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Abstract

needed.

cell authentication model.

Background: Cell lines form the cornerstone of cell-based experimentation studies into understanding the
underlying mechanisms of normal and disease biology including cancer. However, it is commonly acknowledged
that contamination of cell lines is a prevalent problem affecting biomedical science and available methods for cell
line authentication suffer from limited access as well as being too daunting and time-consuming for many
researchers. Therefore, a new and cost effective approach for authentication and quality control of cell lines is

Results: We have developed a new RNA-seq based approach named Cel-ID for cell line authentication. Cel-ID
uses RNA-seq data to identify variants and compare with variant profiles of other cell lines. RNA-seq data for 934
CCLE cell lines downloaded from NCI GDC were used to generate cell line specific variant profiles and pair-wise
correlations were calculated using frequencies and depth of coverage values of all the variants. Comparative
analysis of variant profiles revealed that variant profiles differ significantly from cell line to cell line whereas identical,
synonymous and derivative cell lines share high variant identity and are highly correlated (o > 0.9). Our
benchmarking studies revealed that Cel-ID method can identify a cell line with high accuracy and can be a
valuable tool of cell line authentication in biomedical science. Finally, CeL-ID estimates the possible cross
contamination using linear mixture model if no perfect match was detected.

Conclusions: In this study, we show the utility of an RNA-seq based approach for cell line authentication. Our
comparative analysis of variant profiles derived from RNA-seq data revealed that variant profiles of each cell line are
distinct and overall share low variant identity with other cell lines whereas identical or synonymous cell lines show
significantly high variant identity and hence variant profiles can be used as a discriminatory/identifying feature in

Keywords: Cell line authentication, Cell line identification, CelL-ID, RNA-Seq variant profiles, Mutation, SNP/Indel

Background

Cell lines are an indispensable component of biomedical
research and serve as excellent in vitro model systems in
disease biology research including cancer. Cell lines are
usually named by the researcher who developed them
and till recently were lacking a standard nomenclature
protocol [1-3]. This had led to cell line misidentification
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and poor annotation. In addition, cell lines also suffer
from cross-contamination from other sources including
other cell lines [1, 4]. All these factors affect overall sci-
entific reproducibility. Common contaminants include
Mycoplasma and other human cell lines including HeLa
[5-8]. Cell line contamination is regarded as one of the
most prevalent problems in biological research [1-5, 7]
and the ongoing publication of irreproducible research is
estimated to cost ~ 28 billion dollars each year in the
USA alone [9]. Though cross contamination of cell lines
have been acknowledged for almost 50 years [1-4, 9],
very few researchers check for contaminations probably
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because of lack of access to cell authentication methods.
Recently, however, the awareness towards the importance
of authentication of cell lines has increased, and also
NIH and various journals now require researchers to au-
thenticate cell lines [1, 10]. It has been reported that ap-
proximately 15 to 20% of the cells currently in use have
been misidentified [3, 11]. This includes many from the
large datasets stored in public repositories [11].

Profiling of short tandem repeats (STRs) across several
loci is the most common and standard test for cell line
authentication as recommended by the Standards Devel-
opment Organization Workgroup ASN-0002 of Ameri-
can Type Culture Collection (ATCC) [1, 2, 9-11].
However, unstable genetic nature of cancer cell lines
such as microsatellite instability, loss of heterozygosity
and aneuploidy in cancer cell lines, makes STRs based
validation problematic [1-3]. Recent studies have also
explored using more stable single nucleotide variant
genotyping for cell line authentication either in com-
bination with STR profiles or alone [1, 9, 11]. It has
been shown that carefully selected panel of SNPs con-
fers a power of re-identification at least similar to
that provided by STRs [1, 9, 11-15]. Although many
SNP based methods have been developed and are be-
ing used for cancer cell line authentication, these
methods still suffer from lack of rapid access and not
being cost effective.

With the advent and success of sequencing technolo-
gies, more and more researchers are using RNA sequen-
cing to profile large amounts of transcript data to gain
new biological insights. Moreover, RNA-seq data is also
being used to identify single nucleotide variants in
expressed transcripts [16]. It may be noted here that
variants from RNA-seq cover around 40% of those
identified from whole exome sequencing (WES) and up
to 81% within exonic regions [17]. In a recent report,
authors successfully re-identified seven colorectal cell
lines by comparing their SNV profiles obtained from
RNA-seq data to the mutational profile of these cell lines
in COSMIC database [11, 18].

