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Abstract: The stomach is responsible for the processing of nutrients as well as for the secretion of
various hormones which are involved in many activities throughout the gastrointestinal tract. Exper-
imental adult male Wistar rats (n = 6) underwent a modified gastrectomy, while control rats (n = 6)
were sham-operated. After six weeks, changes in small intestine (including histomorphometrical
parameters of the enteric nervous plexuses) and liver morphology, immunolocalization of leptin,
ghrelin and nesfatin-1 as well as proteins forming adherens and tight junctions (E-cadherin, zonula
occludens-1, occludin, marvelD3) in intestinal mucosa were evaluated. A number of effects on small
intestine morphology, enteric nervous system ganglia, hormones and proteins expression were found,
showing intestinal enteroplasticity and neuroplasticity associated with changes in gastrointestinal
tract condition. The functional changes in intestinal mucosa and the enteric nervous system could be
responsible for the altered intestinal barrier and hormonal responses following gastrectomy. The re-
sults suggest that more complicated regulatory mechanisms than that of compensatory mucosal
hypertrophy alone are involved.

Keywords: gastrectomy; gut hormones; tight junction; stomach; enteroendocrine cells; small intestine

1. Introduction

The stomach is responsible for the mechanical and enzymatic processing of nutri-
ents and participates in the regulation of acid secretion, nutrient assimilation, appetite,
metabolism and energy homeostasis of the body as well as in the secretion of various
hormones. Surgical treatment, which includes total gastrectomy, remains the basic method
of treatment for patients with gastric cancer. However, after total gastrectomy, the patient
requires further systematic care, including reconstruction of the gastrointestinal tract (GIT).
Although the literature provides more than 50 methods of reconstruction of the gastroin-
testinal tract, none of the methods improve the life quality, which decreases rapidly with
surgery [1]. Total gastrectomy irreversibly disrupts the physiology of the digestive system,
leading to the loss of capacitive function and the disappearance of the secretion of digestive
enzymes and hormones. Many patients that undergo gastrectomy experience long-lasting
gastrointestinal symptoms and complications following the procedure, which include
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mechanical, metabolic, deficient, circulatory, psychosocial and economic complications [2].
Among them are anemia, as a result of iron and vitamin deficiencies, reflux, diarrhea,
steatorrhea, increased bowel movements and loss of appetite, all of which can result in
reduced overall well-being, malnutrition and weight loss [3,4]. While the exact etiology of
these symptoms is still unclear, numerous studies indicate that the mechanisms responsible
for the complications following surgery involve independent alterations in gastrointestinal
motility [5], vagal innervation [6], hormonal [7] signaling pathways, bile acids [8] and
intestinal microbiota [9].

Enteroplasticity following gastrectomy has been extensively studied; however, much
less is known regarding neuroplasticity as the reorganization of enteric innervations [10–14].
This adaptation relates to changes in the external and internal environment, and except
functional changes (the number and transmission of synaptic connections, modification of
intracellular signaling cascades and regulation of gene expression), it includes alterations
in the synthesis and release of neurotransmitters. Studies in animal models have showed
that many various factors trigger a response of enteric neurons, expressed as a change in
their neurochemical characteristics [15–17].

In order to improve the quality of life for a growing group of patients undergoing
gastrectomy, it is necessary to understand the possible range of complications resulting
from gastrectomy and the possibilities of their treatment or mitigation. To the best of our
knowledge, studies about the possible effects of total gastrectomy on the expression of
proteins forming intercellular junctions in the small intestine are missing. In addition,
the expression of most stomach-derived peptides within the GIT following gastrectomy
has not been studied. As the absence of stomach also reveals liver dysfunction, there is a
need to investigate the impact of gastrectomy on liver structure.

To provide an adequate explanation for what occurs after gastrectomy, the aim of the
presented study was to examine its effects on the jejunal, duodenal and liver morphol-
ogy; the immunolocalization of nesfatin-1, ghrelin, leptin and proteins forming adherens
and tight junctions (E-cadherin, zonula occludens-1, occludin and marvelD3) in intesti-
nal mucosa as well as neuroplasticity of the enteric nervous system in a rat model of
total gastrectomy.

2. Experimental Section
2.1. Experimental Design

All procedures using animals that were carried out were approved by the Local
Ethics Committee for Animal Experiments, University of Life Sciences in Lublin, Poland
(No. 64/2012) and were performed according to the Guiding Principles for Research
Involving Animals.

The experiment was carried out on twelve adult male Wistar rats with a body weight
of approximately 220–240 g. After a 7-day adaptation period to the experimental conditions
of the vivarium (temperature 22 ◦C ± 2%, humidity 55 ± 10%, and a 12-h day/night cycle),
the rats were randomly divided into control (CONT, n = 6) and experimental (GASTR, n = 6)
groups. CONT rats underwent a sham operation, which involved a midline incision of
the abdominal wall, gentle reposition of viscera, and the incision was then stitched closed.
GASTR rats underwent a modified gastrectomy (Figure 1), during which all glandular
parts of the rat stomach (fundus and antrum) were removed, and a connection between the
remaining rumen (non-glandular part of the rat stomach) and the duodenum (end-to-end)
was then established, with care taken to preserve the vagus nerve [18–21]. Rats were
fasted for 12 h prior to surgery. General anesthesia was used for all surgical procedures,
with ketamine (15 mg/kg b.w. i.m.) and xylazine hydrochloride (35 mg/kg b.w. i.m.). Af-
ter surgery, rats were administered amoxicillin for 3 days (30 mg/rat i.m.) and were housed
under the controlled conditions of the vivarium for a period of 6 weeks. Rats showed
proper behavior and did not show symptoms (bleeding, anastomotic failure, infection,
reflux, diarrhea, increased bowel movement and decreased feed intake), which can indicate
post-operative complication. Rats were fed ad libitum a standard laboratory rodent diet,
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formulated to meet minimal nutritional requirements specified in AIN-93M [22] and had
free access to water. The diet contained 160 g protein, 28 g fat, 50 g crude fiber and 70 g
crude ash in 1 kg of feed, with metabolizable energy of 11 MJ/1 kg feed dry mass. At the
end of the 6th week of the experimental period, the rats were fasted overnight (12 h) and
then anesthetized at the same time in the morning next day. Duodenum, jejunum and liver
samples were then collected for further analysis. In the present study, no-operated group
of rats was excluded in accordance with the “3Rs” principle and the Ethics Committee
recommendation in order to avoid unnecessary use of experimental animals.

Figure 1. Schematic presentation of the performed modified gastrectomy.

