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Abstract

Objective: To present an overview of different approaches and recent advances for long-term preservation of germ cells 
and gonadal tissues at ambient temperatures.
Methods: Review of the existing literature.
Results: Preserving viable spermatozoa, eggs, embryos, and gonadal tissues for the long term is critical in human fertility 
treatment and for the management of animal populations (livestock, biomedical models, and wild species). The need 
and number of banked germplasms are growing very fast in all disciplines, but current storage options at freezing 
temperatures are often constraining and not always sustainable. Recent research indicates that structures and functions 
of gametes or gonadal tissues can be preserved for the long term using different strategies based on dehydration and 
storage at supra-zero temperatures. However, more studies are needed in rehydration and reanimation of germplasms 
(including proper molecular and cellular evaluations).
Conclusions: While a lot of research is still warranted to optimize drying and rehydration conditions for each sample type 
and each species, alternative preservation methods will change the paradigm in fertility preservation and biobanking. It 
will transform the way we maintain and manage precious biomaterials for the long term.

Lay summary

Living sperm cells, eggs, embryos, and reproductive tissues can be preserved at freezing temperatures for human fertility 
treatments and used to manage breeding in livestock, laboratory animals, and wild species through assisted reproduction. 
These cells can be stored in cell banks and demand for them is growing fast. However, current long-term storage options 
at freezing temperatures are expensive. Instead of using low temperatures, recent research indicates that these cells can 
be dried and stored above freezing temperatures for an extended amount of time. While a lot of research is still needed 
to optimize how different samples are dried and rehydrated, alternative methods of preserving cells will make fertility 
preservation and cell banking easier. It will also transform the way we keep and manage samples for the long term.
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Introduction: values and limitations of cryo-
banking in fertility preservation

Preserving viable biomaterials of good quality for the long 
term is essential in many scientific disciplines. To protect, 
preserve, or even extend fertility, there is a specific interest in 
preserving spermatozoa, eggs, embryos, and gonadal tissues 
(so-called germplasms) in human reproductive medicine, 
livestock production, laboratory animal management, 
and wild species conservation (Saragusty et al. 2020). The 
need and demand for reliable and sustainable germplasm 
storage are exponentially increasing for fertility treatments 
in humans and animals (in association with the use of 
assisted reproductive technologies, ART) (Comizzoli et al. 
2018, Holt & Comizzoli 2021).

Currently, biophysical and biochemical activities 
can be suspended at freezing temperatures in cells and 
tissues. This ensures long-term longevity and quality of 
living biomaterials (Hubel et al. 2014, Wolkers & Oldenhof 
2021). However, during cryopreservation, germplasms 
must go through a series of stresses including exposure to 
toxic cryoprotectant(s), detrimental ice formation during 
cooling/freezing, possible variations of temperature during 
storage (risk of accelerated degradation of the samples), and 
then thawing/warming (risk of devitrification and/or ice 
recrystallization). Furthermore, sensitivity and response to 
those stresses vary among species as well as between tissues, 
cells, organelles, and DNA. We have learned this from years 
of research in diverse animal models (Comizzoli & Wildt 
2013, 2017, Holt & Comizzoli 2021). While vitrification was 
reported in the mid-1980s to overcome issues related to ice 
crystal formation in mouse embryos (Rall & Fahy 1985), 
little attention has been directed to alternative ways for 
long-term storage of germplasms.

In addition, electrical ultra-cold freezers and liquid 
nitrogen containers require constant monitoring, complex 
maintenance, alarm systems, and specialized rooms 
fitted with backup power and controlled environment. 
Unfortunately, facilities with sustained supply of electrical 
power and liquid nitrogen are expensive and not always 
affordable or readily available in some regions of the world. 
In addition to possible issues of cross-contaminations in 
liquid nitrogen (Bajerski et al. 2021), cryo-storage systems 
are prone to failures – from equipment breakdown to 
human error – which, recently, has led to dramatic sample 
losses in human fertility clinics and research laboratories 
(Pomeroy et  al. 2019, Letterie & Fox 2020). To address 
the limitations mentioned above, researchers have been 
exploring for many years alternative solutions to safely 
store germplasms for later use in fertility preservation 

programs. The objective of the review is to present different 
approaches and recent advances toward long-term 
preservation of germ cells and gonadal tissues at ambient 
temperatures.