In this study, we present a RNA-seq based approach
for Cell Line Identification (CeL-ID). We identify vari-
ants in each cell lines using RNA-seq data followed by
pairwise variant profile comparison between cell lines
using frequencies and depth of coverage (DP) values.
Comparative analysis of variants revealed that variant
profiles are unique to each cell line. Our benchmarking
studies revealed that CeL-ID method can identify a cell
line with high accuracy and can be a valuable tool for
cell line authentication in biomedical research. In
addition, using linear model regression technique, the
approach can also reliably identify possible contaminator
if requested. We choose to explore the utility of
RNA-seq data in cell line authentication because it is the
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most commonly used technique among the seq-based
methods and also relatively inexpensive, and we also
demonstrated the minimum sequence reads requirement
for each RNA-seq to maintain the authentication accur-
acy using a series of subsampling BAM files at 1million
up to 50 million reads. With the popularity and accessi-
bility of RNA-seq technology, a significant number of
studies anyway involve the use of data from RNA-seq
and hence the same can also be used to check the au-
thenticity of the cell line.

Methods

CCLE dataset

The Cancer Cell Line Encyclopedia (CCLE) is a collab-
orative project focused on detailed genomic and
pharmacologic characterization of a large panel of hu-
man cancer cell lines in order to link genomic patterns
with distinct pharmacologic vulnerabilities and to trans-
late cell line integrative genomics into clinic [19, 20].
Genomic data for around 1000 cell lines are available for
public access and use. To be precise, National Cancer
Institute (NCI) Genomic Data Commons (GDC) legacy
archive hosts RNA sequencing data for 935 cell lines,
whole exome sequencing (WES) data for 326 cell lines
and whole genome sequencing (WGS) data for 12 cell
lines (https://portal.gdc.cancer.gov/). The names of cell
lines are used as is listed in NCI GDC archive and are
listed in Additional file 1. We were able to download the
RNA-seq bam files for all cell lines except one cell line
named ‘G27228.A101D.1" and whole exome sequencing
bam files for all 326 cell lines. These bam files were
processed using our in-house pipeline for variant calling.
Variant calling process included removal of duplicate
reads (samtools [21] and picard [https://broadinstitute.-
github.io/picard]), followed by local re-alignment and
re-calibration of base quality scores (GATK [22]), and
finally variant calling using VarScan [23] which includes
both SNP and Indels. Downstream filtering (region-
based to only include exome regions, sufficient coverage,
and detectable allele frequency) and all other analyses
were done using in-house Perl and MATLAB scripts. No
filtering based on mutation types (specific to missense,
nonsense or frameshift indels) or allele types (such as
bi-allelic) were applied to CCLE samples. An illustrative
depiction of the overall pipeline is shown in Fig. la.
CCLE gene expression data were collected from
(https://portals.broadinstitute.org/ccle/data) and it
contains RPKM values for all the genes in 1019 cell lines,
covering all 935 CCLE RNA-seq set.

Independent RNA-seq datasets

We also used two publicly available RNA-seq datasets
from GEO as independent test sets. First one is com-
prised of 12 MCF7 cell lines (GSE86316) whereas the
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Fig. 1 Schematic overview of CelL-ID method. a Shown are, in brief, the different steps involved in Cel-ID including evaluation of robustness of
the model, testing on an independent dataset (light blue) and effect of subsampling on accuracy (light brown). b Flowchart of the

second one has data for eight HCT116 cell lines
(GSE101966) [24, 25]. These were generated to profile
mRNA expression levels in MCF7 cells after silencing or
chemical inhibition of MENI [24] and in HCT116 cells

after loss of ARIDIA and ARIDIB [25], respectively. We
downloaded the fastq files for all these samples; aligned
using RSEM [26] to align all reads to UCSC hgl9 tran-
scriptome, followed by variant calling using pipeline
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described earlier (Fig. 1a). We purposefully used a differ-
ent aligner, RSEM [26], here to check the effect of differ-
ent read aligners.

