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Abstract

By funneling protein effectors through needle complexes located on the cellular membrane, bacteria are able to infect host
cells during type III secretion events. The spatio-temporal mechanisms through which these events occur are however not
fully understood, due in part to the inherent challenges in tracking single molecules moving within an intracellular medium.
As a result, theoretical predictions of secretion times are still lacking. Here we provide a model that quantifies, depending on
the transport characteristics within bacterial cytoplasm, the amount of time for a protein effector to reach either of the
available needle complexes. Using parameters from Shigella flexneri we are able to test the role that translocators might
have to activate the needle complexes and offer semi-quantitative explanations of recent experimental observations.
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Introduction

The structural and rheological properties of an intracellular

medium define the transport characteristics of a variety of

molecules, many of which need to be transported within the cell

to fulfil their tasks [1,2]. A crucial element in carrying out these

tasks is their timing and the spatio-temporal processes that control

such timing. The importance of this temporal regulation cuts

across a broad spectrum of cell biology; from vesicle neurotrans-

mitters containing ribbon synapses in nerve cells [3–5] to neurite

growth [6] and secretory activities in bacteria (see e.g. [7]). All

these processes are activated as soon as a signalling agent has

reached any of a set of specified locations within the cell, the so-

called targets. Since the relevant dynamics is only the one that

occurs before a target is reached, one talks about first-passage

dynamics and defines first-passage time [8–10] as the time it takes for

these triggering events to occur.

Based on a first-passage framework, here we focus on modelling

secretory activities in bacteria and we provide in particular a

quantitative analysis of type III secretion [11], a mechanism

through which a bacterium invades potential host cells by

delivering protein effectors across their membrane. The invasive

process is governed by an elongated bacterial transmembrane

structure, the needle complex [12], believed to represent a narrow

conduit through which an effector is secreted into a host cell

[13,14]. By concentrating on the time it takes for an effector to

reach a needle base, and neglecting the time to traverse the

elongated needle, we provide plausible explanations of recent

experimental observations on Shigella flexneri, a well-known

bacterium which causes bacillary dysentery in humans. The

experiments by [15] and [16] suggest that a significant portion of

the available effector pool is depleted after several hundreds of

seconds, from first contact with a host cell. Our analysis indicates

that such depletion time scales are possible in either of three

plausible scenarios: (1) the values of the effector diffusion

coefficient are much smaller than expected [17]; (2) the effector

are hampered by obstacles in the cytoplasm [18], making their

movement statistics dominated by long waiting times; (3) the

measured depletion time scales are the result of progressive needle

activation by translocator proteins [13].

In this study we explore these three scenarios by modelling the

effector motion within the bacterial cytoplasm as a random walk in

a confined domain, which can escape from a narrow opening, the

so-called narrow escape problem in cellular microdomains [19].

The statistical properties of this walk could be diffusive (Brownian)

or sub-diffusive [20], the latter being caused by crowding effects

and interactions with the complicated internal cellular structure

[21]. The quantity of interest is the mean first-passage time (MFPT):

the time that a random walker requires to arrive at a target site,

averaged over all possible random trajectories. In the context of

bacterial secretion it represents how long an effector protein takes

on average to reach the base of a needle complex. Since bacteria,

which are capable of type III secretion, often carry more than one

needle complex, the MFPT needs to be averaged over multiple

target sites. Computing this average is technically non-trivial since

it requires distinguishing between movement paths that have

reached one of the available targets without having previously

reached any of the others. For the case of Brownian random

walkers in circular domains, a recent study [22] has made

significant advances by providing a computational tool to

determine approximately a multi-target MFPT.

We exploit those advances in answering how long a single

effector protein takes to reach any available needle complex base
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from a given initial position, under the assumption that it can be

represented as a particle performing a random walk. Given that

effector proteins are spread throughout the entire intracellular

domain [15], it is difficult to identify with sufficient accuracy their

initial location. We deal with this issue by studying a spatially

averaged MFPT, also called the global mean first passage time

(GMFPT). We examine in detail how the GMFPT depends on

various parameters such as the diffusion coefficient, number of

targets and target size, with parameter bounds that are mainly

based on Shigella flexneri. Finally, we extend our modelling efforts to

multiple random walkers for which we also consider the earlier

mentioned needle activation by translocators. We investigate how

long it takes until all walkers have escaped the domain, in two

cases: ordinary diffusion as well as sub-diffusive motion.

Results

Models of a single effector in two and three dimensions
The average time required by one effector in the bacterial

cytoplasm to reach a needle complex base depends on a number of

factors. Key among them are the cell geometry, the size of the

needle complex, the number and location of each complex base

and the movement statistics of the protein.

We initially represent an effector as a Brownian particle moving

within a circular domain. More specifically, we consider two

different situations: the first one is a particle which performs a 2d

Brownian motion in a disk-shaped domain (Fig. 1A) and the

second one is a 3d motion in a sphere (Fig. 1B). When a particle

reach the boundary region it is either reflected or absorbed by any

of the targets on the boundary (small circular red dots in Fig. 1)

and exit. The targets represent a simplified model of the actual

needle complex base [12] and are shaped as disks or spheres,

depending on the dimensions of the bounding domain. Each

target has its centre point residing on the domain boundary and

we characterize its size by the radius e ranging from 15 to 150 Å.

Moreover, the full domain size is characterized by a radius RB

with values from 0.5 to 1.1 mm (details about the choice of these

values are given in Materials and Methods).

Experimental findings in [23] suggest that one S. flexneri

bacterium contains at least 50 needle complexes across its

membrane, similar in magnitude to the estimate for Salmonella

enterica [24], which ranges between 10 and 100 complexes per

bacterium. Measurements from electron microscopy have shown

that these complexes are distributed all over the surface [25] of S.

flexneri. Given the stochastic nature of the protein motion within

the bacterium, we can represent for simplicity this random

arrangement of the needles by positioning targets in a symmetric

fashion on the circular boundary without significant changes in the

estimation of the MFPT, but with significant computational

advantages. The details on the choice of target positions, on both

disk and sphere, are discussed in Materials and Methods.

