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Background: We aimed to establish a novel epithelial-mesenchymal transition (EMT)-
related gene prognostic index (EMTGPI) associated with biochemical recurrence (BCR)
and drug resistance for prostate cancer (PCa).

Methods: We used Lasso and Cox regression analysis to establish the EMTGPI. All
analyses were conducted with R version 3.6.3 and its suitable packages.

Results: We established the EMTGPI based on SFRP4 and SPP1. Patients in high-risk
group had 2.23 times of BCR risk than those in low-risk group (p = 0.003), as well as 2.36
times of metastasis risk (p = 0.053). In external validation, we detected similar diagnostic
efficacy and prognostic value in terms of BCR free survival. For drug resistance, we observe
moderately diagnostic accuracy of EMTGPI score (AUC: 0.804). We found that PDCD1LG2
(p = 0.04) and CD96 (p = 0.01) expressed higher in BCR patients compared with their
counterpart. For TME analysis, we detected that CD8+ T cells and M1 macrophages
expressed higher in BCR group. Moreover, stromal score (p = 0.003), immune score (p =
0.01), and estimate score (p = 0.003) were higher in BCR patients. We found that EMTGPI
was significantly related to HAVCR2 (r: 0.34), CD96 (r: 0.26), CD47 (r: 0.22), KIR3DL1
(r: −0.21), KLRD1 (r: −0.21), and CD2 (r: 0.21). In addition, we observed that EMTGPI was
significantly associated with M1 macrophages (r: 0.6), M2 macrophages (r: −0.33),
monocytes (r: −0.18), neutrophils (r: −0.43), CD8+ T cells (r: 0.13), and dendritic cells
(r: 0.37). PHA-793887 was the common drug sensitive to SPP1 and SFRP4, and PC3
and DU145 were the common PCa-related cell lines of SPP1, SFRP4, and PHA-793887.

Conclusions: We concluded that the EMTGPI score based on SFRP4 and SPP1 could
be used to predict BCR for PCa patients. We confirmed the impact of immune evasion on
the BCR process of PCa.

Keywords: epithelial-mesenchymal transition, prostate cancer, tumor immune microenvironment, biochemical
recurrence, tumor chemoresistance, immune checkpoint
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INTRODUCTION

Aging population has already been a social dilemma worldwide
and accounts for almost 20.8% of the population by 2044 (1).
Prostate cancer (PCa), one of the most common age-related
diseases, ranks the second most frequent cancer and the fifth
leading cause of cancer death in men in 2020 (2). Thus,
improving the prognosis and quality of life of such patients is
an increasingly important area in urology with population aging
globally. PCa often suffers from drug resistance and progress to
castration-resistant state despite using new potent antiandrogen
drugs, like abiraterone and enzalutamide (3, 4). It is known that
metastatic castration-resistant PCa (MCRPC) is the leading
cause of cancer death with an estimated mortality rate of
almost 28% for 5-year survival (5). However, there has been
much division between urologists on the molecular mechanism
of metastasis and tumor chemoresistance in PCa.

Epithelial-mesenchymal transition (EMT) is endowed with a
migratory phenotype, allowing cuboidal epithelial cells into
motile mesenchymal phenotypes and enhancing invasiveness
and migration (6). EMT is characterized by cadherin
switching, which is the downregulation of E-cadherin and
other epithelial markers, and the upregulation of markers of
mesenchymal markers, such as N-cadherin, vimentin, and Snail
(7). Furthermore, many studies demonstrate that EMT involves
in the invasion, metastasis, and cancer resistance of PCa through
a variety of mechanisms (7–10). Thus, it deserves to develop gene
biomarkers or signature associated with EMT to predict
prognosis of PCa. Recently, some researchers have proposed
several gene signatures to predict biochemical recurrence (BCR)
of PCa, but most of these signatures enrolled more than 5 genes,
limiting their clinical applications (11–15). Here, for the first
time, we developed and validated an EMT-related gene
prognostic index based on only two genes predicting BCR and
drug resistance in patients undergoing radical prostatectomy or
radiotherapy. Tumor immune microenvironment (TME) of PCa
was also analyzed.
METHODS

