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Development of an effective HIV/AIDS vaccine remains a big challenge, largely due to
the enormous HIV diversity which propels immune escape. Thus novel vaccine strategies
are targeting multiple variants of conserved antibody and T cell epitopic regions which
would incur a huge fitness cost to the virus in the event of mutational escape. Besides
immunogen design, the delivery modality is critical for vaccine potency and efficacy,
and should be carefully selected in order to not only maximize transgene expression,
but to also enhance the immuno-stimulatory potential to activate innate and adaptive
immune systems. To date, five HIV vaccine candidates have been evaluated for efficacy
and protection from acquisition was only achieved in a small proportion of vaccinees
in the RV144 study which used a canarypox vector for delivery. Conversely, in the
STEP study (HVTN 502) where human adenovirus serotype 5 (Ad5) was used, strong
immune responses were induced but vaccination was more associated with increased
risk of HIV acquisition than protection in vaccinees with pre-existing Ad5 immunity. The
possibility that pre-existing immunity to a highly promising delivery vector may alter the
natural course of HIV to increase acquisition risk is quite worrisome and a huge setback
for HIV vaccine development. Thus, HIV vaccine development efforts are now geared
toward delivery platforms which attain superior immunogenicity while concurrently limiting
potential catastrophic effects likely to arise from pre-existing immunity or vector-related
immuno-modulation. However, it still remains unclear whether it is poor immunogenicity
of HIV antigens or substandard immunological potency of the safer delivery vectors that
has limited the success of HIV vaccines. This article discusses some of the promising
delivery vectors to be harnessed for improved HIV vaccine efficacy.
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INTRODUCTION
Thirty years after the discovery of HIV/AIDS, the search for a
safe and effective vaccine has intensified, as a number of promis-
ing candidate vaccines progressing to phase IIb/III clinical trials
have failed to show efficacy. One of the greatest barriers to HIV
vaccine development is the enormous virion diversity (depicted
by the existence of numerous clades and subtypes in distinct
geographic demarcations) and the continuous evolution which
generates numerous quasi-species within an infected individual
(Hemelaar et al., 2011). This not only makes it challenging to
create immunogens which are effectively matched to the circulat-
ing target viruses, but also provides room for immune escape of
HIV from potent vaccine-induced immune responses. Therefore,
it has emerged that immunogens derived from the most con-
served regions of HIV and covering multiple variants (conserved
mosaics) stand out as the most suitable candidates for T-cell
based vaccines, while immunogens covering the most potent
and broadly neutralizing and non-neutralizing antibody epitopes
are better for antibody-based vaccines (Emini and Koff, 2004;
Robinson and Amara, 2005; McMichael, 2006; Letourneau et al.,
2007; Thorner and Barouch, 2007; Sekaly, 2008; Korber et al.,
2009; Barouch et al., 2010; Santra et al., 2010; Borthwick et al.,
2014). However, the development of a vaccine based on conserved
antibody epitopes to provide protective global coverage and to

minimize immune escape is hampered by inaccessibility of the
highly shielded conserved envelope domains. Furthermore, the
observation that development of broadly neutralizing antibod-
ies requires prolonged stimulation with higher antigenic loads
from divergent virus species (van Gils and Sanders, 2013) implies
that HIV vaccine strategies must provide a continuous high
level expression of a cocktail of immunogens. Although the use
of polyvalent T-cell and B-cell mosaic constructs or the con-
served consensus sequences may effectively overcome the chal-
lenges of HIV diversity and significantly improve vaccine efficacy
(Santra et al., 2010, 2012), the lack of clearly defined corre-
lates of efficacy means that it remains unclear what immune
responses an HIV vaccine should aim to induce. Recently, a
non-human primate (NHP) study based on the RhCMV vector
induced exceptionally broad and persistent atypical CD8+ T cells
which effectively cleared SIV and maintained durable suppression
of virus replication (Hansen et al., 2009, 2011, 2013), suggest-
ing that HIV vaccine development research may have to adapt
immunogen design and delivery strategies that stimulate similar
responses.

Delivery vectors are vital and integral components of a suc-
cessful vaccine as they play an important role in modulating
both innate and adaptive immunity. Therefore, vaccine vectors
can significantly influence the magnitude and breadth, as well
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as the phenotypic and functional qualities of vaccine-induced
immune responses. Moreover, as the type of delivery vector, in
conjunction with the route of vaccine administration often deter-
mine whether or not vaccine-specific immune responses persist
within the systemic and/or mucosal compartments (Masopust
et al., 2001; Kiyono and Fukuyama, 2004; Ranasinghe et al., 2007;
Czerkinsky and Holmgren, 2012), vector choice remains a crit-
ical determinant of the overall efficacy of any given vaccine. A
part from the immunostimulatory potential to induce strong and
persistent immunity, several other factors such as stability and
ease of large scale manufacturing, safety, capacity for transgene
insertion and pre-existing immunity also influence vector choice.
It is now well-documented that pre-existing anti-vector immu-
nity (especially neutralizing antibodies) can prevent transduction
and/or expression of vaccine transgenes thus reducing vaccine-
specific immune induction (Xiang et al., 2002; Fitzgerald et al.,
2003; Lasaro and Ertl, 2009). This is a common phenomenon,
clearly demonstrated with certain vectors which show supe-
rior immunogenicity in animal models yet induce only modest
immune responses due to neutralization by pre-existing antibod-
ies in humans (McCoy et al., 2007). Additionally, pre-existing
immunity can alter the natural course of infection leading to
catastrophic consequences such as enhanced HIV acquisition and
possibly accelerated disease progression (Buchbinder et al., 2008;
McElrath et al., 2008). Thus strategies that concurrently maxi-
mize vaccine immunogenicity while minimizing safety concerns
remain an urgent priority in the development of a safe and
efficacious vaccine for HIV/AIDS.