2.2. Tissue Collection and Histomorphometry Analysis

Two 10-mm long segments of the small intestine, from the duodenum (20 mm distal to
the pylorus) and from the jejunum (50% of the total intestinal length of the jejunum), as well
as 0.5-cm3 samples from the right lobe of the liver were taken from each rat. Intestine
samples were opened along the mesentery and placed flat, without stretching, in such a
way so as to avoid contact of the mucosa with the histopathological cassette walls [23].
Tissues were fixed in 4% buffered formaldehyde (pH 7.0) for 24 h, dehydrated in a graded
series of ethanol, cleared with a nonpolar solvent and then embedded in paraffin. Then,
4-µm thick cross-sections were cut with a microtome (Microm HM 360, Walldorf, Germany),
then placed on one microscopic slide (Polysine™, Menzel Glaser, Braunschweig, Germany)
and stained with Masson’s trichrome (MT) and PicroSirius red (PSR) [24]. Stained slides
were observed in brightfield (Masson’s trichrome) and polarized light (PicroSirius red)
using an AXIOVERT 200 M confocal microscope (Carl Zeiss, Jena, Germany) as well as a
CX43 (Olympus, Tokyo, Japan) microscope. Collected microscopic images were examined
blindly by an associate who was not aware of the treatment using the following graphical
analysis software: Olympus cellSens (Olympus, Tokyo, Japan) and ImageJ [25].

Microscopic observations allowed to identify and assess the structure and morphol-
ogy of the liver tissue samples. For the intestine samples, the following morphometric
parameters were analyzed: the thickness of the mucosa, submucosa, myenteron and villar
epithelium; enterocyte number; the number of villi, active and inactive crypts; villus length
and thickness; crypt depth and width; area of the small intestine absorptive surface [23,26].
The measurements of each variable were made on three separate tissue sections, on at least
ten different areas of each section. The measurements were then averaged and expressed
as the mean value of calculated parameters for each rat. Other analyses including intestine
and liver tissues were performed in accordance with an earlier description [23]. PSR stain-
ing was used to differentiate collagen fibers in examined tissue samples, where the type I
(thicker, mature) collagen fibers are orange or red and the type III (thinner, immature) are
green in polarized light [24].

2.3. Immunohistochemistry

Immunohistochemical staining was performed on the remaining tissue slices after
deparaffinization in xylene and rehydration with decreased concentrations of ethanol and
distilled water. Heat-induced epitope retrieval was performed using a Rapid Cook pressure
cooker (Morphy Richards, Swinton, UK) in sodium citrate buffer (10 mM sodium citrate,
0.05% Tween 20, pH 6.0), according to the protocols provided by the producers of the
antibodies. Endogenous peroxidase activity was blocked subsequently with a 3% solution
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of hydrogen peroxide in deionized water for 5 min. After blocking for 30 min in normal
serum, sections were incubated with the first antibodies overnight at 4 ◦C. All primary anti-
bodies were rat-specific: rabbit polyclonal anti-Ki67 antibody (ab15580, Abcam, Cambridge,
UK, dilution 1:50); rabbit polyclonal anti-neurofilament heavy subunits neuronal marker to
localize Meissner and Auerbach plexuses (ab8153, Abcam, Cambridge, UK, dilution 1:200);
rabbit polyclonal anti-nesfatin-1 antibody (H-003-22, Phoenix Pharmaceuticals, Burlingame,
CA, USA, dilution 1:2000); mouse monoclonal anti-E cadherin antibody to mark adherence-
type cellular junctions in the small intestine epithelium (ab231303, Abcam, Cambridge,
UK, dilution 1:500); three types of antibodies were used to mark tight junctions—rabbit
polyclonal anti-ZO-1 (zonula occludens 1) antibody (orb313868, Biorbyt, St. Louis, MO,
USA, dilution 1:500), rabbit polyclonal MarvelD3 antibody (PA5-42629, Invitrogen, Thermo
Fisher Scientific, Waltham, MA, USA, dilution 1:100) and rabbit polyclonal anti-occludin
antibody (ab222691; Abcam, Cambridge, UK, dilution 1:100). Two “hunger-related” en-
teroendocrine hormones were detected with the use of rabbit polyclonal anti-ghrelin
antibody (ab217011; Abcam, Cambridge, UK, dilution 1:50) and rabbit polyclonal anti-
leptin antibody (ab16227; Leptin; Abcam, Cambridge, UK, dilution 1:50); rabbit polyclonal
anti-VIP antibody was used to localize and identify the expression of vasoactive intestinal
peptide (VIP) (ab22736; Abcam, Cambridge, UK, dilution 1:400). The sections were then
incubated for 30 min with the appropriate second antibodies (peroxidase-conjugated goat
anti-rabbit, #611-1302, Rockland Immunochemicals, Inc. Limerick, IL, USA, dilution 1:500,
or peroxidase-conjugated goat anti-rabbit, ab6721, Abcam, Cambridge, UK, dilution 1:200).
Negative control sections for each antibody were obtained by identical immunohistochemi-
cal staining excluding the primary antibody (Figure S1). The sections were then developed
in 3,3′-diaminobenzidine tetrahydrochloride (DAB D5905; Sigma-Aldrich, St. Louis, MO,
USA) or 3,3′-diaminobenzidine tetrahydrochloride with a metal enhancer (SIGMAFAST™
DAB D0426; Sigma-Aldrich, St. Louis, MO, USA), both used as chromogens for 15 min at
room temperature. Counterstaining was performed with Mayer’s hematoxylin (MHS32-1L;
Sigma-Aldrich, St. Louis, MO, USA) or Nuclear Fast Red counterstain (H-24-2; Vector
Laboratories Inc., Burlingame, CA, USA), respectively.

Microscopic images were subjected to further analysis. For Ki-67, the proliferating cell
index (the percent of proliferating cells in relation to all the gland cells) and the number
of proliferating cells per 0.01 mm2 of the gland surface were determined. For neurofila-
ment detection, the cross-sectional area of the nerve ganglion, the sphericity, perimeter,
the minimal and mean diameters of the ganglion and the mean Feret diameter (the distance
between the two tangential lines restricting the object perpendicular to that direction) were
determined using ImageJ software [25].

The intensity of immunoreaction (brown color or gray, depending on staining) was
measured by the quantitative comparison of mean pixel intensity values in the photomicro-
graphs converted into 8-bit grayscale images. The scale was from 0 (white pixel) to 255
(black pixel); the lower the pixel value, the higher the intensity of immunohistochemical
reaction [27]. The intensity of the immunoreaction in each of the analyzed digital images
was measured in 10 randomly selected areas of the positive signal. The analyses were done
blindly by an associate who was not aware of the treatment using ImageJ software [25].

2.4. Statistical Analysis

All statistical procedures were conducted using Statistica 13 software (TIBCO Software
Inc., Palo Alto, CA, USA). Normal distribution of data was examined using the Shapiro–
Wilk test and equality of variance was tested using Levene’s test. A comparison between
normally distributed variables with equal variances was carried out using the two-tailed
Student’s t-test or a t-test with Welch’s correction when normally distributed data lacked
equal variances. When there was a lack of normal distribution, a non-parametric Mann–
Whitney U analysis was used to test the differences between means. For all tests, a p-value
of less than 0.05 was considered statistically significant. The results presented in the
tables and in Figure 1 (body mass gain) are expressed as mean ± standard deviation (SD),
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whereas other graphs present results as mean ± standard error (SE). The results included
in Supplementary Materials Table S1 present mean ± SE, median (with Q1 and Q3 quartile)
and the exact p-value for all data and the effect size for all significant comparisons estimated
with Cohen’s d for parametric comparisons and Cohen’s r for non-parametric comparisons.