Mean first-passage time
Having defined the boundary geometry and the targets, we

proceed to compute the MFPT as a function of the initial effector

location. It represents how long an effector protein requires on

average, from its point of synthesis within the cytoplasm, to arrive

at a needle complex base. As the size of a complex base in S. flexneri

is much smaller than the bacterium size [12,15], it implies that

e%RB. This disparity in spatial scales enables us to make use of an

approximate expression for the MFPT of a Brownian particle,

which has been derived in a recent work [22] for small targets on a

circular boundary. Using such an expression in 2d and 3d domains

with multiple targets, we are able to estimate the MFPT as

function of the starting effector position.

For explanatory purposes, we first focus our attention on the 2d

case: a single Brownian walker confined to a disk whose edge

possesses a number of N§1 equidistant circular targets (illustrated

in Fig. 1A). We fix the disk radius RB to 0.5 mm corresponding to

the size of a cross-section of S. flexneri perpendicular to its

longitudinal axis [15]. The corresponding diffusion coefficient D is

varied from 2.5 to 7.7 mm2/s, in agreement with fluorescence

studies on protein mobility in E. Coli [17] (see Materials and

Methods section). Accordingly, we construct two different

scenarios: one ‘fast’ model for which the effector diffuses with

diffusion coefficient D~7:7 mm2/s and the target radius of the

needle complexes equals 150 Å, and a ‘slow’ model for which

D~2:5 mm2/s and target radii are 15 Å. The resulting values of

the MFPT, T(r), are shown in Fig. 2 as function of the effector’s

initial position r~(x,y), for N~1, 20 and 50 targets, respectively.

From these graphs one can identify two important features of

the MFPT: its dependence on the initial condition of the random

walker with respect to the target locations, and the dependence on

Figure 1. A random trajectory, representing an effector protein’s movement, confined to a disk (A) or sphere (B) with radius RB. The
trajectory, assumed to be Brownian here, is shown by the blue trace. The 10 equidistant red circles in panel (A) and 12 red spheres in panel (B) are the
target sites, representing the needle complex bases, whose centroids are placed on the boundary of the confining domain. We label their radius by
the parameter e.
doi:10.1371/journal.pone.0041421.g001
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the number and size of targets. In the ‘fast’ scenario with N~1
(Fig. 2A) T(r) has a constant value, which goes to zero at the

location of the target (blue shading), that is when the starting

position is within a short distance e from a target center. On the

other hand, if a Brownian particle starts its motion on the opposite

end of the disk, with respect to the target, it will require

0.13 seconds on average to arrive at the target. In this scenario a

decrease of target size and diffusion coefficient, represented by the

‘slow’ model in Fig. 2D, leads to a larger value of 0.65 seconds.

The second and third column in Fig. 2 show the effect of

increasing the number of needle complexes to N~20 and N~50,

respectively. We observe that the MFPT changes to a dome shape

with small arcs on the side. The highest point of this dome

corresponds to the largest possible time required to arrive at any

target. Clearly, a particle which starts its motion from the center of

the disk will satisfy this condition. When N~50 this maximum

corresponds to 0.04 seconds in the ‘fast’ model, for example. The

smaller arcs reveal the fact that a particle which starts close to the

disk boundary between two targets has a nonzero MFPT. The

height of these arcs decreases if target-to-target distance decreases

to each other, as one evinces when comparing the case of N~20
targets with the case of N~50 targets. As reduction in target

distance for our model is analogous to an increase in the number

of targets because of the symmetric placement along the

circumference, to understand how T(r) affects N one can look

sequentially at the case N~1, N~20 and N~50 in Fig. 2. In

doing that, it is clear that a variation from 1 target to 20 targets

change the MFPT by one order of magnitude, whereas not much

variation is observed as N is increased to 50.

Similar parameter dependencies of the MFPT are observed in

the 3d domain, with the needle complex bases of S. flexneri now

modelled as spherical in shape (Fig. 1B). Similar to the 2d domain,

we consider a ‘fast’ and a ‘slow’ model, the former with RB

= 0.5 mm, D = 7.7 mm2/s, e = 150 Å and the latter with RB

= 1.1 mm, D = 2.5 mm2/s and e = 15 Å (see Materials and

Methods for details). To represent the values of T(r) with

r~(x,y,z), we display scatter-cloud plots in Fig. 3, for N~1, 42 or

92 targets. Each point of the cloud corresponds to an initial

position of the random walker, and the colour legend reveals the

corresonding value of T(r).

From the top row of Fig. 3 it can be observed that a particle in

the ‘fast’ model takes at most 0.76 seconds on average to reach a

target – corresponding to the case when there is only one target

present (Fig. 3A). In a scenario with N~42 or N~92, a particle

which starts at the origin of the sphere takes the longest time to

reach a target, compared to all other starting positions (compare

red and blue colouring of the cloud dots in Fig. 3B and 3C,

respectively). A visual inspection of the radial colour variation in

the N~42 (center column) and N~92 (right column) target

scenarios shows that the radial gradient of T(r) gets steeper as N
increases, which implies that a larger difference in MFPT between

centered starting positions compared to those at the domain

boundary, similarly to the 2d scenario. From the quantitative point

of view, an effector in the ‘slow’ model has an MFPT of more than

237 seconds when only one target is present (Fig. 3D). This occurs

when the particle starts near the boundary of the sphere, directly

opposite to where the target is located. In the case of 42 and 92

targets, the largest MFPT value decreases considerably to 5.7 and

2.6 seconds.