Principles and different approaches for 
long-term storage of germplasms at 
ambient temperatures

Principles of dehydration

To explore alternative preservation strategies, scientists 
have been inspired by a vast array of organisms (microbes, 
fungi, plants, seeds, and animals) that have evolved to 
survive nearly complete dehydration in nature, sometimes 
for years or decades. No other strategy in nature is as 
efficient as dehydration for long-term stabilization. 
Certain nematodes, tardigrades, insects, and brine shrimp 
survive extreme cellular water loss via a natural process 
called ‘anhydrobiosis’ – a term first used by Alfred Giard 
in 1894 (Keilin 1959, Crowe 2012). Cellular and molecular 
structures and functions can then be preserved in the 
dehydrated state above freezing temperatures.

Studies of anhydrobiotic organisms have provided 
several candidate genes related to the production of ‘xero-
protectants’ and conveying tolerance to extreme conditions 
(Belott et al. 2020, Czernik et al. 2020, Voronina et al. 2020, 
Anderson & Hand 2021). Unfortunately, desiccation genes 
or related analogs are not present in vertebrate genomes. It 
is therefore mandatory to directly supply ‘xero-protectants’ 
to the cells from vertebrate species before removing the 
water content (Loi et al. 2021).

In addition to slowing down metabolism and 
producing critical components, one of the keys to reach and 
survive dry conditions relies on the organisms’ capacity to 
synthesize and accumulate intracellular disaccharides 
(mainly trehalose or sucrose) while losing water content 
(Wolkers & Oldenhof 2021). After introduction to the cells, 
major advantages of natural disaccharides like trehalose 
are their low toxicity and high glass-transition temperature 
(possibility to vitrify at non-freezing temperatures) 
compared to conventional cryoprotectants such as 
dimethyl sulfoxide, ethylene glycol, or 1,2-propanediol 
(Chen et al. 2000).

Numerous studies have demonstrated the superior 
ability of the non-reducing trehalose to stabilize key cellular 
components, including membranes, proteins, and DNA 
upon desiccation (Crowe 2012, Zhang et  al. 2016, Brogna 
et al. 2021, Wolkers & Oldenhof 2021). Three mechanisms 
have been proposed to explain the desiccation-tolerant 

This work is licensed under a Creative Commons 
Attribution 4.0 International License.https://doi.org/10.1530/RAF-22-0008

https://raf.bioscientifica.com� © 2022 The authors
� Published by Bioscientifica Ltd

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1530/RAF-22-0008
https://raf.bioscientifica.com


P Comizzoli et al. Alternative strategies for 
biobanking

R443:2

properties of trehalose (Hibshman et al. 2020). First, the water 
replacement hypothesis suggests that the disaccharides 
substitute water molecules during desiccation to form 
hydrogen bonds with the natural biomacromolecules 
(such as lipid membrane, proteins, or nucleic acids), which 
maintains their native 3D/ordered confirmations and 
structures (Jain & Roy 2009, Golovina et al. 2010). As water 
plays a fundamental role in maintaining protein structure 
and function, the second hypothesis (water entrapment 
hypothesis) states that an extremely thin layer of water 
surrounding surfaces of macromolecules remains entrapped 
in a shell formed by trehalose to maintain their native 3D/
ordered confirmations and structures during desiccation, 
protecting proteins from damage (Wolkers et al. 2010, Olsson 
et  al. 2019). Lastly, removal of water leads to increase in 
trehalose viscosity and transforms it from the liquid state to 
a glassy state (a process known as vitrification) (Crowe et al. 
1998). This amorphous glass likely facilitates immobilization 
of cellular structures and promotes quiescence of enzymatic 
activities. While the glass-transition property is not unique 
to trehalose, it has higher glass-transition temperature 
compared to other disaccharides, potentially allowing 
stable preservation at higher temperatures, such as ambient 
temperatures. The three mechanisms are not mutually 
exclusive and likely operate synergistically to achieve the 
protective effect of trehalose against desiccation stress. In 
addition to trehalose, the production of late embryogenesis 
abundant (LEA) proteins and heat shock proteins (HSPs) have 
also been observed in a variety of anhydrobiotic organisms. 
These proteins that form functional 3D conformations 
upon dehydration, often in conjunction with trehalose, 
likely act as chaperons to stabilize cellular components 
(Hincha & Thalhammer 2012, Li et al. 2012, Kim et al. 2018, 
Czernik et al. 2020).

Dehydration methods and storage options 
for germplasms

Note that excellent illustrations of the methods described 
below are available in recent reviews (Loi et  al. 2021, 
Weng 2021).