3. Results
3.1. Morphology

The initial and final body weights of the rats did not differ significantly between
groups (Figure 2). In the first week after the gastrectomy, the inhibition of weight gain
was observed, but it was also not statistically significant compared to the sham-operated
(control) group (Figure 2).

Figure 2. Changes in body weight of male Wistar rats in the CONT (sham-operated) and GASTR
(subjected to gastrectomy) groups.

No macroscopic changes indicating an anastomotic failure or infection were found
during dissection. In the gastrectomy-treated group, there was a decrease in the thickness
of the submucosa and the number of active crypts, while a significant increase in the
content of immature collagen in the duodenum was observed (Table 1 and Figure 3A).
In the jejunum, significant increases in the thicknesses of the myenteron, submucosa and
mucosa were observed after gastrectomy (Table 1). Moreover, in the gastrectomy-treated
group, an increase in the immature collagen content, Ki index and number of proliferating
cells in the jejunum was noted (Table 1 and Figures 3A and 4A), while the number of
enterocytes was decreased in the GASTR group. The number of Meissner ganglia in the
duodenum was significantly greater in the GASTR group compared to the CONT group
(Table 2). The size of the Auerbach ganglia in the jejunum in the gastrectomy-treated group
increased, as evidenced by the greater area and mean Feret diameter (Table 2). In liver,
the number of total cells, hepatocytes, hepatocyte nuclei and mononuclear hepatocyte
nuclei significantly increased in the GASTR group (Table 3). The content of immature
collagen in the liver tissue was also higher in the GASTR group than in the CONT group
(Table 3; Figure 3B).
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Table 1. The histomorphometrical parameters of the duodenum and jejunum in male Wistar rats in the CONT (sham-
operated) and GASTR (subjected to gastrectomy) groups.

Parameter
Duodenum Jejunum

CONT GAST CONT GAST

Myenteron longitudinal lamina thickness, µm 34.4 ± 8.85 29.2 ± 6.06 15.7 ± 4.6 27.2 ± 3.0 ***
Myenteron transversal lamina thickness, µm 52.5 ± 12.1 46.0 ± 9.1 22.7 ± 3.7 40.7 ± 3.7 ***

Submucosa thickness, µm 40.3 ± 8.2 25.4 ± 7.8 ** 15.4 ± 7.6 31.7 ± 5.3 **
Mucosa thickness, µm 885 ± 73 825 ± 68 723 ± 31 825 ± 68 **

Villus length, µm 628 ± 34 622 ± 53 492 ± 59 460 ± 43
Villus thickness, µm 81.4 ± 10.3 81.8 ± 7.8 76.0 ± 9.8 81.3 ± 13.5

Total number of villi, /mm 9.1 ± 1.5 8.4 ± 0.8 9.9 ± 0.9 9.1 ± 1.0
Villus epithelium thickness, µm 30.9 ± 4.7 31.7 ± 4.4 28.9 ± 5.5 31.0 ± 6.7

Enterocyte number, /100 µm of villus 13.5 ± 1.4 14.8 ± 1.4 16.2 ± 1.9 13.5 ± 1.8*
Total crypts number, /mm 13.2 ± 2.7 11.6 ± 1.6 16.9 ± 3.9 17.3 ± 3.3

Active crypts number, /mm 4.4 ± 1.5 2.6 ± 0.7 * 5.7 ± 1.2 5.4 ± 1.9
Inactive crypts number, /mm 8.8 ± 2.6 9.0 ± 1.7 10.3 ± 3.8 11.9 ± 4.0

Crypt depth, µm 168 ± 27 146 ± 30 148 ± 19 136 ± 17
Crypt width, µm 52.7 ± 9.1 55.3 ± 8.6 44.3 ± 10.4 47.1 ± 9.0

Intestine absorptive surface, µm2 4.2 ± 0.6 4.9 ± 1.0 3.9 ± 0.6 4.0 ± 0.5
Immature collagen, % 4.1 ± 2.2 7.6 ± 2.4 * 3.5 ± 1.5 10.8 ± 2.6 ***

Ki index 0.61 ± 0.06 0.68 ± 0.06 0.39 ± 0.13 0.56 ± 0.07 *
Ki number, /0.01 mm2 of the gland surface 9.08 ± 2.01 8.11 ± 1.08 6.6 ± 1.8 10.1 ± 2.8 *

Table shows mean ± standard deviation. Statistical significance: * p < 0.05; ** p < 0.01; *** p < 0.001. Significance was established
using a two-tailed Student’s t-test (normally distributed data), Welch’s test (normally distributed data with unequal variances) or the
Mann–Whitney test (for pairwise comparisons with at least one non-normally distributed dataset). Ki index—the number of proliferating
cells in relation to all gland cells; Ki number—the number of proliferating cells.

Figure 3. (A) Representative photomicrographs of PicroSirius red (PSR)-stained sections of the duo-
denum and jejunum. Mature, thick collagen fibers are red-orange, and immature, thin collagen fibers
are green. Intestine sections from the CONT group, irrespective of the analyzed fragment, contained
thick and thin fibers, with a predominance of thick fibers (red, mature). An increase in immature
fibers (thin and green) was observed after gastrectomy. (B) Representative photomicrographs of
PSR-stained sections of the liver. Liver sections from the CONT group contained thick and thin fibers,
with a predominance of thick fibers (red, mature). An increase in immature fibers (thin and green)
was observed in the gastrectomy-treated group. Red arrow indicates mature collagen; green arrow
indicates immature collagen. All the scale bars represent 50 µm.
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Figure 4. (A) Representative photomicrographs of the immunohistochemical reactions for Ki-67
in the jejunum. (B) Representative pictures of the immunohistochemical reactions for cadherin in
the sections of the jejunum. Sections were developed in 3,3′-diaminobenzidine tetrahydrochloride
(DAB); counterstaining was performed with Mayer’s hematoxylin. All the scale bars represent 50 µm.
(C) The intensity of expression of cadherin in the jejunum, measured by the quantitative assessment
of mean pixel intensity values in the photomicrographs converted to 8-bit grayscale images. The scale
was from 0 (white pixel) to 255 (black pixel); the lower the pixel value, the higher the intensity of
immunohistochemical reaction. Graph shows mean ± standard error. Significance was established
using a two-tailed Student’s t-test (normally distributed data), Welch’s test (normally distributed
data with unequal variances) or the Mann–Whitney test (for pairwise comparisons with at least one
non-normally distributed dataset); *** p < 0.001.

Table 2. The histomorphometrical parameters of the enteric nervous plexuses in the duodenum and jejunum of the male
Wistar rats in the CONT (sham-operated) and GASTR (subjected to gastrectomy) groups.