Data Preparation
Our study has been registered in the ISRCTN registry (No.
ISRCTN11560295). We removed batch effects of GSE62872
(16), GSE79021 (17), GSE32571 (18), and GSE116918 (19)
from the Gene Expression Omnibus (GEO) database (20)
(Supplementary Figure S1). EMT-related genes were obtained
from MSigDB (21). Weighted gene coexpression network
analysis was used to find cancer-related genes defined by
lrl ≥0.3 and p adj. <0.0001. Differential genes between tumor
and normal tissues of GSE62872 (16), GSE79021 (17), and
GSE32571 (18) were considered as llogFCl ≥0.4 and p adj.
<0.05. Subsequently, we obtained candidate genes through
intersection of the above gene sets and determine the
independently prognostic genes after LASSO and Cox
regression analysis. We constructed the following formula:
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EMT-related gene prognostic index (EMTGPI) risk score =
0.2365 * SFRP4 + 0.2595 * SPP1. BCR-free survival was the
primary outcome. We externally validated the prognostic value
of EMTGPI using the TCGA database and GSE46602 (22).
Furthermore, we examined the diagnostic efficacy of EMTGPI
for tumor chemoresistance using GSE42913 (23).

Function Analysis and m6A Analysis
We used the candidate genes to explore possible functions and
signal pathways through gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genome (KEGG) analyses. GO
analysis consisted of biological process, cell composition, and
molecular function. Also, we classified the tumor patients in
GSE116918 (19) into high- and low-risk groups based on the
median of EMTGPI score, and gene set enrichment analysis
(GSEA) was then conducted (24). We regarded p. adj. <0.05 and
false-discovery rate ≤0.25 as statistical significance. The protein-
protein interaction of SFRP4 and SPP1 was analyzed by
GeneMANIA database (25). We conducted the m6A analysis
as well.

TME, Drug, and Cell Line Analysis
We used the quanTIseq and ESTIMATE algorithms to analyze
the immune infiltration levels of cells in TME (26–28). Immune
checkpoint analysis was conducted as well. Differential
expression between BCR and no-BCR group, prognosis of
BCR-free survival, and Spearman ’s analysis between
parameters and EMTGPI were conducted for the above two
analyses. We analyzed the potentially sensitive drugs of SFRP4
and SPP1 in the Cancer Therapeutics Response Portal (CTRP)
and genomics of drug sensitivity in cancer (GDSC) through
GSCALite (29). Moreover, the common cell lines of SFRP4,
SPP1, and drugs were analyzed through the canSAR database
(30). The study process can be seen in Figure 1.

Statistical Analysis
We performed all analyses using software R 3.6.3 and its suitable
packages. We utilized Wilcoxon test under the circumstance of
nonnormal data distribution. Variables could be entered into
multivariate Cox regression analysis if p-value <0.1 in the
univariable Cox regression analysis. Survival analysis was
conducted through log-rank test and presented as Kaplan-
Meier curve. Also, the Spearman analysis was used to assess
the correlations among continuous variables if they did not meet
the Shapiro-Wilk normality test. Statistical significance was set as
two-sided p <0.05. Significant marks were as follows: ns, p ≥ 0.05;
*p < 0.05; **p < 0.01; ***p < 0.001.
RESULTS