In summary, if the movement statistics of an effector in S. flexneri

were to be represented by a Brownian walker with the above

mentioned diffusion coefficients, the time to reach any needle

complex in 2d would be at most a fraction of a second. On the

other hand, the more realistic 3d diffusion model predicts that, if

only one single needle complex with a base radius of 15 Å is

present, an effector protein may take up to 237 seconds on average

to reach it. An increase of the target radius to 150 Å brings down

the value of the MFPT to only a fraction of a second. The

Figure 2. The MFPT function T(r) of a Brownian particle in a disk with symmetrically located targets (as shown e.g. in
Fig. 1a). Its values are plotted as a surface which depends on the particle’s starting position r~(x,y) in the bottom plane of each figure. The surface
colour is added only to clarify points of a large MFPT (red shading) against a small MFPT (blue shading). In the top row T(r) is computed for the ‘fast’

model in which RB = 0.5 mm, D~7:7 mm2/s and e = 150 Å, with N~1, 20 and 50, correspondingly, respectively, to panel A, B and C. The bottom row

shows the results for the ‘slow’ model in which RB = 0.5 mm, D~2:5 mm2/s and e = 15 Å, and with N~1, 20 and 50, correspondingly, respectively, to
panel D, E and F.
doi:10.1371/journal.pone.0041421.g002
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dependence of the MFPT on the diffusion is simple, being

inversely proportional to the diffusion coefficient D. For any value

D’ which differs from our present choice, the new MFPT can

easily be derived from Figs. 2 and 3 by multiplying the colour

legend values with a correction factor D=D’.

Spatially averaged mean first-passage time
Experimental fluorescence labeling studies in [15] revealed that

effector proteins in S. flexneri, like IpaB and IpaC, are spread

throughout the entire cell. To take into account this spatial

arrangement, one needs to calculate a spatially averaged MFPT,

i.e. the so-called GMFPT. If effectors are distributed according to

the distribution r(r), one needs to compute [22]

STT~

Ð
V r(r)T(r)drÐ

V r(r)dr
, ð1Þ

where V is the region where effectors are located intially. When

effector proteins are equally likely to be found anywhere inside V,

r(r) is constant and the denominator in Eq. (1) reduces to the size

of the region V. In these types of problems for which a random

walker moves within a set of absorbing targets, the needle

complexes, computing the GMFPT in certain cases may result in

closed form expressions, e.g. with symmetric or completely

random target locations [26]. As we show below the GMFPT,

when targets are symmetrically distributed on the boundary, is a

mathematical expressions simple enough to help understand the

parameter dependence in our problem.

As in the previous section, first we focus our attention on the 2d

case: a single Brownian effector in a disk with N§1 equidistant

circular targets of radius e. We define V as a concentric disk-

shaped region with a radius R0 inside this domain (see a

representative sketch in Materials and Methods). The GMFPT

over this region is (see Supporting Information S1 for a derivation)

STTdisk~
1

4 ~DD
1{

~RR2
0

2

� �
z

1

~DD

XN{1

k~1

N{k

N2

ln 2{2 cos
2pk

N

� �� �� �
{

ln (~ee)

~DDN
,

ð2Þ

where ~ee:e=RB, ~DD:D=R2
B and ~RR0:R0=RB. The N-dependence

of the GMFPT is dominated by the last term { ln (~ee)=N ~DD in Eq.

(2), which is much larger than the term with the N-summation.

For Nww1 one can show numerically that this second term in

Eq. (2) becomes constant. This inverse proportionality with N of

the GMFPT can be clearly observed in Fig. 4 where STTdisk is

plotted as function of N for different values of target radii e and for

diffusion coefficient D~7:7 mm2/s (top panels) and diffusion

coefficient D~2:5 mm2/s. The left and right panels represent the

two extreme cases of initial localization: with R0~0 on the left and

R0~RB on the right, the former implying an initial condition at

the center of the disk, whereas the latter implying that the initial

condition could be from anywhere within the disk. Although the

GMFPT in Fig. 4B and 4D changes rapidly between N~1 and

N~10 targets, if the number of targets is increased above this

range, STTdisk slowly decays to a limit where the entire domain

boundary is a target (black curve). We also find that in the range

Nƒ10 there is little difference between the values of STTdisk for

R0~0 and R0~RB (compare Fig. 4B and Fig. 4D). Hence in a

disk with less than 10 targets, the initial effector location does not

play much of a role: the average time to arrive at any of the targets

is roughly the same. We also notice that even in the case of one

very small (e = 10 Å) target, reaching a needle complex seems to

Figure 3. The MFPT function T(r) of a Brownian particle in a sphere with small spherical targets on its boundary (not
shown in the various plots). A visualization of the symmetric arrangements of the targets on the surface of the sphere has been sketched in the
Materials and Methods section. The MPFT values are plotted in colour code for each subfigure as function of the particle’s starting position r~(x,y,z)
within the sphere. Starting positions are chosen in a smaller spherical region with radius 0:97:RB for clarity. The top row contains values of T(r) of the

‘fast’ model in which RB = 0.5 mm, D~7:7 mm2/s and e = 150 Å with N~1, 42 and 92 targets corresponding, respectively, to panel A, B and C. The

bottom row shows the results for the ‘slow’ model in which RB = 1.1 mm, D~2:5 mm2/s and e = 15 Å with N~1, 20 and 50, corresponding,
respectively, to panel D, E and F.
doi:10.1371/journal.pone.0041421.g003
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occur rather rapidly as a particle requires less than 0.7 seconds on

average to reach the small target.

In the 3d spherical case with radius RB we consider that an

effector can start from anywhere within a concentric spherical

volume with radius R0 (see e.g. the figure in Materials and

Methods). Performing the integration in Eq. (1) over this volume,

when targets are symmetrically placed (see Supporting Informa-

tion S1), we obtain

STTsphere~
9

160

1{~RR2
0

~DD
z

3p

4 ~DDN2

XN

j,k~1
j=k

Hjkz
l

~DDN

3

8~ee
z

3

16
ln

2

~ee

� �
{

27

80

� �
:

ð3Þ

where once again ~RR0:R0=RB, ~DD:D=R2
B and e~~ee=RB. The first

term of expression (3) contains the dependence of the relative size

of the initial domain with respect to the size of the sphere, the

terms Hjk with , defined in Eq. (3.12) of the Supporting

Information S1, are associated with the angular locations of the

targets, and the rightmost term describes the dependence on the

target size.