Parameter
Duodenum Jejunum

CONT GAST CONT GAST

Auerbach plexus

Area, µm2 828 ± 143 656 ± 155 585 ± 125 979 ± 149 ***
Perimeter, µm 137 ± 67 131 ± 37 120 ± 55 179 ± 74

Mean Feret diameter, µm 41.0 ± 33.4 39.3 ± 40.9 36.2 ± 9.5 53.6 ± 12.1 *
Mean diameter, µm 25.4 ± 10.2 20.2 ± 9.3 12.9 ± 6.5 13.0 ± 5.1
Min diameter, µm 15.9 ± 4.6 11.8 ± 3.6 21.9 ± 10.1 24.7 ± 12.3

Sphericity 0.31 ± 0.19 0.30 ± 0.22 0.21 ± 0.18 0.13 ± 0.11
The number of the ganglia, /mm 5.5 ± 0.9 5.6 ± 1.2 3.0 ± 1.1 3.1 ± 0.6

Meissner plexus

Area, µm2 384 ± 114 372 ± 142 355 ± 103 372 ± 158
Perimeter, µm 82 ± 25 82 ± 32 80 ± 22 79 ± 34

Mean Feret diameter, µm 24.6 ± 7.4 24.5 ± 9.5 24 ± 6.7 23.9 ± 10.2
Mean diameter, µm 20.8 ± 6.3 20.1 ± 6.3 19.3 ± 5.6 19.4 ± 7.2
Min diameter, µm 14.6 ± 4.9 14.2 ± 4.4 12.8 ± 4.5 13.7 ± 5.3

Sphericity 0.29 ± 0.19 0.31 ± 0.05 0.31 ± 0.18 0.33 ± 0.24
The number of the ganglia, /mm 1.5 ± 0.2 4.4 ± 0.8 *** 3.8 ± 0.9 3.9 ± 0.1

Table shows mean ± standard deviation. Statistical significance: * p < 0.05; *** p < 0.001. Significance was established using a two-tailed
Student’s t-test (normally distributed data), Welch’s test (normally distributed data with unequal variances) or the Mann–Whitney test
(for pairwise comparisons with at least one non-normally distributed dataset).
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Table 3. The histomorphometrical parameters of the liver in male Wistar rats in the CONT (sham-
operated) and GASTR (subjected to gastrectomy) groups.

Parameter CONT GAST

Total cell number, /mm2 2084 ± 189 2647 ± 138 ***
Total hepatocyte number, /mm2 1565 ± 75 2149 ± 55 ***

Total hepatocyte nucleus number, /mm2 1651 ± 65 2257 ± 62 ***
Mononuclear hepatocytes nucleus number, /mm2 1479 ± 119 2041 ± 157 ***

Binuclear hepatocytes nucleus number, /mm2 86 ± 28 108 ± 29
Non-hepatocyte cell number, /mm2 519 ± 99 488 ± 51

Immature collagen, % 15.8 ± 4.5 39.8 ± 5.3 ***
Table shows mean ± standard deviation. Statistical significance: *** p < 0.001. Significance was established using
a two-tailed Student’s t-test (normally distributed data), Welch’s test (normally distributed data with unequal
variances) or Mann–Whitney test (for pairwise comparisons with at least one non-normally distributed dataset).

3.2. Immunolocalization

The immune reactions with anti-cadherin antibodies in both examined parts of the
digestive tract (the duodenum and the middle part of the jejunum), were similar in both
groups. The reactions were continuous and the cadherins were observed on the basal layer
of the epithelium, thus ensuring the maintenance of proper cell-cell contacts, however the
intensity of cadherin expression was stronger after gastrectomy (Figure 4B,C).

Immunolocalization of the nesfatin-1 peptide showed that nesfatin-1 IR cells were
observed in both the duodenum and jejunum. In the duodenum of CONT rats, IR cells
were mainly observed in Paneth cells within all crypts, with less nesfatin-1 immunostaining
cells observed in the crypts. The duodenum of GASTR rats was also characterized by an
immunostaining reaction in the Paneth cells of a few of the crypts. Moreover, the intensity
of nesfatin-1 expression in the duodenum of gastrectomized rats was significantly weaker
than that observed in the CONT rats. In the jejunum, the staining intensity was strong in
the Paneth cells within the majority of the crypts and weak in the enterocytes in both groups
(brown staining, Figure 3A); however, a weaker reaction was observed in the GASTR rats
(Figure 5B). Immunolocalization of the nesfatin-1 peptide showed that nesfatin-1 IR cells
were observed in both the Meissner and Auerbach plexuses in the duodenum and the
jejunum. The intensity of the reaction in the IR cells of the Meissner plexus was comparable
in both groups, while the expression of nesfatin-1 in the Auerbach plexuses was higher in
the CONT rats compared to the GASTR rats (red arrow; Figure 5C).

The expression of ZO-1 (tight junction protein-1), which is one of the proteins in-
volved in signal transduction at cell–cell junctions, was higher in the crypts and epithelial
villi of the duodenum and the jejunum of the GASTR rats compared to the CONT rats
(Figure 6A,B).

The expression of occludin, another integral plasma membrane protein located at the
tight junctions, was of a similar intensity in the duodenum in both groups when analyzed
across the whole epithelium. However, when occludin expression was analyzed separately
for villi and crypts, a stronger intensity was noted in the villi from the GASTR rats compared
to the CONT rats (Figure 7A,B). The opposite effect was observed in the jejunum, where the
intensity of occludin expression was weaker in the GASTR rats compared to the CONT
rats, irrespective of the part analyzed.

The expression of marvelD3, a tight junction protein that, like occludin, contains
a conserved four-transmembrane MAL and related proteins for vesicle trafficking and
membrane link (MARVEL) domain, was of a weaker intensity throughout the whole
duodenal epithelium in the GASTR rats. However, when the expression was assessed only
in the villi, the intensity of marvelD3 expression was stronger in villi from the GASTR rats
compared to the CONT rats (Figure 8A,B). No differences in marvelD3 expression were
observed in the jejunum (Figure 8).



J. Clin. Med. 2021, 10, 272 9 of 23

Figure 5. (A) Representative photomicrographs of the immunohistochemical reactions for nesfatin-1
in the jejunal crypts and (C) the Auerbach plexus (red arrow). Sections were developed in 3,3′-
diaminobenzidine tetrahydrochloride (DAB); counterstaining was performed with Mayer’s hema-
toxylin. All the scale bars represent 50 µm. (B) The intensity of expression of nesfatin-1 in the jejunum,
measured by the quantitative assessment of mean pixel intensity values in the photomicrographs
converted to 8-bit grayscale images. Scale from 0 (white pixel) to 255 (black pixel); the lower the
pixel value, the higher the intensity of immunohistochemical reaction. Graph shows mean ± stan-
dard error. Significance was established using a two-tailed Student’s t-test (normally distributed
data), Welch’s test (normally distributed data with unequal variances) or the Mann–Whitney test
(for pairwise comparisons with at least one non-normally distributed dataset); *** p < 0.001.