EMTGPI Score and Its Clinical Values
We identified 13 candidate genes, and SFRP4 and SPP1 were
used to construct the EMTGPI after LASSO and Cox regression
analyses (Figures 2A–E). According to the median of EMTGPI
score based on SFRP4 and SPP1, we divided the 248 patients
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FIGURE 1 | The study flowchart. WGCNA, weighted gene coexpression network analysis; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genome;
GSEA, gene set enrichment analysis; EMT, epithelial-mesenchymal transition; EMTGPI, EMT-related gene prognostic index; mRNA, message RNA.
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FIGURE 2 | EMTGPI and its clinical values. (A) Modules and phenotype showing the modules associated with tumor and normal samples through WGCNA.
(B) Volcano plot showing the DEGs. (C) Venn diagram showing the intersection of DEGs, tumor-related genes through WGNCA, and EMT-related genes.
(D) Gene screening of LASSO regression. (E) Univariate and multivariate Cox analyses of genes after LASSO regression. (F) Univariate and multivariate Cox
analyses of EMTGPI score and clinical parameters for BCR-free survival. (G) ROC curve of EMTGPI discriminating BCR from no BCR. (H) Kaplan-Meier curve for BCR
free survival in terms of EMTGPI score (red lines = high risk; blue lines = low risk). (I) Kaplan-Meier curve for metastasis-free survival in terms of EMTGPI score (red lines =
high risk; blue lines = low risk). (J) comparison between Gleason score groups for EMTGPI score. (K) Comparison between T-stage groups for EMTGPI score. (L) ROC
curve of EMTGPI discriminating BCR from no BCR in GSE46602 (22). (M) Kaplan-Meier curve for BCR-free survival using GSE46602 (22) in terms of EMTGPI score (red
lines = high risk; blue lines = low risk). (N) ROC curve of EMTGPI discriminating BCR from no BCR in TCGA database; (O) Kaplan-Meier curve for BCR-free survival
using the TCGA database in terms of EMTGPI score (red lines = high risk; blue lines = low risk); (P) ROC curve of EMTGPI discriminating metastasis from no metastasis
in TCGA database. (Q) Kaplan-Meier curve for metastasis-free survival using the TCGA database in terms of EMTGPI score (red lines = high risk; blue lines = low risk).
(R) ROC curve of EMTGPI for drug chemoresistance. EMTGPI, epithelial-mesenchymal transition-related gene prognostic index; ROC, receiver operating characteristic;
BCR, biochemical recurrence; WGCNA, weighted gene coexpression network analysis; EMT, epithelial-mesenchymal transition; mRNA, message RNA; DEGs, differentially
expressed genes. *p 0.05; **p 0.01; ***p 0.001; ns, no significance.
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undergoing radical radiotherapy in GSE116918 (19) into high-
and low-risk groups. We observed that EMTGPI could be used as
an independent factor of BCR-free survival after multivariate
Cox regression analysis (HR: 1.904 (95% CI: 1.035–3.502), p =
0.038; Figure 2F). EMTGPI have lower diagnostic ability for
distinguishing BCR from no BCR (AUC: 0.645; Figure 2G).
Patients in high-risk group had 2.23 times of BCR risk than those
in the low-risk group (p = 0.003; Figure 2H), as well as 2.36 times
of metastasis risk (p = 0.053; Figure 2I). In addition, we observed
that EMTGPI score increased with the increase of Gleason score
(Figure 2J) and T stage (Figure 2K). In the GSE46602 (22) and
TCGA databases, we detected similar diagnostic efficacy and
prognostic value in terms of BCR-free survival (Figures 2L–O).
Moreover, we found that high-risk patients had significantly
higher risk of metastasis than their counterpart in the TCGA
database (HR: 1.65 (95% CI: 1.07–2.55); Figure 2Q). For drug
resistance, we observe moderate diagnostic accuracy of EMTGPI
score (AUC: 0.804; Figure 2R).

Function, Drug, and Cell Line Analysis
We found that the candidate genes primarily participated in cell
junction assembly and organization, contractile fiber, actin
binding, cell adhesion molecule binding, extracellular matrix
(ECM) binding, focal adhesion, and vascular smooth muscle
contraction (Figure 3A). The possible genes interacting with
SFRP4 and SPP1 included ITGA5, ITGA8, RUNX2, NARFA,
MMP7, CD44, and so on (Figure 3B). We observed that high-
risk patients were highly enriched in ECM receptor interaction
and lysosome (Figure 3C). The most possible hallmarks
associated with high-risk patients were EMT, angiogenesis,
TNFA signaling via NFKB, TGF beta signaling, motorc1
signaling, MYC targets V1, protein secretion, interferon
gamma response, IL2 STATA5 signaling, DNA repair, p53
pathway, coagulation, ultraviolet (UV) response UP (genes
upregulated in response to UV radiation), and so on
(Figure 3D). PHA-793887 was the common drug sensitive to
SPP1 and SFRP4 (Figure 3E), and PC3 and DU145 were the
common PCa-related cell lines of SPP1, SFRP4, and PHA-
793887 (Figure 3F).