By solving the associated matricial equation (see Eq. (1.1)–(1.3)

in Supporting Information S1) in Fig. 5 we show values of

STTsphere as function of target radius e and diffusion coefficient D

for different numbers of needle complexes (targets) and under the

assumption that effectors can start from anywhere in the sphere

(R0~RB). The various panels are isobars of STTsphere as function

of target radius and diffusion coefficient for different numbers of

needle complexes and two values of the bacterium radius, RB~0:5
mm in the top panels and RB~1:1 mm in the bottom panels. By

sequentially looking at panels A-B-C or D-E-F, it is evident that

STTsphere decreases as function of N. Alternatively, Fig. 5 can be

used to estimate what value of diffusion constant is required to

ensure a certain effector arrival time at any of the needle

complexes. For example, an arrival time of 100 seconds when RB

= 1.1 mm, N = 92 and e = 100 Å (Fig. 5F) requires the diffusion

coefficient D to be 0.01 mm2/s, whereas D needs to be 1 mm2/s if

RB = 0.5 mm and there is only one target of radius e = 10 Å

(Fig. 5A). For any , the relative simplicity of the expression (3)

shows that to any of the values plotted in Fig. 5 one needs to

rescale the result with the appropriate ~DD and add the quantity

9(1{R2
0)=160.

The inverse proportionality as function of N in Eq. (3) has some

commonality with the 2d scenario. The term is much smaller in

magnitude compared to the last term that contains the information

of the radius of the targets. The N dependence is in fact controlled

by the N{1 term that multiplies the square parenthesis in Eq. (3).

This inverse proportionality for N sufficiently large can be

observed in Fig. 5: the countour lines shift significantly when

going from N~1 to N~42 targets (compare Fig. 5A to 5B and

Fig. 5D to 5E). Adding 50 more targets to the sphere, i.e. with

N~92 (Fig. 5C and 5B), does not change dramatically the

magnitude of STTsphere. These findings imply that the average

time required for an effector to reach a needle complex depends

Figure 4. Dependence of the GMFPT STTdisk, expressed in seconds, as function of the number N equidistant circular targets on the
boundary with two different radius R0 of the initial localization area V: the extreme case when R0~0 and when R0~RB, where RB is
the disk radius. Panels A and C represent the R0~0 case, corresponding to an effector that starts at the origin, whereas panels B and D
correspond to an initial particle localization being anywhere inside the bacterium. Each of the panels shows the GMFPT as function of N for four
choices of target radius e = 10, 50, 100 and 150 Å (line colour, see legend in panel A). The black curves represent a limiting case in which the entire
boundary of the domain is a target; i.e. STTdisk becomes the average time required to arrive at the boundary. In the top row we have considered the

‘fast’ model with D~7:7 mm2/s, whereas the bottom row displays results for the ‘slow’ model with D~2:5 mm2/s. In all four panels RB~0:5 mm.
doi:10.1371/journal.pone.0041421.g004
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significantly on the number of such complexes only in situations

for which there are a few present. On the other hand, having

many (40 or more) will not alter significantly the effector arrival

time at any of the needles.

Models of effector secretion
So far we have established predictions on how much time a

single protein requires to reach a needle complex base in S. flexneri.

However, type III secretion involves many proteins, which are

delivered into host cells via the needle complexes. The time scale

of their escape from the bacterial cytoplasm has been visualized by

fluorescence labelling studies [15,16], demonstrating relatively

slow dynamics. For instance, it takes about 240 seconds before half

of the effectors in S. flexneri have been secreted after host cell

contact [15].

Here we investigate candidate mechanisms for these slow

secretion times, by focusing on a population of multiple random

walkers, the effectors, moving within a bacterium of spherical

shape. The effectors are assumed not to influence each other, but

their movement statistics could be the result of interactions with

other substances in the cytoplasm, hence they could move

diffusively as well as sub-diffusively. The confining domain has

N needle complex bases, which are spherical targets on its

boundary. The randomly moving molecules have random starting

positions within the sphere and escape from their confinement

once they arrive at a target. For ease of comparison with recent

experimental secretion studies [15,16], we investigate the time

dependence of the fraction of effectors left within the sphere.

We consider three scenarios: (I) diffusive effectors that escape

the bacterium instantly once they reach a needle base; (II) effectors

that can only escape once the needle complex has been activated by

other types of randomly moving particles, the so-called translo-

cator proteins [13]; and (III) proteins that move sub-diffusively

rather than diffusively because of a variety of obstacles that they

might encounter in the cytoplasm [18]. We define the mean secretion

time as

t~
1

M

XM
i~1

ti, ð4Þ

where ti is the average time that an effector with label i~1,:::,M
requires to escape and with the sum performed over all the M

effectors. Although Eq. 4 is in general different from the MFPT

computed in previous sections for a single effector, the spatially

average mean secretion time in scenario (I) is however identical to

the GMFPT if each protein initially is equally likely to be

anywhere within a specific region of space inside the bacterium. In

this case in fact StiTsphere~STTsphere for each i, and the sum in

Eq. (4) reduces simply to STTsphere. We illustrate the usefulness of

this relation in the next subsection.