A good number of HIV vaccine candidates (both prophylac-
tic and therapeutic) employing a broad range of vaccine delivery
vectors have been tested and some have progressed to evalua-
tion of potential efficacy in phase IIb/III trials. Of significant
relevance as far as safety is the STEP trial that used human
adenovirus serotype 5 (Ad5) to deliver a well-designed HIV
immunogen expressing Gag/Pol/Nef, which was associated with
increased risk of HIV acquisition in uncircumcised male vac-
cinees with pre-existing immunity to Ad5 (Buchbinder et al.,
2008; McElrath et al., 2008). This unexpected and rather wor-
risome finding prompted the premature halting of two related
efficacy trials due to futility (Gray et al., 2011; Hammer et al.,
2013). As disappointing as this might have been at the time,
invaluable lessons have been learned and there is still great opti-
mism as these lessons are now taken on board. Focussing on
some of the promising HIV vaccine candidates in preclinical
and clinical development, this review discusses pertinent issues
relating to safety and immunogenicity of replicating and non-
replicating viral vectors, pre-existing anti-vector immunity and
how these can potentially influence the natural history of HIV
infection and progression. In particular, this article highlights the
safety profiles, immuno-stimulatory potential and possible limi-
tations of plasmid DNA, MVA (modified vaccinia virus Ankara),
ALVAC (canarypox virus), NYVAC (New York attenuated vac-
cinia virus), influenza virus and adenovirus vectored vaccines
in preclinical and clinical studies for HIV vaccines. Some of the
delivery vectors evaluated in clinical studies are summarized in
Table 1, while those in preclinical development are summarized
in Table 2.

RECOMBINANT DNA VACCINE VECTORS
DNA plasmid vaccines can induce both T and B cell immune
responses, and are popular for their safety, stability, versatility
and ease of large scale production. Most importantly is the fact
that they can be used repetitively to boost immunity (Valentin
et al., 2010) without the risk of immune interference as is the
case with viral vectors with high prevalence of pre-existing immu-
nity. However, on their own DNA plasmid vaccines have exhibited
very limited immunostimulatory capacity and often induced sub-
optimal immune responses. Recent advances in DNA delivery
such as intramuscular, skin or intradermal electroporation (Selby
et al., 2000; Widera et al., 2000; Brave et al., 2010; Vasan et al.,
2011; Kopycinski et al., 2012) or use of other physical deliv-
ery methods such as gene gun and biojector devices (Drape
et al., 2006; Wang et al., 2008a; Graham et al., 2013), together
with concurrent use of cytokine adjuvants including IL-2, IL-
12, and IL-15 (Winstone et al., 2011; Kalams et al., 2012, 2013)
have greatly improved the immunogenic potential of DNA vac-
cines. In particular, IL-12 was shown to significantly augment
the frequency, magnitude and breadth of Gag-specific immune
responses in healthy volunteers immunized with a recombinant
DNA vaccine expressing HIV-1 Gag (Kalams et al., 2012, 2013).
Similarly, when macaques were co-immunized with a plasmid
encoding IL-12 and a DNA plasmid expressing SIV-Gag, strong
antibody and cellular responses which correlated with a better
clinical outcome were induced (Boyer et al., 2005; Chong et al.,
2007). More impressively, co-delivery of a plasmid encoding GM-
CSF with a DNA vaccine expressing SIV genes induced strong
neutralizing antibody responses and ADCC, which protected
against infection with SIVsmE660 (Lai et al., 2011). The use of
strong adjuvants such as glucopyranosyl lipid A (a TLR4 agonist)
in a DNA/MVA/protein immunization regimen was shown to
enhance both antibody and T cell responses (McKay et al., 2014),
while plasmids encoding the TLR5 agonist, flagellin, enhanced
both antibody and T cell immunity to influenza virus (Applequist
et al., 2005)

Other significant improvements in DNA vaccine technology
include codon optimization, use of stronger promoters/enhancers
and signal peptides such as the tissue plasminogen activator
(tPA) and lysosome associated membrane protein (LAMP1), all
of which significantly enhance transgene expression and traffick-
ing, thus leading to increased vaccine immunogenicity (Wang
et al., 2006a; Yan et al., 2007; Wallace et al., 2013). Furthermore,
ease of DNA manipulation provides a platform to deliver poly-
valent or multi-gene vaccine components which can increase
the breadth and depth of vaccine-induced immunity to reduce
immune escape. This strategy showed remarkable success in
rabbit experiments where a polyvalent gp120 vaccine induced
broadly neutralizing antibody responses as opposed to the mono-
valent vaccine (Wang et al., 2006b). Similarly, polyvalent mosaic
plasmid DNA vaccines have demonstrated enhanced immuno-
genicity in mice (Kong et al., 2009) and rhesus monkeys (Santra
et al., 2010).