Correlation and hierarchical clustering

To assess the confirmation of two cell-lines to be either
identical or highly similar in terms of their sequence
variation profiles genome-wide or their expression levels,
we choose to use Pearson Correlation to evaluate altered
allele frequencies (FREQ) across two cell-lines or expres-
sion levels, facilitated by the number of non-zero FREQ
shared between two cell-lines with at least 10 fold cover-
age in both cell lines. We choose FREQ, instead of direct
counting of altered allele depth (AD), because that ma-
jority of altered allele fractions does not change with the
expression level, and allele-specific expression may ap-
pear in cell lines with certain treatments but hopefully it
will be a small proportion over a typically massive num-
ber of SNPs under consideration. To be specific, for any
two cell lines ( i, j ), the variants to be tested are

Ve{ Vi, where dig> 10 & dju=10 & (f,; > 10%

fix> 10%) }
(1)

where d;; and f;; are the depth of coverage (DP) and
altered allele frequency at genomic location k of i cell
line, respectively. Note that we require variant has to
exist in at least one cell line with 10 fold coverage. If a
gene does not express, all mutations within this gene
will not be considered unless its partner cell-line ex-
presses this gene at a sufficient level. Therefore, the ex-
pression difference is already embedded in Pearson
correlation, p; = afj/aiaj, where covariance and stand-
ard deviations will be evaluated over all variants in V.
Similarly, correlations over gene expression levels be-
tween two cell lines are evaluated also by Pearson correl-
ation coefficient, with requirement that genes with
expression level >0.1 (RPKM level) in at least one cell
line. Hierarchical clustering was performed using
MATLAB, using Pearson correlation of FREQ as the dis-
tance measure (over SNPs determined by Eq. 1), and
with average linkage method.

To determine the significance of a detected correlation
coefficient for a given cell line, we generated all
pair-wise correlations for 934 RNA samples, and its dis-
tribution follows normal distribution N(y, o). Similar dis-
tribution is also observed in pair-wise correlation from
WES samples. To estimate distribution parameters, we
removed correlation coefficients less than 0 (unlikely)
and greater than 0.8 (most likely due to replicate and de-
rivative cell lines in CCLE collection), therefore it forms
a truncated normal density function within an interval
(a, b), as follows,
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x—p
e st

where we fixed cut-off 2 =0, and »=0.8. ¢ and @ are
standard normal density and distribution functions, re-
spectively. We chose b =0.8 as a cut-off threshold since
pairs with correlation > 0.8 are derived from same paren-
tal lines or with some other biological relevance (see
subsection Cell line authentication using variant com-
parisons in Results Section). Maximum-likelihood esti-
mate (using MATLAB mle() function) was employed in
this study, and distribution parameters from distribution
(scaled to match the histogram setting) for CCLE collec-
tion were estimated. For any given correlation coefficient
p; for the test sample against i™ sample in CCLE, its p =
P(p 2 p;) =1 - F(py; y, 0, a, b), where F is the cumulative
distribution function of Eq. 2, we consider they are pos-
sibly related if p < 0.001, and they are most likely derived
from same cell origin if p <10~ *. Multiple samples are
identified as matching cells, we can revise Eq. 1 to ex-
clude all variants that shared from these matching cells,
and then repeat the process.

For gene expression level, the distribution of pair-wise
correlation coefficient is more skewed towards 1.0;
therefore, it is difficult to separate matching cells from
mismatch cells (data not shown).

(2)

Contamination estimation using linear mixture model

In addition to authenticate cells, one may also want to
know whether or not the processed cells are contami-
nated by other cells, possibly from CCLE or additional
cell lines collected in the lab, along with RNA-seq data.
Assuming the test sample is a mixture of cell lines x;
and x,, with unknown proportion ¢; and g5, and we de-
noted the mixture cell as y, or,

Y~ g%+ gax e (3)

where y, x;, x, are vectors of FREQs from selected
variant sites of test mixture sample and CCLE cell lines.
Eq. 3 can be re-formatted into matrix Y = qX, where q
=[q1, g2 ...], if more than two cell mixture is hypothe-
sized. To demonstrate the proof-of-concept, our current
implementation takes top 200 sites, each direction that
has most difference in FREQ comparing two samples
(total of 400 SNPs). To further simplify the procedure,
we also use our CeL-ID to identify the dominant  cell,
say «x; first. Following the similar studies for
de-convoluting cell type proportions [27, 28], we then
test all 934 cell lines within CCLE collection, as x,, using
robust linear model regression method (implemented in
MATLAB fitlm() function) to estimate g; and ¢, pro-
vided ¢q; +¢5<1. Slightly different to typical cell-type



Mohammad et al. BMC Genomics 2019, 20(Suppl 1):81

deconvolution methods, after determining the first con-
taminator, we can iteratively add other candidates from
the entire CCLE collection and perform linear regres-
sion, and terminate the process until g value becomes
negative or regression fails (Fig. 1b).