Lyophilization (freeze-drying) is the most widely 
used method for germplasm desiccation (Saragusty et  al. 
2020, Loi et al. 2021), mainly for sperm cells. The process 
includes freezing samples followed by primary drying 
through sublimation of ice at freezing temperature under 
vacuum and secondary drying through desorption by 
slowly elevating temperature under vacuum (Weng 2021). 
Protectants and supplements used in this procedures 
include trehalose (Martins et  al. 2007, Sánchez-Partida 

et al. 2008, Ito et al. 2019, Shahmoradi et al. 2021), buffers 
like EGTA (Liu et  al. 2004, Martins et  al. 2007, Ringleb 
et  al. 2013, Palazzese et  al. 2020) or EDTA (Mercati et  al. 
2020), fetal bovine serum (Choi et  al. 2011), or media/
buffer only (Keskintepe et  al. 2002, Kwon et  al. 2004). 
Sperm cells from many species have been preserved using 
that method (Patrick et  al. 2017a, Saragusty et  al. 2020). 
Embryos or live birth have been obtained from freeze-
dried spermatozoa stored at non-freezing temperatures 
in mouse (Wakayama & Yanagimachi 1998, Kusakabe & 
Tateno 2011, Ito et al. 2019), pig (Kwon et al. 2004), monkey 
(Sánchez-Partida et al. 2008), sheep (Olaciregui et al. 2017, 
Anzalone et  al. 2018, Arav et  al. 2018), horse (Choi et  al. 
2011), or cattle (Keskintepe et al. 2002). All studies had to 
use intra-cytoplasmic sperm injection (ICSI) as sperm cells 
are not motile after rehydration. Most common storage 
containers for lyophilized sperm cells are glass ampoules/
vials (Fig. 1). Recently, it has been demonstrated in mouse 
that freeze-drying on weighing paper and then storing in 
between plastic sheet had comparable outcomes, which 
further simplifies storage (Ito et al. 2021). Freeze-drying of 
sperm cells in trehalose has also been successful in humans 
(Gianaroli et al. 2012, Keskintepe & Eroglu 2021). Recently, 
partial freeze/dried human spermatozoa was successfully 
rehydrated and utilized for ICSI, leading to the production 
of normal euploid human blastocysts (Alexandrova  
et al. 2020).

Regarding the female gamete, freeze-dried porcine 
nuclei (germinal vesicles) can resume meiosis after transfer 
into an enucleated oocyte (Dang-Nguyen et  al. 2018). 
Further analysis demonstrated that a small portion of 
dried germinal vesicles stored in glass vial at non-freezing 
temperatures retained intact nuclear envelope and/or 
DNA. Freeze-drying of ovarian tissue has recently been 
attempted in sheep. Results showed high levels of RNA 
degradation and morphological alteration (Bebbere et  al. 
2021). Nonetheless, it provided clues for subsequent 
improvement and storage options. Currently, there are 
no reports on freeze-drying of embryos or testicular  
tissues yet.

Passive air drying or evaporative drying have been 
attempted in sperm cells and germinal vesicles. Long-
term storage after evaporative drying was successful in 
mouse sperm cells (Li et al. 2007). Air drying and ambient 
temperatures also induce conformational changes of 
nucleic acids and stallion sperm chromatin in trehalose 
preservation formulations (Brogna et al. 2021). Comparable 
observations about the loss of DNA integrity have also been 
reported in air-dried llama spermatozoa (Carretero et  al. 
2020). On the female side, cat germinal vesicles that were 
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Figure 1 Different types of storage containers for 
dried samples. Glass ampoule (A), glass vial (B), 
salt sorption jars (C), moisture-barrier bag (D), 
plastic sheet (E). All devices are of comparable 
size, except for the jars that are larger in general.

air-dried in trehalose and stored at 4°C for up to 8 weeks 
largely retained DNA and membrane integrity. A portion of 
these nuclei were capable to resume meiosis after transfer 
to fresh cytoplasts (Graves-Herring et al. 2013).

Convective drying is a different method that utilizes 
dry gas (nitrogen) to facilitate active water evaporation and 
vapor removal. It is one of the earliest methods tested to 
bypass freezing to achieve sample desiccation. The approach 
has been used for desiccation of mouse spermatozoa, which 
resulted in fetus production (Bhowmick 2003, McGinnis 
2005, Liu et al. 2012). The spermatozoa in these studies were 
dried on glass slides and stored either in vacuum-sealed 
bags (Bhowmick 2003, McGinnis 2005) or salt-sorption 
jars (Liu et al. 2012) at 4°C or ambient temperatures (Fig. 1).