Figure 6. (A) Representative photomicrographs of the immunohistochemical reactions for zonula
occludens 1 (ZO-1). Sections were developed in 3,3′-diaminobenzidine tetrahydrochloride with
metal enhancer; counterstaining was performed with Nuclear Fast Red. All the scale bars represent
100 µm. (B) The intensity of expression of ZO-1, measured by comparison of the pixel brightness
values in the microscopic images converted to 8-bit grayscale. The higher the pixel value, the lower
the intensity of immunoreactions. Graph shows mean ± standard error. Significance was established
using a two-tailed Student’s t-test (normally distributed data), Welch’s test (normally distributed
data with unequal variances) or the Mann–Whitney test (for pairwise comparisons with at least one
non-normally distributed dataset); *** p < 0.001.
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Figure 7. (A) Representative photomicrographs of the immunohistochemical reactions for occludin.
Sections developed in 3,3′-diaminobenzidine tetrahydrochloride with metal enhancer; counterstain-
ing performed with Nuclear Fast Red. All the scale bars represent 100 µm. (B) The intensity of
expression of occludin measured by the comparison of the pixel brightness values in the microscopic
images converted to 8-bit grayscale. The higher the pixel value, the lower the intensity of immunore-
actions. Graph shows mean ± standard error. Significance was established using a two-tailed
Student’s t-test (normally distributed data), Welch’s test (normally distributed data with unequal
variances) or the Mann–Whitney test (for pairwise comparisons with at least one non-normally
distributed dataset); ** p < 0.01; *** p < 0.001.

Figure 8. (A) Representative photomicrographs of the immunohistochemical reactions for marvelD3.
Sections were developed in 3,3′-diaminobenzidine tetrahydrochloride with metal enhancer; counter-
staining was performed with Nuclear Fast Red. All the scale bars represent 100 µm. (B) The intensity
of expression of marvelD3, measured by the quantitative assessment of mean pixel intensity values
in the photomicrographs converted to 8-bit grayscale images. Scale from 0 (white pixel) to 255
(black pixel); the lower the pixel value, the higher the intensity of immunohistochemical reaction.
Graph shows mean ± standard error. Significance was established using a two-tailed Student’s t-test
(normally distributed data), Welch’s test (normally distributed data with unequal variances) or the
Mann–Whitney test (for pairwise comparisons with at least one non-normally distributed dataset);
* p < 0.05; ** p < 0.01.
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The expression of ghrelin, a hormone produced in the gastrointestinal tract, was simi-
lar in the duodenum of both groups (Figure 9A,B). Ghrelin expression was decreased in
the jejunum of GASTR rats compared to that observed in CONT rats. Moreover, ghrelin ex-
pression was decreased in the enteric nervous system of the rats subjected to gastrectomy,
irrespective of the part of the intestinal tract (duodenal Auerbach, Figure 9A,B).

Figure 9. (A) Representative photomicrographs of the immunohistochemical reactions for ghrelin
in the jejunum, duodenum and duodenal Auerbach plexus (red arrow). Sections developed in
3,3′-diaminobenzidine tetrahydrochloride with metal enhancer; counterstaining performed with
Nuclear Fast Red. All the scale bars represent 100 µm. (B) The intensity of expression of ghrelin,
measured by the comparison of the pixel brightness values in the microscopic images converted to
8-bit grayscale. Scale from 0 (white pixel) to 255 (black pixel); the lower the pixel value, the higher
the intensity of immunohistochemical reaction. Graph shows mean ± standard error. Significance
was established using a two-tailed Student’s t-test (normally distributed data), Welch’s test (normally
distributed data with unequal variances) or the Mann–Whitney test (for pairwise comparisons with
at least one non-normally distributed dataset); *** p < 0.001.

The expression of leptin, another hormone involved in the regulation of energy balance
through the inhibition of hunger, was decreased in the duodenum after gastrectomy
(Figure 10A,B). This decrease was observed in the crypts, epithelium villi and enteric
nervous system (Figure 10A,B). In the jejunum, leptin expression was weaker in the crypts
and stronger in the villi of rats from the GASTR group, whereas rats from the CONT group
showed stronger leptin expression in the crypts versus in the villi. Thus, the overall total
intensity of leptin expression was not different between groups (Figure 10A,B).

The expression of a vasoactive intestinal peptide (VIP) in the intestine, which induces
smooth muscle relaxation, was decreased in the enteric nervous system after gastrectomy
in both the duodenum and the jejunum (Figure 11A,B).
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Figure 10. (A) Representative photomicrographs of the immunohistochemical reactions for leptin
in the jejunum, duodenum and duodenal Auerbach plexus (red arrow). Sections were developed
in 3,3′-diaminobenzidine tetrahydrochloride with metal enhancer; counterstaining was performed
with Nuclear Fast Red. All the scale bars represent 100 µm. (B) The intensity of expression of ghrelin,
measured by the comparison of the pixel brightness values in the microscopic images converted to
8-bit grayscale. Scale from 0 (white pixel) to 255 (black pixel); the lower the pixel value, the higher
the intensity of immunohistochemical reaction. Graph shows mean ± standard error. Significance
was established using a two-tailed Student’s t-test (normally distributed data), Welch’s test (normally
distributed data with unequal variances) or the Mann–Whitney test (for pairwise comparisons with
at least one non-normally distributed dataset); *** p < 0.001.

Figure 11. (A) Representative photomicrographs of the immunohistochemical reactions for vasoactive
intestinal peptide (VIP) in Auerbach plexuses (red arrow) of the duodenum and the jejunum. Sections
were developed in 3,3′-diaminobenzidine tetrahydrochloride with metal enhancer; counterstaining
was performed with Nuclear Fast Red. All the scale bars represent 100 µm. (B) The intensity of
expression of VIP, measured by the quantitative assessment of mean pixel intensity values in the
photomicrographs converted to 8-bit grayscale images. Scale from 0 (white pixel) to 255 (black
pixel); the lower the pixel value, the higher the intensity of immunohistochemical reaction. Graph
shows mean ± standard error. Significance was established using a two-tailed Student’s t-test
(normally distributed data), Welch’s test (normally distributed data with unequal variances) or the
Mann–Whitney test (for pairwise comparisons with at least one non-normally distributed dataset);
** p < 0.01.
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4. Discussion