TME and m6A Analyses
We found that PDCD1LG2 (p = 0.04) and CD96 (p = 0.01)
expressed higher in BCR patients compared with their
counterpart (Figure 4A), and both checkpoints were
significantly associated with BCR-free survival (HRs were 2.555
and 1.610 for PDCD1LG2 and CD96, respectively; Figure 4B).
For TME analysis, we detected that CD8+ T cells (p = 0.042) and
M1 macrophages (p = 0.024) expressed higher in the BCR group,
while neutrophils (p = 0.048) presented the opposite expression
(Figure 4C). Moreover, stromal score (p = 0.003), immune score
(p = 0.01), and estimate score (p = 0.003) were higher in BCR
patients, while tumor purity (p = 0.003) was lower in BCR
patients (Figure 4D). For m6A analysis, radar plot showed
that EMTGPI was significantly associated with IGF2BP1
(r: −0.24), IGF2BP2 (r: −0.15), RBM15B (r: 0.2), HNRNPA2B1
(r: 0.23), RBM15 (r: 0.21), and RBMX (r: 0.25) (Figure 4E). We
found that EMTGPI was significantly related to CTLA4
Frontiers in Oncology | www.frontiersin.org 5
(r: −0.15), HAVCR2 (r: 0.34), LAG3 (r: −0.25), PDCD1 (r:
−0.14), SIGLEC15 (r: −0.19), CD226 (r: 0.14), CD96 (r: 0.26),
CD47 (r: 0.22), KIR3DL1 (r: −0.21), KLRD1 (r: −0.21), CD2 (r:
0.21), and LAYN (r: 0.12) (Figure 4F). In addition, we observed
that EMTGPI was significantly associated with M1 macrophages
(r: 0.6), M2 macrophages (r: −0.33), monocytes (r: −0.18),
neutrophils (r: −0.43), CD8+ T cells (r: 0.13), and dendritic
cells (r: 0.37) (Figure 4G).
DISCUSSION

With an aging population worldwide today, the problem of PCa
receives increasing attention. The cadherin-switched property of
EMT has been observed in more aggressive tumors, resulting in
the decrease of intercellular adhesion, loss of epithelial cell
polarity, de-differentiation into an amorphous cell, and
increased motility (6, 31, 32). Downregulated E-cadherin and
upregulated N-cadherin have been reported to be closely
associated with progression and poor prognosis in PCa
patients (33–35). In addition, EMT could promote the
presence of CRPC and targeting N-cadherin inverts this
process effectively (36). Due to these definitive evidences, the
EMT-related biomarkers are warranted to be studied. In this
study, we firstly developed and confirmed that EMTGPI could
predict BCR probability and drug resistance effectively for PCa
patients undergoing radical prostatectomy or radiotherapy.
SFRP4 controls WNT signaling and is thought to play a role
for tumor aggressiveness (37). SFRP4 overexpression in both
androgen-dependent and androgen-independent cell lines
resulted in a morphologic change to a more epithelioid cell
type with increased localization of b-catenin and cadherins (E-
cadherin in LNCaP, N-cadherin in PC3) to the cell membrane
(38). Previous studies showed that SFRP4 overexpression was
linked to advanced tumor stage, high classical/quantitative
Gleason grade (p < 0.0001 each), lymph node metastasis (p =
0.0002), and a positive surgical margin (p = 0.0017), and SFRP4
expression was an independent predictor of recurrence after
prostatectomy (HR = 1.35; p = 0.009) (22, 37). In addition, SPP1
is a cardinal mediator of tumor-associated inflammation and
facilitates metastasis. Pang et al. (39, 40) showed that SPP1 could
promote enzalutamide resistance and EMT activation in
castration-resistant prostate cancer via PI3K/AKT and ERK1/2
pathways. Compared with the previous studies (11–15), we
included two different genes in our study, and these two genes
have confirmed their roles in the progression of PCa and are
closely associated with the EMT. Moreover, we provided a
simpler prognostic gene formula from the perspective of EMT.

We also indirectly demonstrated that EMT is implied in the
process of PCa progression and chemoresistance, which was
similar to the previous study, indicating that EMT drives
docetaxel resistance and promotes the risk of recurrence in
PCa patients (41).

Previous studies indicated that the plasticity of EMT tumor
cells, which are in a transitory state between epithelial and
mesenchymal programs, made it possible to accomplish the
invasion-metastasis cascade, rather than the mesenchymal-like
January 2022 | Volume 11 | Article 805571
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tumor cells that have fully completed the EMT program (32, 42).
Compelling evidence showed that transforming growth factor b
(TGF-b) is a potent inducer of EMT and chemoresistance in
multiple cancers, including PCa, through small mothers against
decapentaplegic homolog-independent or homolog-dependent
signaling pathway (9, 32, 43–47). We further confirmed the
impact of EMT and TGF-b signaling on PCa through ECM
interaction according to the GSEA analysis.
Frontiers in Oncology | www.frontiersin.org 6
The antitumor immune cells include CD8+ cytotoxic T cells
and effector CD4+ T cells, natural killer cells, dendritic cells, M1
macrophages, and N1 neutrophils in the TME (48). Dendritic cells
secreted chemokines like CXCL9 and CLCL10, and CD8+
cytotoxic T cells were recruited into the inflammatory niches
through the expression of CXCR3 (48–50). M1 macrophages
within TME are usually considered protective cells due to their
proinflammatory function and tumor cell killing (48). Also, we
A