We designed a simulation procedure to evaluate the
effectiveness of the robust linear model y, by the follow-
ing method,

z=x1"N(qy,04,) +%2:N(q,,04,) (4a)
0 N(z,07) <0
y =1 N(z,07) 0<N(z,07)<100 (4b)

100 N(z,0/) > 100

where, in Eq. 4a, N(u,0) is the Gaussian noise we
added to g values (vectorized to the size of number of
variants, each taking a Gaussian random number with
mean of ¢; and ¢», normalized such that §(N(q;,0q,)
+N(q,,04,)) = 1. It followed by another Gaussian noise
oy added to the FREQ, which we will change from 0 to

20.

Results

Cell line misidentification and contamination is a com-
mon problem affecting the reproducibility of cell-based
research and therefore cell line authentication becomes
really important. SNV profiles have been used earlier to
re-identify the lung and colorectal cancer cell lines as
well as HeLa contamination but these studies were
limited to only few cell lines [5, 11]. In this study we
have made an attempt to use variants derived from
RNA-seq data for large-scale cell line authentication.

Variant analysis

RNA-seq data for 934 cell lines available from the NCI
GDC legacy portal (https://portal.gdc.cancer.gov/) were
downloaded and bam files were processed to call vari-
ants using an in-house pipeline described earlier in the
methods section. Additionally, WES data for 326 cell
lines available from GDC were also obtained and vari-
ants were identified. A total of 1,027,428 of variants
were identified across all the cell lines with an average of
27,310 variants per cell line. As shown in Fig. 1a, all
variant profiles of RNA-seq samples will be used to
determine their correlation coefficient distribution and
its corresponding significance level from CCLE collec-
tion, and the process to determine the CeL-ID accuracy
and its robustness, followed by a validation procedure
utilizing a collection of independently obtained MCEF7
and HCT116 cells processed with different treatment
[24, 25], and down-sampling of RNA-seq samples to ex-
plore how little sequence reads are required to achieve
the equivalent identification accuracy.
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Cell line authentication using variant comparisons

We performed the pair-wise comparisons of variant pro-
files of all the 934 cell lines and computed correlation
coefficients. It is interesting to note that only a few pairs
of cell lines showed high correlation coefficients (p > 0.8)
whereas most other pairs show poor correlation (Fig. 2a
and b). Moreover, most of the top identified cell line
pairs with correlations (p >0.9) were turned out to be
known replicates, subclones, derived from same patients
or have been known in the literature to share high SNP
identity (CCLE legacy archive (https://portals.broadinsti-
tute.org/ccle/data); Fig. 2a and b). As can be seen in Fig.
2a, correlation coefficients were used as distance metric
to carry out hierarchical clustering. CCLE dataset hap-
pened to include replicates for two cell lines sequenced
at different time and our CeL-ID method correctly iden-
tified these two  pairs: G28849.HOP-62.3 &
G41807.HOP-62.1 (p =0.97), and G27298.EKVX.l &
G41811.EKVX.1 (p =0.96). Moreover, pair — G20492.
HEL_92.1.7.2 & G28844.HEL.3 also identified to be very
similar (p =0.96; Fig. 2c) are known to be subclones,
whereas cell line pairs: G27249.AU565.1 & G27493.
SK-BR-3.2, G30599.WM-266-4.1 & G30626.WM-115.1
and G28607.PA-TU-8988S.1 & G41691.PA-TU-8988 T.5
(cell line names are shown in Fig. 2a) were known to be
derived from the same patient and hence share high
variant identity. Additionally, other four pairs including
the cell line pair G41726.MCF7.5 & G28020.KPL-1.1
were known to share high SNP identity and in some
cases literature indicates that they are same or likely to
be the same, for example, G27305.HCC-1588.1 is likely
to be G41749.LS513.5 and G28614.ONCO-DG-1.1 is
likely to be G26222.NIH_OVCAR3.2 (https://portals.-
broadinstitute.org/ccle/data). Majority of cell line pairs
rightly show poor correlation (p <0.6, Fig. 2a and b).
The only anomaly we observed is from a subset of
six cell lines (G27483.5-117.2, G28592.NCI-H155.1,
G28551.MHH-CALL-2.1, G28045.KYSE-270.1, G272
39.ACC-MESO-1.1 and G28088.LOU-NH91.1), which
show pretty high correlation with each other (p =
0.83-0.89) but have different cells of origin and de-
rived from different cancers. These cell lines may just
happen to share high variant identity or somewhere
during the cell culturing and maintenance cells got
contaminated with each other. As expected, correlated
cell lines tend to share more common mutations
(Fig. 2b).