I – Secretion of diffusive effectors
In this scenario we consider a population of non-interacting

diffusing effectors in a sphere, escaping as soon as they reach any

target site on the sphere boundary. The domain radius RB is fixed

to 0.5 mm. Shigella flexneri is believed to carry between 100–10,000

copies of effector proteins and we take the intermediate value of

1000 model effectors in line with effector numbers reported for

Salmonella [27]. The target radii e are set to 50 Å, in keeping with

the needle base diameters of order 100 Å from the experimental

studies in [12]. Using Eq. (4) we determine which value of diffusion

Figure 5. Isobars of the spatially averaged mean first passage time STTsphere of a Brownian particle in a sphere with radius RB and N

targets on the boundary, as a function of target radius e and diffusion coefficient D. Its respective values (in seconds) along each isobar
are shown by text labels. The parameter R0 is set to RB in all plots; hence we assume that the particle can start its motion from anywhere in the
domain. Left to right: N~1, 42 and 92. Row (A): RB is fixed to 0.5 mm. Row (B): RB = 1.1 mm.
doi:10.1371/journal.pone.0041421.g005

First Passage Processes in Bacterial Secretion

PLoS ONE | www.plosone.org 6 August 2012 | Volume 7 | Issue 8 | e41421



coefficient D is required to give a mean secretion time t of 100

seconds when the effectors can be found anywhere inside the cell.

From Fig. 5F one notices that, when a cell has N~92 targets, a

value of D = 0.002 mm2/s is necessary to have t = 100 seconds.

Those predictions concur with the solid black curve plotted in

Fig. 6A where the number of effectors left in the sphere is drawn as

a function of time. The secretion curve, generated through

stochastic simulations (see Materials and Methods for the details),

displays in fact an exponential decay whose mean is around 100

seconds.

Even though S. flexneri is estimated to carry at least 50 needle

complexes [23], not all of them may be active during host

secretion. Host cell contact with a specific side of the bacterium in

fact leads to the formation of ‘translocation pores’ [11]. We

account for such events by considering a model with only 25

needles which are distributed locally, over the upper hemisphere of

the domain (see Materials and Methods). In this geometrical

configuration, with needle complex radius set to e = 50 Å, a

diffusion coefficient of D = 0.007 mm2/s yields an average

secretion time of 100 seconds as evinced from Figure 6B, which

also displays an exponential decay (solid black curve) in the

number of effectors left in the bacterium as a function of time. In

summary, if type III secretion consisted of effectors that move

diffusively and that escaped instantly the bacterium after reaching

a needle, slow diffusion with many needles and fast diffusion with

only a few active needles appear to yield very similar time profiles

of effector release.

II – Secretion of diffusive effectors with sequentially
activated needle complexes

The models from the previous subsection assume that every

target is available as an escape channel for the effectors. However,

type III secretion incorporates the assembly of a specialized

translocation pore between the bacterium and its host [11]; this

process requires specific translocator proteins to be present at the

needle base. To take this effect into account, we simulate the

secretion of effectors from the sphere under the assumption that a

target becomes an active escape channel after it is visited by a

translocator. If no such visit has taken place at the given target, no

effectors will be able to escape through it. We add therefore at

random locations inside the sphere 1000 of these translocators,

which are also diffusing with the same coefficient as the effectors.

First we study a sphere with N~92 inactive targets. For

comparative purposes with our earlier findings, we set e = 50 Å

and D = 0.002 mm2/s for both effectors and translocators. If we

assume that one translocator must visit a target to activate it, the

dashed curve in Fig. 6A is obtained. It shows the secretion time

being slightly longer when compared to the case when all needle

complexes are active from the beginning (solid black curve). We

have also considered the situation in which type III secretion

requires three different protein types in the formation of a

translocation pore [11]. For this case we consider a target active

only after the arrival of three translocators. The outcome of this

scenario is shown as the dash-dotted curve in Fig. 6A. Interest-

ingly, it displays a short plateau up to 10 seconds, then falls off

more steeply than the Brownian model with instantly active

targets.

We also repeat the numerical simulation with N~25 targets on

the upper hemisphere with e = 50 Å and D = 0.007 mm2/s for

both translocators and effectors. Figure 6B shows the resulting

secretion times. Interestingly, the effect of gradual target activation

is less severe than in panel A. The average time for one

translocator to meet a target is still approximately 100 seconds,

as dictated by our choice of diffusion coefficient. However, the

ratio of translocators/targets has increased from 1000/92 to

1000/25, and hence the chance of any of the translocator to reach

either of the needle base. As a result there is a more rapid

activation of the 25 targets and a greater similarity to the model

with instant escape (solid black curve in Fig. 6B).

III – Secretion of sub-diffusive effectors
The inside of a cell is a watery but crowded compartment with a

variety of molecules and internal structures [2]. As a result, the

movement of certain proteins in the cytoplasm may display

kinetics slower than diffusion as observed e.g. for mRNA in the

experiments by [21]. To represent this scenario in our model, we

Figure 6. Number of effectors left in the sphere as function of time from a bacterium of spherical shape with radius RB = 0.5 mm.
Panel A represents the case of 92 needle complexes distributed uniformly on the sphere. Panel B represents the case of 25 needle complexes
distributed uniformly only in the upper hemisphere. In both cases the needle complexes have radius e = 50 Å. The solid black curves represent the
secretion of diffusive effectors (I), the dash and dash-dotted lines represent the secretion of diffusive effectors with sequentially activated needle
complexes (II), and the blue line represents the secretion of subdiffusive effectors (III).
doi:10.1371/journal.pone.0041421.g006
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study a situation in which the effectors in the sphere also move in a

sub-diffusive manner. We set the sphere radius RB to 0.5 mm and

we place N~92 targets on the boundary. For simplicity, we

assume that all needle complexes are active escape channels (no

‘translocator’ is necessary) and we put 100 sub-diffusive effectors at

random locations. For each set of values of the sub-diffusion

coefficient C and target radius e we compute two quantities: (1) the

time until 50 effectors have left the sphere and (2) the average

secretion time t of all 100 effectors. Both quantities are displayed

by a colour map, in the left and right panel of Fig. 7 respectively.