B

D E

F

C

FIGURE 3 | Function, drug, and cell line analysis. (A) GO and KEGG analyses. (B) Gene interaction network through GeneMANIA database (25). (C) GSEA C2
analysis. (D) GSEA hallmark analysis. (E) Upset plot showing common sensitive drug of SFRP4 and SPP1. (F) Upset plot showing common cell lines of SFRP4,
SPP1, and PHA-793887. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genome; GSEA, gene set enrichment analysis; GDSC, genomics of drug
sensitivity in cancer; CTRP, the cancer therapeutics response portal; BP, biological process; CC, cell composition; MF, molecular function.
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found EMTGPI was highly associated with HAVCR2, CD96,
CD47, and CD2. All of the above immune checkpoints could
contribute to immune evasion through inhibiting the function of
host antitumor cells, such as T cells and natural killer cells (51–54).
Given the higher score of M1 macrophages, CD8+ T cells,
immunity, and estimate in the BCR group, we proposed the
presence of immune evasion in the progression of PCa. In most
solid tumor, abundant matrix is usually associate with poo
prognosis, and the prostate stroma accounts for more
proportion in the process of prostate growth and differentiation
(55, 56), which has been called “reactive stroma” and are used to
assess PCa-specific mortality in diagnostic prostate needle biopsies
(57). In this study, we also observed that stromal score was higher
in the BCR patients than no-BCR patients, and this score was
positively associated with the EMTGPI. In terms of tumor purity,
previous studies showed that low tumor purity was associated with
unfavorable prognosis and immune-evasion phenotype in gastric
cancer (58), and most recognized prognostic indicators were no
longer significantly effective under different tumor purity
conditions (59). Similarly, we observed that tumor purity was
Frontiers in Oncology | www.frontiersin.org 7
lower in the BCR patients than no-BCR patients, and this score
was negatively associated with the EMTGPI, which both suggested
that the tumor purity might play an important role in PCa
treatment and prognosis assessment.

Previous study showed that HNRNPA2B1, an m6A
methylation regulator, was not only highly expressed in patients
with high Gleason score but also significantly associated with
unfavorable BCR-free survival in PCa patients (60). Similarly, we
observed a significantly positive correlation between
HNRNPA2B1 and EMTGPI. PHA-793887 could inhibit the
proliferation of multiple tumor cell lines (such as PC3 and
DU145) in vitro and in vivo through inducing arrest of cell cycle
and inhibiting phosphorylation of Rb and nuclear phosphoprotein
(61, 62). In this study, we found that PHA-793887 might be a
potentially sensitive drug, and PC3 and DU145 could be the
studied cell lines for PCa patients. This study had several
limitations. Firstly, the prognostic value of EMTGPI score was
different between the GSE116918 (19) and TCGA databases for
metastasis-free survival. We thought the different treatments used
contributed to the result. Secondly, the estimated drug and cell
A B

E
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F G

C

FIGURE 4 | TME and m6A analysis. (A) Heatmap comparing immune checkpoints between BCR and no BCR group. (B) Univariate Cox analysis of immune
checkpoints for BCR-free survival. (C) Comparison between BCR and no-BCR group for TME cells. (D) Comparison between BCR and no-BCR group for TME
score. (E) Radar plot showing correlation between m6A-related genes and EMTGPI score. (F) Radar plot showing correlation between immune checkpoints and
EMTGPI score. (G) Radar plot showing correlation between TME parameters and EMTGPI score. TME, tumor immune microenvironment; epithelial-mesenchymal
transition-related gene prognostic index; BCR, biochemical recurrence. ns, no significance; *p < 0.05; **p < 0.01.
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lines were needed to be further confirmed in vitro and in vivo.
Furthermore, the diagnostic effect of EMTGPI for tumor
chemoresistance was warranted to be validated in larger samples
as well.
CONCLUSIONS

We concluded that the EMTGPI score based on SFRP4 and SPP1
could be used to predict BCR for PCa patients. We confirmed the
impact of immune evasion on the BCR process of PCa.
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