Transcriptome profiles of any given cells are known
to change during various treatments, and adapt to
their environment as well. For base-line expression
data provide through CCLE project, we can see their
correlation holds for pair G20492.HEL_92.1.7.2 &
G28844.HEL.3 (p =0.95, Fig. 2d), and the next-to-best
correlated sample is also NCI-H1155 (p =0.787).
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Notice the difference of correlation coefficients of the best
sample and the next-to-best samples are much smaller
than those derived from variant profiles.

Furthermore, we analyzed WES data for 326 cell
lines available from NCI GDC. These 326 cell lines
include 112 cell lines from the RNA-seq dataset. All
the variants from WES data were identified using
pipeline showed in Fig. 1a. We used variants derived
from WES data to compare it with those of RNA-seq
and a high degree of concordance was observed.

Determination of the significance of correlation
coefficient

Moreover, to determine the significance of a detected
correlation coefficient for a given cell line, all pair-wise
correlations for 934 cell lines were generated.

Distribution plot of correlation follows normal distribu-
tion N(y,0) (Fig. 3a, light blue histogram). Similar dis-
tribution is also observed in pair-wise correlation
from WES samples (Fig. 3a, dark blue histogram). To
estimate parameter distribution, we used truncated
normal distribution model by removing correlation
coefficients less than 0 (unlikely) and greater than 0.8
(replicate and derivative cell-lines in CCLE collection).
For variant profiles derived from RNA-seq, parame-
ters are (¢, o) =(0.464, 0.047). Therefore, at Lggo; =
0.609, two samples will be considered similar with
p<0.001, or at L1o®=0.686 two samples will be un-
likely similar (p <10 °). As a comparison, between
RNA-seq and WES variant profiles (¢, o) =(0.275,
0.042), excluding all pair-wise comparison between
same cell lines (see Fig. 3a, left pink histogram).
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COSMIC SNVs and cell line re-identification

We constrained the variants being used for correlation
calculation to only those present in COSMIC70 and
COSMICB83 databases [18]. This led to a huge reduction
in number of variants. Only 4% of total variants matched
to COSMIC70 and 14% matched to the latest cosmic
database COSMICS83 (Table 1). To test the validity of
using only the cancer mutations, we selected 6 pairs of
cell lines that have either replicate or derivative cell lines
in CCLE dataset (G41807.HOP-62.1, G28844.HEL.3,
G27298. EKVX.1, G28607.PA-TU-8988S.1, (G26187.
MONO-MAC-1.2 and G26218.HEC-1-A.2, highlighted
in brown color in Fig. 2a). Interestingly, we observed
that only COSMIC matched variants are sufficient to
correctly re-identify the cell lines (Fig. 3b). Only COS-
MIC70 showed relative poor performance with 2nd best
match (beyond the pair) due to its lower number of
SNPs for comparison. We note that using COSMIC
mutation takes much less computation time for correl-
ation coefficient evaluations across all cell lines.

