP-kit)
package (version 1.3.3) was employed.25 The Deep-Pot-
Smooth Edition (DeepPot-SE) potential contained inside the
DP-kit was chosen due to smooth and continuously differ-
entiable potential energy surface generation.26 Here, the
smooth cutoff and hard cutoff radius of 2 and 8 Å is chosen.
The embedding network and fitting network size are
{25,50,100} and {240,240,240), respectively. The tunable
prefactors in loss function were chosen as 0.002, 1000, 1, 1 for
pestart, pfstart, pelimit, and pflimit, respectively. The network was
only trained on AIMD energies and forces. The trained
network using DeepPot-SE yielded energy and force errors of
2.88 meV/atom and 72 meV/Å, respectively. These errors are
within the precision of DFT. The low energy and force testing
errors suggest a well-fitted potential energy surface.
NNMD Simulations
The trained NNIP potential was used in Large Scale Atomic/
Molecular Massively Parallel Simulator (LAMMPS) via the
interface with DeePMD-kit.32 For all compositions, the system
size and simulation temperatures were chosen to be the same
as that in AIMD (Plane wave, DZVP, TZV2P) and PIM
simulations. With 2 fs as the time step, at least 2 ns simulations
were performed using constant volume ensemble (NVT) using
a Nose−́Hoover thermostat33 while maintaining the periodic
boundary conditions. The equilibrated trajectory of greater
than 500 ps was used for both compositions to perform
coordination and intermediate-range structure analysis.
Theoretical Raman Spectra Simulations
In our recent work,40 we have developed a capability to
simulate Raman spectra of molten salts from AIMD
simulations by Fourier transformation of time autocorrelation
functions involving the appropriate polarizability tensor
components of the full periodic simulation cell directly from
the wave function, using the correct quantum chemical
operator from modern theory of polarization (Berry phase
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approach), as implemented in CP2K. Compared to previous
studies, our approach does not make any assumptions about
the polarizability model and can naturally account for any
charge transfer and many other cooperative effects which
cannot be captured well in terms of individual ions’
polarizabilities. The polarizability tensor was obtained by
applying an electric field (the intensity is 0.005 atomic units)
along the three perpendicular axis and extracting the induced
dipole moments every 4 fs over 60 ps. As the dipole vectors are
based on the periodic Berry phase operator in CP2K, they are
defined modulo integer multiples of the cell matrix. Whenever
a large jump in the dipole moment is detected, an integer
multiplier is added to ensure that the dipole moment
components change smoothly with time. The time series of
the polarizability tensor obtained by CP2K was used as an
input to the TRAVIS program package,41,42 to compute the
Raman spectra using the correlation depth of the correlation
functions of 640 fs and the laser wavenumber of 4063.21 cm−1.
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