Total or partial resection of the stomach involves changes in the functioning of the
GIT. Patients after total gastrectomy can lose body weight due to dietary restrictions and
disturbances in digestion and nutrient absorption. Dietary restrictions most often result
from the lack of hunger, an early feeling of fullness and eating too little food [28]. In mor-
bidly obese patients, despite the fact that bariatric surgery can lead to liver dysfunction
and exocrine pancreatic insufficiency, it generally improves the quality of life and reduces
mortality. Furthermore, as the intestine shows enteroplasticity, which is a manifestation
of the ability to adapt to various conditions, bariatric surgery has consequences in its
physiology and morphology as a result of the change in cell turnover [29]. The process of
enterocyte proliferation can involve changes in villus height, crypt depth, mucosal surface
area and intestinal mass, which all indicate morphological adaptation of the intestine [30].
In addition to morphological changes, enteroplasticity also includes adaptations within the
nervous system as well as endocrine and nutrient signaling [14]. However, enteroplasticity
can have both positive and negative consequences [31,32]. Seeley et al. hypothesized
that enteroplasticity underlies the benefits of bariatric surgery [14]. Changes in neuronal
innervation or neuronal activity can result in an increase in enteroendocrine cell number
or sensitivity to stimuli and enhancement of nutrient absorption via an increase in villi
number and/or length and/or depth of crypt as well as stimulation of intracellular signal-
ing processes via an increase in nutrient transport or production of digestive products [14].
In the present study, gastrectomy caused a decrease in submucosa thickness and the num-
ber of active crypts in the duodenum. On the other hand, an increase in the thickness of
the mucosa, submucosa and myenteron was observed in the jejunum, with a simultaneous
reduction in enterocyte number. The changes in the jejunum were also accompanied by
increased cell proliferation. Moreover, immature collagen fibers were observed in both
the duodenum and the jejunum. In the current study, small changes in morphology were
observed within the duodenum following gastrectomy, while in the jejunum, hypertrophy
occurred. Previous studies observed no changes in intestinal morphology after gastrec-
tomy in rats and mice [33,34]. However, morphological changes were observed following
different types of surgeries involving GIT manipulations in rodent models. Dib et al. [10]
observed a significant reduction in duodenal villi length and thickness of the mucosa
and myenteron after biliopancreatic diversion and gastric sleeve procedures (Scopinaro
method) in Wistar rats. In a rat model that underwent one-anastomosis (mini) gastric
bypass (MGB) surgery, the alimentary limb was hyperplasic with a larger diameter, longer
villi and deeper crypts [35]. This hyperplasia was only limited to the new food path and
insufficient to compensate for the malabsorption [35]. When the stomach is left intact
and the upper gut is bypassed (duodenojejunal bypass), atrophy in the bypassed limb
and hyperplasia in the portion of the jejunum exposed to nutrients were observed [11].
Similarly, intestinal proliferation has been observed in previous studies after Roux-en-Y
gastric bypass (RYGB), where significant increases in cell proliferation, intestine width,
villus height and crypt depth were observed in the alimentary and common intestinal
limbs [12,13]. Other surgeries involving intestinal manipulations, i.e., placement of a duo-
denal endoluminal sleeve and ileal interposition, also demonstrated intestinal hyperplasia
in rodents [36,37]. The above-mentioned results indicate that functional elimination of
one part of the GIT may cause a compensatory response in the remaining parts, involving
some form of morphological adaptation. Thus, intestinal resection results in hypertrophy
of the remaining intestine. This hypertrophy is a result of intestinal hyperplasia, which is
associated with a higher rate of cell proliferation in the crypts and an increase in crypt
depth and villi height [38,39]. These morphological changes probably depend on the length
of the resected intestine and the type of surgery manipulation [39]. However, intestinal
cell proliferation occurs after surgical manipulation in the intestine while vertical sleeve
gastrectomy (VSG) does not affect intestinal morphology in experimental animals [33,34].
In light of these results, the hypertrophy combined with an increase in cell proliferation,
immature collagen content and the simultaneous decrease in the number of enterocytes ob-
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served in the jejunum in the current study can be explained by the range of the performed
surgery, and further studies are required to understand underlying mechanisms.

Increased villus height and improved nutritional intake may not be accompanied
by an increase in individual cell width and height [40]. This suggests that intestinal
adaptation comprises not only changes to the number of cells but also to the quality of the
enterocytes [29]. Following adaptation, the intestinal enterocytes are more functional and
more capable of digesting and absorbing nutrients. This may be confirmed by an increase in
enzymatic activity within the intestine. An increase in the activity of intestinal brush border
enzymes has previously been observed after surgical manipulations of the stomach [41].
An increase in the protein content and enzymatic activity of the duodenum and jejunum,
in combination with slight morphological changes, may testify to the functional adaptation
of the intestine after gastrectomy [41]. It can indicate that neither intestinal malabsorption
nor mechanical restriction are the only mechanisms involved in reduced caloric intake or
decreased body weight after bariatric surgery [42]. The lack of reduction in body weight
in gastrectomized subjects could be caused by the lack of disturbances in the sodium-
dependent absorption of glucose. Whether it was one of the mechanisms responsible for
the lack of reduction in body weight following gastrectomy noted in our study should not
be excluded. One should also remember that rats are able to adapt to specific metabolic
situations by modulating meal frequency [42].

As previously mentioned, enteroplasticity can be associated with changes in the
nervous system within the GIT [14]. The small intestine is supplied with fibers of the
autonomic nervous system (ANS) and the enteric nervous system (ENS). Both systems are
involved in the control of intestinal motility, blood flow, mucosal transport and secretions,
as well as endocrine and immune functions. Gautron et al. confirmed the hypothesis
that enteroplasticity is reliant on changes in the nervous innervation of the GIT [43].
They reported the loss of innervation by the vagus nerve within the stomach and intestine
after surgical anastomoses and no changes in innervation of the intact intestinal segments
and liver [43]. Morphological abnormalities within vagal nerve fibers were also observed,
which were mainly associated with the myenteric plexus of the stomach [43]. Gastrectomy
leads to disappearance of neural gastric reflexes, rapid gastric emptying, asynchrony
between gastric emptying and bilio-pancreatic secretion and denervation of the pancreas
due to dissection of lymph nodes and truncal vagotomy [44–46]. These changes contribute
to the development of exocrine pancreatic insufficiency (EPI), which is one of the possible
mechanisms of reduced digestion and malabsorption following gastric surgery. Proper
integrity of the gastrointestinal–pancreatic complex is essential for an adequate process
of digestion.

In the present study, myenteric (Auerbach) and submucosal (Meissner) plexus pa-
rameters were investigated. Gastrectomy was found to increase the number of Meissner
ganglia in the duodenum as well as the size of the Auerbach ganglia in the jejunum.
These changes in GIT innervation or neuronal activity could influence GI peptide secretion.
In a study by Hansen et al. [47], glucagon-like peptide-1 (GLP-1) secretion was inhibited by
sympathetic nervous system activation, whereas the extrinsic vagal supply had no effect.
Instead, neurotransmitters from the intrinsic enteric nervous system significantly increased
GLP-1 secretion and, thus, are thought to play a role in the GLP-1 secretion elicited by local
reflexes [47]. It can therefore be assumed that changes in the ENS after gastrectomy affect
enteroendocrine cell secretions.