Microwave-assisted drying is one of the most recent 
strategies to accelerate water evaporation while staying 
within physiological temperatures. It was first explored to 
desiccate live mammalian cells (mouse macrophage cells) 
in 2008, showing viability after rehydration (Chakraborty 
et  al. 2008). Drying kinetics and sample uniformity 
were thoroughly characterized (Chakraborty et  al. 2008, 
Cellemme et  al. 2013). It was later translated to the cat 
spermatozoa, with morphology and DNA integrity being 
maintained after drying on coverslips. Even after immediate 
rehydration, developmental potential was reduced (Patrick 
et  al. 2017b). In recent studies using storage in moisture-
barrier bags (Fig. 1) at −20°C, DNA integrity was unchanged 
in the first 3 months and only moderately decreased after 
longer storage (5–16 months). Developmental potential 
was sustained after up to 16 months of storage (Lee et  al. 
2021). Other studies focused on the cat germinal vesicle 
that could be dried on glass fiber filter paper to a moisture 
level that was compatible with supra-zero temperature 
storage. DNA integrity was mostly maintained after storage 
for up to 8 weeks at either 4°C or ambient temperatures 
in moisture-barrier bags (Elliott et  al. 2015). Epigenetic 
alteration (decreased H3K4me3) was observed after 
germinal vesicle drying as well as an increase in structural 
damage of nuclear envelope and chromatin but to a lesser 

extent compared to cryopreservation (Lee & Comizzoli 
2019). The feasibility of applying this drying technique 
to gonadal tissue has also been explored. Drying of cat 
ovarian tissue showed limited impact on morphology but 
altered transcriptional activity and gene expression (Lee 
& Comizzoli 2019, Lee et al. 2019, Amelkina & Comizzoli 
2020). Recently, drying of cat testicular tissues showed that 
structural integrity and cell viability could be maintained 
at an acceptable level (Silva et al. 2020).

Other dehydration methods have been explored but 
there are no reports on germplasms or even live cells yet. 
Spin drying combines convective evaporation with water 
removal by centrifugal force to form an ultra-thin layer 
of samples for achieving rapid drying. During passive 
drying in trehalose droplets, a thin glassy film may form 
at the trehalose/air interface to dramatically slow down 
the evaporative desiccation of trehalose solution (He 
et  al. 2008, Chakraborty et  al. 2011). The method was 
first developed to overcome this caveat and provide more 
homogenous desiccation and effective drying was then 
confirmed by Raman spectroscopy (Abazari et  al. 2014). 
Spin drying of mammalian cells (CHO cells) retained 
membrane integrity in >95% of cells (Chakraborty et  al. 
2011); however, functional survival of live cells has not 
been reported. Lastly, light-assisted drying (LAD) utilizes 
near-infrared laser light to facilitate samples drying. Initial 
reports suggested maintenance of protein functionality 
after drying (Young et al. 2018). The authors also showed 
that LAD-processed samples largely remained in glassy 
state after storage at ambient temperatures at low relative 
humidity (Furr et al. 2020).

Overall, these encouraging results clearly show that 
structures and, more importantly, functions of gametes 
and gonadal tissues can be suspended in trehalose glass 
after desiccation and potentially be preserved for the long 
term at supra-zero temperatures. In the meantime, we also 
learned that there is still a need for environmental control 
during storage (temperature and relative humidity levels). 
As mentioned above, storage containers for ambient 
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temperature storage vary according to the methods (Fig. 
1). Glass ampoules (Kamada et  al. 2018) or glass vials 
(Dang-Nguyen et al. 2018) have been traditionally used to 
store lyophilized germplasms. The main inconvenience 
is that ampoules are breakable. Salt-sorption jars have 
been experimented to control the percentage of relative 
humidity (Liu et  al. 2012), but their size is not practical 
for long-term storage. More recently, moisture-barrier bag 
(Elliott et al. 2015, Lee et al. 2021) or plastic sheets (Ito et al. 
2021) have been used. Besides the advantage of gaining 
space for storage, they also are easier to ship from one 
location to the other.

Research directions to optimize germplasm 
preservation at ambient temperatures

Studies on rehydration and recovery from the 
desiccation stress

So far, most studies focused on optimizing the drying 
process to reduce the damage, and little is known about 
rehydration conditions, which is a critical step (Loi et  al. 
2021). Commonly, rehydration is achieved by simply 
adding the volume of water lost back to the sample. One 
study reported that stepwise rehydration with serial 
dilution of trehalose after microwave-assisted drying 
of cat germinal vesicle did not seem to mitigate drying-
induced epigenetic alteration (Lee & Comizzoli 2019). 
Recent studies in anhydrobiosis provided valuable insight 
into the molecular regulation of the recovery process. For 
instance, a high-throughput mass spectrometry analysis 
in Chironomus discovered that, while trehalose is crucial 
during desiccation, glucosamine appears to be essential 
for recovery (Thorat et  al. 2017). Transcriptome and/
or proteomic analysis revealed that several DNA repair 
systems including homologous recombination, nucleotide 
excision repair, non-homologous end joining are active 
during rehydration/recovery phase in an anhydrobiotic 
cell line and a desiccation-resistant bacterium (Ujaoney 
et  al. 2017, Yamada et  al. 2018). Certain HSPs also are 
upregulated by rehydration processes in fly pupae and 
springtails, suggesting distinct roles (Hayward et al. 2004, 
Sørensen et al. 2010).