Robustness of the model
We tested the robustness of CeL-ID method by adding
noise (Gaussian noise with zero mean) to the allele
frequency of variant data for six pairs of cell lines as
aforementioned. As evident from the Fig. 4a, correlation
drops significantly with increasing noise level and by the
noise level 0=15~20 cell line pair is not identifiable.
Additionally, to estimate the false positive rate, we ran-
domly permuted the mutation positions in these six cell
lines and tried to find the other pair. We repeated it 100
times and as can be seen in Fig. 3b (last bar), with very
low correlation coefficient (on average, p = 0.14).
Moreover, we tested the robustness of CeL-ID method
on two independent test sets. First independent test set
comprises of 12 RNA-seq datasets for MCF7 cells, which
were downloaded from GEO (GSE86316) and represents
mRNA expression profiles in MCF7 cells after silencing
of MENT1 using small hairpin or chemical inhibition that
affected expression profile of selected group of tran-
scripts [24]. The second independent set consists of 8
RNA-seq datasets for HCT116 cells. These were also
obtained from GEO (GSE101966) and depict mRNA ex-
pression profiles in HCT116 cells after loss of ARID1A
and ARID1B [25]. Variants were called using pipeline
(Fig. 1a, light blue boxes) and as can be seen in Fig. 4b
and c, even variants derived from altered mRNA
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expression profiles are sufficient for authentication/
re-identification of cell lines. Additionally, it may be
noted that even the use of a different aligner RSEM
do not affect cell re-identification potential. As men-
tioned earlier, MCF-7 and KPL-1 are known to share
high SNP identity and hence both rightly passed
threshold for unique identification. We removed vari-
ants that shared between these two cell lines with dif-
ference FREQ greater than 10 and high coverage
depth requirement, reducing 17,730 variants in first
pass to 2631. Detail analysis results are provided in
Table 2. Notice that second pass p-value is much
higher, which is due to the removal of common vari-
ants, only assess the agreement with variant sites per-
haps differentiate MCF7 and KPL-1. Similar results
were also obtained for HCT116 cells and are provided
in Additional file 2.

Furthermore, to test the robustness of the system, ef-
fect of sequencing depth on the results was checked. We
randomly selected nine cell lines and randomly subsam-
pled it to 1 million (1 M), 2 million (2 M), 5 million (5
M), 10 million (10 M), 25 million (25 M), and 50 million
(50 M) reads and ran the pipeline on subsampled subset
of reads. As evident from the Fig. 4d, even smaller sub-
set of up to 5 M reads covering only around 15% of total
variants (red line/right axis, Fig. 4d) are enough for cell
line authentication (top blue line/left axis, Fig. 4d). Simi-
lar results were observed for all subsampled sets from all
nine cell lines, as indicated by small error bars (Fig. 4d),
demonstrating that our method is robust enough up to
5M reads sequencing depths. Only notable observation
is the variation of correlation for the second best-match
(lower blue line/left axis, Fig. 4d) increases with the re-
duction of total read counts, particularly at 1 M and 2 M
read count levels, indicating lower read counts will
render much fewer unique variants available for muta-
tion calling, and increases the chance of false positive.

Sample mix-up and contamination estimation

Cell line contamination is a major issue facing biomed-
ical sciences [1, 9]. Human error and oversight are
thought to be the main cause of cell line mix-ups and
contamination. It's necessary to have means to quality
control these errors rapidly and periodically. Henceforth,
we have developed a linear regression model (see
Methods section, Fig. 1b) to estimate the level of
mix-ups and contamination using variant frequencies

Table 1 Total number of variants: Number and percentage of variants matched to COSMIC70 and COSMIC83 are given. A total of

1,027,428 variants were detected across all the cell lines

COSMIC Dataset

Number of variants matched

Percentage of matched variants (%)

COSMIC70
COSMIC83

40,742
143,923

3.96
13.91
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Fig. 4 Test for the robustness of the model. a Shown are effect of adding noise to data with 6 pairs used in Fig. 3b; b test on an independent
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Table 2 Test results on independent test set of 12 MCF7 cells obtained from GSE86316. Two passes of the cell identification process
was invoked since two cell lines (G41726.MCF7.5 and G28020.KPL-1.1) both pass the correlation/p-value test. By removing common
variants between two cells and with deep coverage requirement, the difference of correlations is much larger than the first test

Samples First test with all variants (17,730) Second test after removing common variants (2631)
Match cell names corr. Coef p-value Match cell names corr. Coef p-value

Sample 1 G41726. MCF7.5 091 8.59E-21 G41726.MCF7.5 053 0.084
G28020.KPL-1.1 0.89 1.74E-19 G28020.KPL-1.1 0.34 0.996
G25206.NCI-H1694.1 043 0.781

sample 2 G41726. MCF7.5 09 6.63E-20 G41726.MCF7.5 049 0309
G28020.KPL-1.1 0.88 1.07E-18 G28020.KPL-1.1 032 1
G30560.TO_175.T.1 042 0.863

sample 3 G41726 MCF7.5 09 5.14E-20 G41726.MCF7.5 05 0.266
G28020.KPL-1.1 0.88 6.73E-19 G28020.KPL-1.1 0.35 0.993
G30560.TO_175.T.1 042 0.869