Figure 7 illustrates that, as one would expect, the sub-diffusive

secretion is much slower compared to the diffusive case. The right

panel shows clearly that the mean escape time of all effectors is an

order of magnitude larger than the diffusive case. The left panel,

on the other hand, shows that the time needed for 50 particles to

leave the bacterium is comparable to secretion times of diffusive

effectors. In fact, while 50 particles can leave the bacterium fairly

quickly, there will be another fraction of particles which remains

inside for a very long time. It is this second fraction which

increases the average secretion time of the entire set of effectors.

To have a better appreciation of why the mean escape time of

subdiffusive effectors may become so large, we compare secretion

times of 1000 sub-diffusive effectors to 1000 diffusive effectors.

When there are N~92 targets, the sub-diffusing effectors remain

within the sphere much longer than the diffusive case (compare

solid blue and black curves in Figure 6A and 6B). Whilst the first

500 of these effectors seem to escape roughly twice as fast as the

equivalent 500 diffusive ones, their secretion follows a power law

decay. After 800 seconds there are still roughly 90 sub-diffusing

effectors left inside (not shown in the figure), and even more so

when the bacterium has 25 needle complexes for which about 220

subdiffusing effectors are still inside after 10000 seconds (not

shown in the figure). The rapid initial secretion of these effectors in

the subdiffusive case is due to the fact that at short times the mean

square displacement of an effector is S(x{x0)2T~6Ct0:7, where t

is the time variable and x0 is the initial position and S:::T
represents an average over all possible stochastic realizations. A

comparison to the mean square displacement of a diffusive

effector, for which S(x{x0)2T~6Dt, makes it clear that the

different exponent in the time dependence and our choice of sub-

diffusion coefficient makes a subdiffusive effector cover a larger

area compared to the diffusive one at short times, and thus

increasing the chance of encountering a needle complex.

Discussion

We have developed a mathematical model to represent the

movement of a particle moving randomly within a circular

microdomain with one or more small openings. The model

provides predictions for the average time a particle takes to reach

either of the available openings based on the number of such

openings, the size of the microdomain and the particle movement

statistics. We have used the mathematical formalism to investigate

bacterial secretion in a rigorous quantitative way. As a model study

we have considered the movement of protein effectors within

Shigella flexneri with the goal to offer testable hypotheses on the

mechanisms that regulate the timing of type III secretion. The

derived mathematical expressions can in fact be used to interpret

secretion processes in other type III secretion systems such as

Escherichia Coli [28] and Salmonella [29,30].

Throughout our analysis we have assumed that the movement

of an effector inside S. flexneri is that of a random walk constrained

within a circular domain, whose movement statistics is either

diffusive or sub-diffusive. The domain boundary contains small

circular objects which serve as models of a needle complex base.

We have employed this framework for two purposes: (1) to predict

the average time that one effector requires to reach a needle base;

(2) to probe how the secretion time of multiple effectors is

influenced by factors such as needle complex size, number of

needles and diffusion or subdiffusion coefficients.

In order to achieve (1), we have computed the MFPT of an

effector to any needle base in two different circular domains; a disk

and a sphere. Under the assumption of diffusive motion, we have

found that the MFPT depends strongly on the number of needle

complexes when only a few needles are present. For example, a

diffusive effector with a coefficient of D = 2.5 mm2/s, in a sphere,

takes about 237 seconds to reach one single needle complex with a

radius of 15 Å. If 42 of such complexes are present on the sphere

boundary, the average time to reach any of them reduces to

Figure 7. Dynamics of 100 sub-diffusive effectors escaping from a sphere with radius RB = 0.5 mm and N~92 targets on the
boundary. Left panel: contour plot of the time (in seconds) until the first 50 random walkers have escaped from the sphere (see legend) as a
function of the target radius e and sub-diffusion coefficient C. Right panel: average escape time (in seconds) of all 100 effectors (see legend) as a
function of the target radius e and sub-diffusion coefficient C.
doi:10.1371/journal.pone.0041421.g007

First Passage Processes in Bacterial Secretion

PLoS ONE | www.plosone.org 8 August 2012 | Volume 7 | Issue 8 | e41421



merely 5 seconds. An increase to 92 complexes only halves the

time to 2.6 seconds. This variation in time scales holds for other

choices of D and needle radii as well. We have used these kinds of

quantitative predictions to estimate how many needle complexes

are activated in S. flexneri during host cell contact. By comparing

our findings to experimental observations we find that to account

for secretion times in the range 100–1000 seconds [15], our model

suggests that either few needle complexes are active if the diffusion

coefficient D~1 mm2/s or many needles are active, but D needs

to be a few order of magnitudes lower than 1 mm2/s.

Given the uncertainty about the initial protein locations, we

have developed a formalism to take into account that effectors may

be spread out throughout the entire bacterium. We have derived

general analytic expressions for the GMFPT, that is the spatially

averaged MFPT, whose validity has been tested with detailed

stochastic simulations. From the mathematical equations it is

straightforward to determine the dependence of the GMFPT as

function of the number and size of the needle complexes as well as

the diffusion constant of the effectors and their initial locations.

The results of our analysis, although focused on protein secretion

in a particular bacterium, is general enough to be used as a tool to

estimate arrival times in other narrow escape problems.

Our 3d model of diffusive effectors in S. flexneri predicts that, in

case of only a few active needles, the initial location of an effector

does not significantly influence its arrival time at a needle base,

unless this location is very close to a target. Conversely, if many

active needles are present, an effector which starts its motion in the

center of the sphere takes twice as long to reach a needle; when

compared to one that starts near the boundary. Another spatial

heterogeneity that may affect our estimates is the initial

localization of the effectors as reported by [31]. Although the full

implications on secretion times of heterogenous placement of

needles and effectors would require an extensive study, one may

estimate their effects by using our results. The slowest scenario

would correspond to the generation of effectors at one pole while

the needle complexes are concentrated around one location on the

opposite side. This would be the only situation which might give

MFPT times of the order of 200 seconds (see Fig. 3D for the case

of a single needle complex). If, however, multiple needle

complexes are evenly distributed throughout the bacterium as

reported in [25], the MFPT for each effector gets reduced to 5

seconds (see Fig. 3B for the case of 42 needle complexes).