Other research needs

Despite encouraging advances in storage at ambient 
temperatures, more research is needed. As mentioned 
above, the scientific and technical evidence of an 
optimal dehydration method is missing (including the 

species-specificities of the approaches). Although natural 
‘anhydrobiosis’ is inspiring, none of the small organisms 
mentioned earlier undergo freezing followed by low-
pressure sublimation of ice. Thus, there is an urgent need 
to optimize the dehydration process and storage containers 
with devices adapted to the type and size of each sample 
for each animal species. A comprehensive list of necessary 
evaluations in rehydrated samples is provided in Fig. 2. So 
far, most studies have focused on structures/components 
and functions of germplasms although biosynthesis and 
metabolism have not been thoroughly explored. Too little 
research has been conducted on gene expression (Fig. 2), 
which should be one of the highest priorities in the coming 
years to develop optimal protocols for different species.

Collaborative efforts with bioengineers have been 
fruitful to develop dehydration and storage methods. 
Continued work at the intersection of these disciplines will 
lead to the best solutions for germplasms. Although motile 
sperm cells would be desirable (to allow in vitro fertilization), 
progresses in ICSI are made rapidly as shown by the 
increasing success of embryonic development following 
injection of dried/rehydrated spermatozoa. Even minor 
technical improvements affect the efficiency dramatically 
(Palazzese et  al. 2020). Further research in experimental 
animal models also is warranted before translating new 
knowledge to other species, including humans. While 
there might be a growing interest in human reproductive 
medicine in adopting dry storage for human spermatozoa 

Figure 2 Full list of required evaluations for rehydrated samples.
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(Gianaroli et al. 2012), many more data are required on the 
production of live offspring with freeze-dried spermatozoa, 
including their health later in life, even at the epigenetic/
genetic level to exclude long-term side effects on DNA 
caused by desiccation and storage at ambient temperatures 
(Fig. 2). Lastly, studies on germplasms in the following 
areas will help to make progress faster: trehalose delivery, 
including through nanoparticles (Rao et  al. 2015, Zhang 
et al. 2019); adaptation of drying technologies to large and 
complex biological samples (tissues, organs); and genome-
wide evaluations (transcriptome, epigenome).

Conclusions and future perspectives about 
operations of biobanks at ambient 
temperatures for humans or animal species

Regardless of the drying and storage approaches that 
are chosen for fertility preservation, we will still have to 
ask the same essential questions to any new emerging 
banking effort: What are we storing? Why are we storing 
it? What storage container are we using? How many do we 
want to store? For how long? However, storage at ambient 
temperatures will lead to different biobanking logistics 
and operations in terms of processes, maintenance, 
and curation (Comizzoli et  al. 2022). Desiccating and 
storing germplasms at ambient temperatures would be 
highly advantageous. It would decrease the costs related 
to processing and storage of samples by simplifying 
the preservation methods, reducing the need for 
specialized space/infrastructures, and avoiding liquid 
nitrogen purchase. Biosecurity (prevention of pathogen 
transmission) of storage at supra-zero temperatures in 
individual containers should be higher than for samples 
placed within the same liquid nitrogen vat. Transport of 
biomaterials between locations will be easier, with patients 
even having the option of at-home-storage for their own 
samples. Lastly, while moisture content will have to be 
maintained to a low level to prevent degradation during 
storage, samples will be more resilient to variations of 
temperatures than frozen samples.

Even though there will be less constraints in 
terms of the location, new storage facilities at ambient 
temperatures will still require environmental control, 
sample accessioning, and safety. New sample holders and 
identification/ labeling methodologies will also be needed 
for dried samples. In sum, a whole set of standard operating 
procedures will have to be developed. As mentioned, 
ambient temperature storage will also help to develop the 
concept of de-centralized biobanks (or home-storage) that 

involves less liability than centralized biobanks. Samples 
would be closer to the end-users and could be easily stored 
for a short duration. However, new sets of ethical aspects 
and issues of proper use (risk of parallel markets) may have 
to be anticipated.
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