The number and diversity of peptides and hormones derived from the GIT make it the
largest endocrine organ of the body. These hormones can act directly on the GIT, including
the ENS or other organs, after their transfer to the blood. The gastric endocrine cells
release, among others, nesfatin-1 and ghrelin [48–53]. Nesfatin-1, which is also expressed
in the duodenum, pancreas and colon [51,54,55], reduces food intake and is involved in
the regulation of body weight [56] and inhibits gastric motility and emptying, duodenal
motility and the vagally mediated stimulation of gastric acid secretion [56–58]. Ghrelin,
an orexigenic peptide, increases food intake and decreases energy expenditure, altering
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body weight gain [59]. Intravenous administration of ghrelin dose-dependently increases
gastric acid secretion and stimulates gastric motility [60]. Ghrelin-IR cells are found in
the duodenum, jejunum, ileum, colon and pancreas in both rats and humans (except
colon) [61,62]. The stomach is also a source of leptin [63], initially described as a hormone
synthesized by adipose tissue [64]. Leptin mediates the regulation of energy balance,
metabolism, neuroendocrine and immune function and development [65,66]. In the GIT,
leptin is involved in intestinal transport and enterocyte metabolism [67,68]. Since gastric-
derived hormones are involved in various activities throughout the GIT, the elimination
of their impact/function following total gastrectomy may be important not only for GIT
functioning but also for the control of food intake, glycemia and other actions.

The epithelium of the small intestine contains less than 1% endocrine cells, which are
the source of many peptides including secretin, cholecystokinin (CCK), glucose-dependent
insulinotropic polypeptide (GIP), GLP-1, glucagon-like peptide-2 (GLP-2), pro-satiety
hormone peptide YY (PYY), somatostatin, secretin, neurotensin, motilin and ghrelin [69].
According to research, the expression and secretion of hormones in the small intestine
depend on systemic factors related to metabolic status as well as locally acting factors.
Changes in the number or density of endocrine cells were observed after various anas-
tomosis surgeries. In a study by Mumphrey et al., an increase in the number, but not
density, of CCK-, GLP-1-, serotonin- and neurotensin-expressing enteroendocrine cells
in the rat intestine was observed [70]. RYGB surgery has been shown to have no effect
on the density of ghrelin-, CCK-, neurotensin-, secretin- and serotonin-producing cells in
other studies [71]. The increase in the number of endocrine cells, with no modifications
to cell density, may be a consequence of the hyperplasia of the alimentary limb. In turn,
an increased density of GLP-1-, PYY- and GIP-positive cells after RYGB was observed [71].
Changes in enteroendocrine cell number or density after one-anastomosis gastric bypass
(OAGB) surgery have previously been described [35]. Hyperplasia caused an increase in
the number of GLP-1- and GIP-secreting cells, thus contributing to the increase in their
secretion. After SG, an increase [33], or a decrease [34], in the density of cells expressing
GLP-1 was observed.

In the present study, we did not assess the number and density of endocrine cells but
rather the immunohistochemical expression of nesfatin-1, ghrelin, leptin and VIP in the
duodenum and jejunum. IR cells for nesfatin-1, ghrelin and leptin were observed in the villi,
crypts and ENS, in both the duodenum and jejunum, with IR cells for VIP observed in the
ENS. These results are partly consistent with the results of previous studies in relation to
the location of these hormones in the intestine [55,61,62,72–74]. We observed a decrease in
the expression of nesfatin-1 and leptin in the duodenum mucosa and a decrease in ghrelin
expression in the jejunum mucosa. These changes may be important for intestine function
since the above-mentioned peptides are involved in GIT activities. Leptin may play a
role in growth (proliferation of mucosal epithelial cells), nutrient absorption by enzymatic
activity in the brush border of the enterocytes and gut motility [74]. Nesfatin-1 plays a
role in enzyme activation, nutrient absorption and protection of the intestinal walls [55],
and ghrelin is involved in the regulation of gastrointestinal motility [75]. Perhaps this is
partly due to their effect on the release of other hormones. Nesfatin-1 has been found to
stimulate GLP-1, GIP and CCK and suppress PYY expression and secretion in vitro [76,77].
Unfortunately, literature concerning the consequences of gastrectomy on the expression
of the hormones assessed in the present study is very limited. Teive et al. [78] observed
no significant changes in the number of ghrelin-positive cells in the duodenum of rats
after SG.

We found that gastrectomy decreased the immunohistochemical reaction for leptin
and VIP in the submucosal and myenteric plexuses in the duodenum, for nesfatin-1 in
the myenteric plexuses in the duodenum and jejunum and for VIP in the ENS in both
the duodenum and jejunum. Submucosal neurons of the ENS are the regulators of mu-
cosal function, while myenteric neurons participate in the regulation of GIT motility. VIP,
localized in the myenteric and submucosal neurons and nerve terminals in the GIT [72],
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stimulates anion secretion from the enterocytes [79], contracts [80], and relaxes [81] GIT
smooth muscles and modulates epithelial paracellular permeability via regulation of the
expression and function of tight junction proteins [82]. VIPergic pathways were found
to increase the expression of ZO-1 in colonic epithelium in an in vitro study, which is,
in turn, associated with reduced epithelial paracellular permeability [82]. However, in the
present study, a stronger immunohistochemical reaction for ZO-1 occurred in conjunction
with a weaker reaction for VIP in the ENS. The presence of immunopositive neurons for
nesfatin-1, ghrelin and leptin in the ENS indicated that these hormones are also impli-
cated in the modulation of intestinal motility and other functions. Thus, changes in their
expression in the ENS after gastrectomy may affect the function of the GIT. Nesfatin-1
immunopositive neurons and nervous fibers in the internal submucosal plexus of the
duodenum, external submucosal plexus of the ileum and myenteric plexuses in the colon
were observed by Varricchio et al. in Casertana pigs [73], while Gonkowski et al. did not
observe any nesfatin-1 immunopositive neurons or nervous fibers in the enteric neurons
in dog duodenum [54]. Leptin has been shown to have an impact on enteric nitrergic
neurons and intrinsic primary afferent neurons as well as on the activation of myenteric
and submucosal neurons [83,84]. In turn, ghrelin stimulates motility of the small intestine
through intrinsic cholinergic neurons [75]. However, the role of nesfatin-1 in the ENS is not
well understood [85]. As observed in the present study, neurochemical changes in neurons
are the main manifestation of the plasticity of the ENS.