In presence of multiple effectors we have defined a mean

secretion time and we have limited our analysis to the 3d spherical

case. We have studied the dependence of secretion times as

function of the number of needle complexes and the effector

movement statistics, diffusive and sub-diffusive. We have simulated

the escape times of 1000 randomly moving effectors, which leave

the bacterium as they reach one of the targets on its surface.

Recent experimental studies [15,16] have provided measures of

the effector concentration, and its decrease, in S. flexneri after host

cell contact. For comparative purposes, we have plotted the

number of effectors which are still in the sphere as a function of

time. The shape of these simulated secretion curves strongly

depends on the particular model taken: diffusive effectors which

escape the sphere after reaching a target, display an exponential

decay. If targets are gradually activated by randomly moving

translocators, the effector secretion curve displays a moderate

plateau for short times, and then falls off more steeply than the

earlier mentioned exponential trends. Lastly, we have analyzed the

secretion dynamics of 1000 sub-diffusive effectors. We have

observed that the first 500 leave the sphere faster than previous

cases. This peculiarity is because the average area that a sub-

diffusive particle explores at short times is larger than the average

Figure 8. Placement of targets (red objects) on the boundary of a sphere. In the top left corner of panel (A), a single target is displayed. In
the top right and bottom left corner of panel (A) 42 and 92 targets are placed according to a geodesic grid. In the bottom right corner of panel (A),
the geodesic grid for 25 targets is used but only to half of the sphere. The fourth panel shows 25 targets on the upper hemisphere – to study
localized activation of needle complexes. (B) If we have no information about the starting location of a random walker in a disk, we assume that it is
uniformly random within a smaller disk of radius R0 . (C) The same idea applied to a random walker in a sphere; we assume that it can start anywhere
within a smaller spherical volume of radius R0 .
doi:10.1371/journal.pone.0041421.g008
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area covered by diffusing particles. But more importantly, we have

observed that the remaining effectors stay within the bacterium for

1000 seconds or more.

Some of our model findings are in agreement with recent

experimental observations [15,16]. For example, Fig. 14.2 in [16]

reveals a moderate secretion up to 120 seconds, followed by a

much steeper drop in effector concentration past this time –

similar to the plateau shape in the dash-dotted curve of our Fig. 6A

for times less than 10 seconds. Analogous trends can be seen in

Fig. 5 in [15]. Hence our model predicts that, if effector motion

were to be diffusive, the initial segment of the secretion curves in S.

flexneri is shaped by the number of translocators that are required to

activate a needle complex. In relation to the movement statistics of

the effectors, it appears that sub-diffusion, that is random

displacements with extremely long, albeit rare, waiting times,

may not be the most adequate model to represent effector protein

motion. Our model with subdiffusing effectors yields in fact

secretion curves that decay as power law at long times. This means

that a significant fraction of effectors is still present in the confining

micro-domain after more than 1000 seconds from simulation

onset. The experimental measures in [15] do not exhibit such

trends, making this a less plausible scenario, unless the experi-

mental measurements are not able to detect effectors within the

bacterium when their number is small.

In the interest of simplicity, we have not attempted a more

detailed description of what takes place at the base of a needle

complex e.g. how translocator proteins assemble a secretion

channel into a host cell, or how effectors pass through such

channels. If these processes do not generate statistical correlations

between the movement trajectories of the individual molecules,

one can estimate secretion times by adding a fixed amount to the

first passage time expressions presented here. If, on the other hand,

the molecules develop exclusive interactions (see e.g. [32] as an

example of exclusion dynamics in biology) because of their non-

negligible size, queuing effects become important and spatio-

temporal correlations in the molecule trajectories may emerge. In

such scenarios the effector release time may increase even further

and a detail modelling of these mechanisms become necessary if a

rigorous quantification is seeked.

Materials and Methods

Random walks in a circular confining domain
The movement of the effector proteins inside S. flexneri is

modeled by (1) diffusive and (2) sub-diffusive motion. The effector

protein is represented by a random walker that roams within the

bacterium, represented by a disk or a sphere with radius RB as

shown in Fig. 1. The domain boundary, in the absence of any

target, is reflecting: every attempt to move past the boundary

simply results in a reset of the walker to its last position within the

domain. The movement of each effector is computed by selecting

a displacement vector and a waiting time that represents the

elapsed time before the actual movement of the effector occurs.

For the diffusive case the position r~(x,y) in 2d or r~(x,y,z) in

3d of an effector is updated by drawing spatial increments chosen,

respectively, from a 2d or 3d Gaussian distribution, and the

waiting times from an exponential distribution. For the sub-

diffusive case, the difference is in the selection of waiting times,

which are drawn from a distribution, which has a power-law tail

[33].

An effector keeps moving inside the bacterium until it reaches

one of the absorbing targets. The targets, representing the

intracellular base of the needle complexes in S. flexneri, are

modelled as small circular or spherical objects with radius e. As the

time it takes to move from the base to the tip of the needle

complex is considered negligible in our model, the first passage

time for an effector to be secreted takes into account only the

dynamics to reach the base of a target. The midpoint of these

targets is placed exactly on the domain boundary, as shown by the

red circular objects in Fig. 8. Electron microscopy imaging studies

[25] suggest that needle complexes are distributed over most of the

cellular surface. For simplicity we place N§1 targets to cover the

boundary domain in a uniform way. For the disk we simply choose

an equidistant placement (see e.g. Fig. 8B). In 3d it is accomplished

by constructing a geodesic grid, that is by distributing initially a

subset of the targets as the vertices of an icosahedron tangent with

the sphere, adding the additional ones so that they are equidistant

between the vertices of the icosahedron and then projecting all the

3d target locations onto the sphere.