Sample 4 G41726. MCF7.5 09 1.64E-20 G41726.MCF7.5 0.55 0.053
G28020.KPL-1.1 0.89 3.50E-19 G28020.KPL-1.1 037 0.983
G30560.TO_175.T.1 042 0.847

sample 5 G41726.MCF7.5 09 4.22E-20 G41726MCF7.5 049 0.304
G28020.KPL-1.1 0.88 7.66E-19 G28020.KPL-1.1 032 0.999
G30560.TO_175.T.1 042 0.843

sample 6 G41726.MCF7.5 0.9 5.94E-20 G41726MCF7.5 0.5 0.283
G28020.KPL-1.1 0.88 1.10E-18 G28020.KPL-1.1 031 T
G41731.Hs_936.T.5 042 0.859

sample 7 G41726. MCF7.5 09 3.48E-20 G41726.MCF7.5 051 0.185
G28020.KPL-1.1 0.88 6.27E-19 G28020.KPL-1.1 035 0.995
G30560.TO_175.T.1 042 0.854

sample 8 G41726.MCF7.5 0.9 1.90E-20 G41726MCF7.5 0.52 0.122
G28020.KPL-1.1 0.89 3.88E-19 G28020.KPL-1.1 033 0.999
G30560.TO_175.T.1 041 0.89

sample 9 G41726 MCF7.5 091 1.89E-21 G41726MCF7.5 0.56 0.025
G28020.KPL-1.1 09 2.53E-20 G28020.KPL-1.1 0.39 0.954
G25206.NCI-H1694.1 048 0455

sample 10 G41726 MCF7.5 091 3.85E-21 G41726MCF7.5 0.55 0.037
G28020.KPL-1.1 09 4.70E-20 G28020.KPL-1.1 0.38 0.971
G25206.NCI-H1694.1 046 0.572

sample 11 G41726.MCF7.5 091 5.55E-21 G41726MCF7.5 0.54 0.058
G28020.KPL-1.1 0.89 7.66E-20 G28020.KPL-1.1 038 0.966
G25206.NCI-H1694.1 046 0.571

sample 12 G41726.MCF7.5 09 1.42E-20 G41726MCF7.5 0.53 0.086
G28020.KPL-1.1 0.89 1.68E-19 G28020.KPL-1.1 037 0.985
G25206.NCI-H1694.1 045 0.642

Note:

1. First test takes all variants with DP > = 10, and at least one sample FREQ > 0. Total of 17,730 variants are included
2. Second test takes variants with DP > = 20, and the difference of max(FREQ of MCF7 and KPL-1.1) and min(FREQ of MCF7 and KPL-1.1) > 10. Total of 2631
variants are taken for all 12 samples’ second test
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from RNA-seq data. To evaluate the effectiveness of the
deconvolution method, we first simulated observed data
by mixing two selected frequencies datasets using Egs.
4a and 4b. The exact steps are provided below:

1. For example, we select G20492.HEL_92.1.7.2 as test
sample (x1), and G20469.JHOS-2.2 as contaminant
candidate (x,);
2. Generate proportion ¢g; from a normal distribution
with mean 0.85 and standard deviation 0.05 (or ¢;
~ N(0.85, 0.05), and g, ~ N(0.15, 0.05). We also
tested proportion of 0.70/0.30, as shown in Fig. 5;
3. Following Eq. 4a, we have z=q; - x1 + g2 - x, for
both FREQ and DP;
4. For each standard deviation o0, = (0.01,0.1, 0.2,
0.5,1,2,5,10, 15, 20), we perform,
4.1.Following Eq. 4b, we obtained y =z + N(0, 6,0
only for FREQ, and then reset y to 0 if y <0,
and 100 if y > 100;

4.2.Calling function CCLE_Identification() to
identify dominant cell-line, or provide cell line
identification. For our particular example selec-
tion and for o =0.01, we obtained:
1st match cell-line = G20492.HEL_92.1.7.2, with
p=097, p=9.762x 10"’
2nd match cell-line = G28844.HEL.3, with p =
0.90, p=1.768 x 10~ *°
3rd match cell-line = G25242.K-562.3, with p =
0.47, p=0.514
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Note that 2nd matched cell line (HEL.3) is the cell line
that has a high correlation with HEL_92.1.7.2 (See Fig.
2a), and we expect it to be identified before the 3rd best
match;