The intestinal epithelium plays an important role in separating the luminal contents
from surrounding tissues [86]. The properties of this barrier are achieved by the formation
of a complex multi-protein network between the epithelial cells including tight junctions,
adhering junctions and gap junctions [87]. These proteins belong to the group of proteins
responsible for the properties of the epithelial barrier in the gut. Gap junctions link the
cytoplasm of adjoining cells and provide a pathway for intercellular exchange of ATP,
ions and fluids [87]. They are required for maintaining cellular function and homeostasis.
The mechanical integrity of the epithelium barrier is maintained by gap and adhering
junctions, which ensure adhesive contact between cells [88]. Tight junctions act as a barrier
against the extracellular environment, regulate paracellular permeability and polarity and
modulate intracellular and intercellular signaling and transport [88–90]. Tight junction
proteins are classified into three types of proteins, including transmembrane, cytoskeletal
and cytoplasmic plaque proteins [91]. Occludin and marvelD3, evaluated in the present
study, are classified as transmembrane proteins, whereas ZO-1 is a cytoplasmic plaque
protein. Transmembrane proteins penetrate the cellular membrane and influence the
passage of certain substances, paracellular transport and permeability [89]. Occludin
is a primary transmembrane protein which interacts with cytoplasmic plaque proteins
such as ZO-1, maintaining cell surface polarity [92]. In turn, ZO-1 interacts with other
transmembrane proteins, claudin and junction adhesion molecule A (Jam A) [93]. ZO-1
protein modulates the structure of tight junctions, paracellular permeability and gene
expression [93].

Assessment of the intestinal barrier after surgical manipulation within the GIT has
only been reported in very few previous studies. In mice, SG modified intestinal per-
meability in both the small and large intestines in a differential manner. SG decreased
paracellular and transcellular permeability measured ex vivo in biopsies of the jejunum.
These jejunal changes were associated with higher mRNA expression of Jam A and oc-
cludin, whereas ZO-1 mRNA expression was unchanged [91]. In turn, ex vivo paracellular
and transcellular permeabilities were increased in the distal colon after SG, whereas ex-
pression of occludin, Jam A and ZO-1 mRNAs was not significantly altered. However,
SG increased paracellular permeability in vivo, despite the reduced jejunal permeability
observed ex vivo [94]. Unfortunately, these results are difficult to interpret. Casselbrant
et al. [95] observed increased expression of several tight junction proteins in the proximal
small intestinal mucosa of humans after RYGB surgery, suggesting decreased paracellular
permeability. The increased expression of occludin in the mucosa of the alimentary and
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common limbs after duodenojejunal bypass, observed by Yang et al. [96], is consistent
with decreased permeability. These changes were also accompanied by an increase in
villus height and crypt depth in both limbs, indicating epithelial proliferation. In the
present study, we investigated the immunohistochemical expression of occludin, ZO-1
and marvelD3 proteins in the duodenum and jejunum. We observed that gastrectomy
resulted in increased expression of both occludin and marvelD3 in the duodenal villi and
increased ZO-1 expression in the villi and crypts of both the duodenum and the jejunum.
These results indicate strengthening of the epithelial barrier function, but they are not
associated with significant changes in intestinal morphology. However, an increase in
the proliferative index in the jejunum may be an adaptive mechanism to maintain the
integrity of the epithelial barrier. Thus, it is very likely that the adapted intestine not only
has more enterocytes but also improved enterocytes, which are more capable of performing
their function.

The effect of gastric surgery on the liver is still controversial. On the one hand,
gastrectomy reduces liver lipid accumulation, glycogen content and gluconeogenic gene
expression [97], and improves steatosis, steatohepatitis and fibrosis [98]; on the other hand,
it can reveal liver dysfunction [99]. In the present study, changes in liver structure were also
observed. These abnormalities are consistent with the literature; however, any correlation
between these changes, general condition, selected biochemical parameters and the extent
of the resection requires further controlled clinical and experimental studies [100,101].

Studies on rat models indicate an ambiguous effect of gastrectomy on body weight.
The presented results concerning the lack of significant changes in body weight are con-
sistent with reports of other authors who found no significant effect of gastrectomy on
the body weight of rats [26,46,47]. Nevertheless, the tendency to gain weight more slowly
has occurred [47]. On the other hand, there are studies that prove weight loss in rats after
gastrectomy [102,103]. Loss of weight after gastrectomy leads to reduction in stomach
volume, which may reduce food intake in rats. However, after an initial reduction in food
intake after gastrectomy, total daily food intake can be restored by increasing meal numbers
at a decreased meal size [104]. This indicates an adaptation of meal pattern to the reduced
stomach volume. One should also remember that rats are able to adapt to specific metabolic
situations by modulating meal frequency [105]. The lack of reduction in body weight in
gastrectomized subjects could be caused by a lack of disturbances in the sodium-dependent
absorption of glucose. Whether it was one of the mechanisms responsible for the lack
of reduction in body weight following gastrectomy noted in our study should not be
excluded. Gastrectomy leads, inter alia, to a reduction in ghrelin levels [102,103,106,107],
and an elevation [107–109], or reduction in nesfatin-1 level [110]. Nesfatin-1 as an anorexi-
genic peptide and ghrelin as an orexigenic peptide affect food intake. Reduction in ghrelin
level as well as a rise in nesfatin-1 level may be responsible for reduction in body weight
after gastrectomy [102,108]. Regarding nesfatin-1, an increase in its preoperative levels
suggests that sources other than the stomach provide a substantial amount of this hormone.
However, the research indicates that ghrelin is an unlikely candidate to explain the effect of
gastrectomy on body weight in rodents. This is evidenced by the fact that ghrelin-deficient
mice are just as susceptible to gastrectomy-induced weight loss as wild-type controls [111].
Our research indicated a reduction in serum ghrelin level by 76% and an increase in serum
nesfatin-1 level by 40% [107], but these changes were not associated with weight loss.
The lack of influence of gastrectomy on body weight, as observed by us and by other
authors, may indicate that hormonal changes resulting from gastrectomy are not the only
ones responsible for body weight changes in the post-operative period in rats. It is highly
probable that the lack of differences in body weight between the CONT and GASTR rats is
due to the increased activity of digestive enzymes of the pancreas and intestine, which we
previously reported [41].

Bariatric animal models, including rodents, are still significantly helpful in the col-
lection of both qualitative and quantitative data concerning post-operative changes after
gastrectomy [42]. While is not possible to directly extrapolate the numerous obtained
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data to human physiology, rat studies help to understand, step by step, all changes in the
physiology and morphology of the GIT. Therefore, although the presented study has some
limitations such as the lack of a detailed report of body weight gain or serum hormonal
analysis or basal serum biochemical parameters, in our opinion, the obtained results can be
clinically helpful and show that animal studies are a needed research tool, and especially
that there are many similarities between rat model and humans, including changes in
the post-operative profile of gut hormones, bile acids and metabolic effects of underwent
bariatric surgery [112,113].

5. Conclusions

In conclusion, gastrectomy leads to changes in the small intestine morphology and the
expression of some hormones and tight junction proteins. These changes testify to intestinal
enteroplasticity, associated with changes in the GIT condition. The results obtained suggest
that more complicated regulatory mechanisms are involved, over and above compensatory
mucosal hypertrophy alone. The higher emptying rate of the stomach and diminished
secretory capacity as well as a change in nutrients may modify the action of enteric neurons
and enteroendocrine cells in the small intestine. Moreover, functional changes in the
mucosa and ENS could be responsible for the altered intestinal barrier and hormonal
responses following gastrectomy.
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