To understand how results change in S. flexneri as function of N,

we have studied in particular the cases with N~1, 42 and 92

shown, respectively, in the top left, top right and bottom left of

Fig. 8A. To capture S. flexneri cells which activate only a fraction of

their needle complexes, near the surface of a host-cell [11], we also

study the special case where N~25 targets are placed on the

upper hemisphere (see the bottom right panel of Fig. 8A).

Parameter values from experimental studies
The molecular mass of proteins that are involved in type III

secretion by S. flexneri spans a range of values from 38 kDA (IpaD)

to 70 kDa (IpaB) as reported in [34]. An experimental study by

[17] considered fluorescently labeled proteins with similar mass

moving within the E. Coli cytoplasm. By assuming that proteins

diffuse, a diffusion coefficient D = 2.5 mm2/s is estimated for heavy

72 kDa proteins, whilst for lighter proteins of around 28 kDA gives

D = 7.7 mm2/s. We have used values in the above range for the

effector diffusion coefficient when estimating MFPT and GMFPT

to any of the needle complex bases. In the study of secretion times,

in order to reproduce certain quantitative features of the

experimental observations, we have used diffusion coefficient

Table 1. Parameter ranges in our (sub)diffusive models.

Name Short description Value & units

D Diffusion coefficient 2.5 to 7.7mm2/s

C Subdiffusion coefficient 10{3 to 10{2mm2/s0:7

RB Radius of confining domain (disk or sphere) 0.5 or 1.1mm

e Radius of targets 15 to 150 Å

R0 Radius of initial effector locations 0 to RB

doi:10.1371/journal.pone.0041421.t001
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values between 50 and 200 smaller than values one would expect

from similar size molecules in E.Coli studies.

Large molecules, such as mRNA, may be hindered in their

motion through the bacterial cytoplasm because of overcrwoding

effects [21]. As a consequence their motion is slowed considerably.

This slowing down can be mimicked by making the effectors wait

much longer between subsequent spatial displacements. For this

subdiffusive aspect of the motion a generalized diffusion coefficient

C ranging from 0.001 to 0.01 mm2/s0:7 has been used, which is in

the range of mRNA motion in E. Coli cytoplasm [21].

The shape of S. flexneri is elongated with a length around 3 mm.

A circular cross section, perpendicular to its longitudinal axis, has

a diameter of about 1 mm [15]. If one were to consider the

elongated shape to be a cylinder, its volume would be 2.4 mm3. A

sphere with the same volume has a radius of 0.82 mm. Given a

variability between 0.5 to 5 mm3 observed in the volume of E. Coli

[35], we consider a similar range in our study. A sphere with

equivalent volume has radii of about 0.5 and 1.1 mm, respectively.

These two values are the ones used for RB in our investigations.

A needle complex has an internal diameter of about 30 Å [16].

The transmembrane region of the complex, i.e. the base which is

embedded in the intracellular membrane, has a diameter of 300 Å

[12]. For analysis, we cover that range of values by using target

radius e between 15 Å and 150 Å. A full summary of each

parameter is provided in Table 1.

Mean first-passage time models and errors
In the diffusive case to compute efficiently the mean first-

passage time T(r) of an effector protein to reach a needle complex

base (Figs. 2 and 3), we have made use of the approximate results

from [22] for both the 2d and 3d scenario. For convenience the

mathematical expression for T(r) has been reported in the

Supporting Information. Although those expressions are valid for

sufficiently small target radii with e%RB, an estimate for the error

in estimating T(r) is provided as follows. For a disk with N targets

it is given by [22]

DTdisk~
Ne2

2pD
log (e=RB), ð5Þ

and for a sphere

DTsphere~
Ne2

4pD
, ð6Þ

In both cases, the error functions increase as e and N increase.

Let us consider some illustrative cases in 2d. The first case is a

diffusive walker in a disk with RB = 0.5 mm, N~50 targets and

e~150 Å, as shown in Fig. 2C. A diffusion coefficient

D = 7.7 mm2/s leads to an error of order DDTdisk D = 8:10{4

seconds. This is around 8% of the value at the peak of T(r). The

second case is a disk with 50 smaller targets of e = 15 Å and

D = 2.5 mm2/s, as shown in Fig. 2F. The corresponding error is

DDTdisk D = 4:10{5 seconds. This is about 0.1% of the peak of T(r).

We also compute DTsphere in case of N~92 targets on a sphere.

For RB = 0.5 mm and D = 7.7 mm2/s, as in Fig. 3C, we find that

DTsphere = 2:10{4 seconds. This is about 2% of the value of T(r)

for a random walker which starts in the center of the sphere (red

legend colour). If the random walker were to start near the edge of

the sphere (blue legend colour) the error would be 5%. As shown

in the Supporting Information S1, we determine the accuracy of

DTdisk and DTsphere evaluated through Eq. 5 and 6 by calculating

Tr from stochastic simulations. We find that DTdisk is actually only

a few percent of the peak value of T(r) for 50 targets, whereas

DTsphere is only a sub-percentage of the maximum of T(r) for 92

targets. This error analysis confirms the validity in estimating T(r)
using Eq. (2) and (3).

Spatially averaged mean first-passage time in a sphere
The terms Hjk are a shorthand notation for the so-called

pseudo-Green’s function H(r,r0) which is evaluated at the

centerpoints rj and rk of targets with label j~1,:::,N and

k~1,:::,N respectively. For a Brownian walker such functions

can be found in [36] and for convenience have been rewritten

from [22] in the Supporting Information S1.

Supporting Information

Supporting Information S1 Details of the mean-first passage

time calculations together with a comparison to stochastic

simulations.

(PDF)
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