4.3.Calling function CCLE_MixtureEstimate() to
identify contaminant and ¢; and ¢». Results for our
demonstrated case with (o=0.01, and 85/15
mixture);

The possible mixture is G20469.JHOS-2.2, with
proportion q2 = 82.3%, with t-stat = 210.0, p-value
0.000000e+00

The identified cell line is the same as we started with,
and proportion is 82.3% (or - 0.27 below the targeted
0.85 level); and

5. Report estimate results in Fig. 5.

As evident from Fig. 5, that the linear model regres-
sion method can correctly estimate the level of contam-
inator to an extent. The linear model tends to slightly
under-estimate the proportion (about 3%, for both 70%/
30 and 85%/15% mixtures, blue line, Fig. 5) for
simulated noise ¢ from 0 to 6. With the increase of the

Proportion Estimate Error

s, the t stats for each proportion variable estimate
10 T T T T T T T T 200
—— 70%/30% mixture
—X— 85%/15% mixture 4180
—+— 70%/30% mixture
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- 160
Incorrect contaminator
140 2
o
S
120 §
£
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@
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Fig. 5 Contaminant estimation using linear mixture model. Shown are plots of contaminant estimate and t-stat for linear model fit for varying

Gaussian noise level
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decreases (2 red lines, Fig. 5), at some noise level, the
proportion will over-estimate the correct level (blue lines
cross zero, Fig. 5), which indicates the inability of the
linear model regression to identify a correct contamin-
ator from 934 cell-line collections (indicated by a blue
circle, Fig. 5). The best case scenario would have been to
show the estimation accuracy on a real mixed test data-
set and we will continue to investigate the availability of
such dataset.

Discussion

In this study we describe a method (CeL-ID) for estimat-
ing cell line purity from RNA-seq data. A key advantage
of using the CeL-ID method for cell line authentication
is that it relies on a complete set of variants from the
transcriptome instead of a fixed panel of small numbers
of STRs or SNPs, and hence avoids the loss of statistical
power caused by allelic dropout that affects STR-based
authentication methods [1, 9-11]. This becomes more
pressing in case of cancer cell lines where genetic in-
stability is prevalent and known to exhibit aneuploidy
and microsatellite instability [2, 3, 11].

Currently, STR profiling is the ANSI standard for au-
thenticating cell lines [2]. STR profiles for a large num-
ber of cell lines are available for comparison, and a
growing number of fee-for-service companies provide
STR-based cell line authentication for a cost ranging
from $100-295 [9, 10]. SNP-based profiling methods
had been developed as a simple and stable alternative
but suffer from lack of accessibility and being too cum-
bersome for many researchers. Whereas CeL-ID was de-
veloped on the premise that a significant number of
cell-based studies anyway employs RNA-seq-based tran-
scriptome profiling in their research and the same can
also be used to ascertain the identity of the cell line. In
this way, researchers will save both the money and effort
of separately authenticating the cell line.

Benchmarking studies on independent test sets
showed that CeL-ID method is precise and robust and
can be used as a resource for cell line authentication.
Genentech authenticated cell lines contain a consoli-
dated list of 3587 cell lines [1], of which we had access
to RNA-seq data for more than 900 cell lines covering
most of the commonly used cell lines. We have gener-
ated and stored variant profiles for these 900 plus cell
lines for comparison and will keep updating the database
as we have access to RNA-seq data for additional cell
lines. Therefore, as an end-user one just has to input ei-
ther an alignment (bam) file or variant (vcf) file for a
given cell line and CeL-ID will carry out all the pairwise
comparisons and output the perfect match and will also
estimate about the possible contaminants if no perfect
match was detected.
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Conclusions

In summary, we have developed a new method called
CeL-ID, for cell line authentication using variant profiles
derived from RNA-seq data and has shown its robust-
ness. CeL-ID successfully identifies identical, synonym-
ous and derivative cell lines and also estimates about the
possible contaminant. We have attempted to provide
simple solution to problem associated with cell line au-
thentication and hope this would help in adoption of
regular cell line authentication.
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