Several studies indicate that delivery of DNA vaccines by
electroporation induces both cellular and humoral immune
responses which are long-lived and can persist for several years
with or without subsequent heterologous boosting (Cristillo et al.,
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Table 1 | Representative clinical studies.

Study name and Immunogen Vectors, regimen and route Immune responses References

phase of immunization generated

(I) HETEROLOGOUS PRIME-BOOST STUDIES

HIVCORE002
(Phase I study)

HIVconsv (T cell
immunogen based on
conserved regions)

ChAdV63/MVA (i.m.)
DNA/ChAdV63/MVA (i.m.)
DNA/MVA/ChAdV63 (i.m.)

-CD4+ and CD8+ T cells
-In vitro virus inhibition

Borthwick et al., 2014

HVTN 505 (Phase
IIb study)

VRC-HIVDNA016-00-
VP/VRC-HIVADV014-00-VP

DNA-prime (i.m. biojector
device)/rAd5 boost (i.m. needle
and syringe)

-T cells and gp140 binding
IgG antibodies

Hammer et al., 2013

HVTN
503/Phambili
(Phase IIb study)

MRKAd5 HIV-1 Gag/Pol/Nef DNA-prime (i.m.)/Ad5 boost (i.m.) -CD8+ and CD4+ T cells Gray et al., 2011

Phase 1 study Gag and Env DNA and
recombinant trimeric Env
glycoprotein

DNA-prime (i.m.)/Protein boost
with MF59 adjuvant

-Robust B and T cells
-Strong NAbs to SF162
-ADCC and neutralization of
tier 2 strains

Spearman et al., 2011

Phase I/II study Multi-clade, multigene:
DNA/HIV-1 gp160, p17/p24
Gag and
MVA/HIV-1 Gag/Pol

Low dose (i.d.) DNA-prime
(x3)/MVA-boost (i.m. x2)
(DDDMM)

-High magnitude and broad
CD4+ and CD8+ T cell
responses
-Env antibodies

Bakari et al., 2011

Phase I study
DP6-001

Multigene polyvalent gp120
and Gag DNA and
polyvalent gp120 protein

i.m. or i.d. Polyvalent
DNA-prime/i.m. protein-boost
(with QS21 adjuvant)

-High titer binding and
BNAbs, ADCC and
multifunctional T cells

Bansal et al., 2008;
Vaine et al., 2010

RV144 (Phase III
study)

ALVAC-HIV
vCP1521/AIDSVAX gp120
B/E

ALVAC-prime (i.m.)/gp120
protein-boost

-T cells and non-neutralizing
antibodies to V1/V2 loop

Rerks-Ngarm et al.,
2009

Phase I study Multigenic HIV DNA
(gp160- A/B/C; Rev B, Gag
A/B and RT- B and HIV-MVA
Env/Gag/Pol)

DNA- prime (i.d. with
Biojector)/MVA-boost (i.d./i.m.);
with or without GM-CSF adjuvant

-Broad and potent cellular
immune responses

Sandstrom et al., 2008;
Gudmundsdotter et al.,
2009

HVTN 502/STEP
Study (Phase IIb)

MRKAd5 HIV-1 Gag/Pol/Nef DNA-prime (i.m.)/Ad5 boost (i.m.) -Strong CD8+ T cell
responses

Buchbinder et al., 2008;
McElrath et al., 2008

Phase 1 study HIVA (HIV-1 clade A and a
CTL epitope string)

DNA-prime (i.m.)/MVA-boost
(i.m.)

-Multifunctional CD4+ and
CD8+ T cells

Mwau et al., 2004;
Goonetilleke et al.,
2006

Phase I study
(EuroVacc: EV02)

HIV-1 clade
C-Env/Gag/Pol/Nef (DNA-C
and NYVAC-C)

DNA-prime (i.m.)/NYVAC- boost
(i.m.)

-Durable, broad and
poly-functional CD4+ and
CD8+ T cells

Harari et al., 2008;
McCormack et al., 2008

Phase I study ALVAC-HIV(vCP300)
gp120/gp41, Gag, Pro, Nef,
Pol and SF-2 rgp120

ALVAC-prime (i.m.)/i.m.
Protein-boost (with MF59
adjuvant)

-Durable CTLs
-Antibody responses

Evans et al., 1999

Phase I study ALVAC-HIV(vCP205)
gp120/gp41, Gag, Pol and
SF-2 rgp120

ALVAC-prime (i.m.)/i.m.
Protein-boost (with MF59
adjuvant)

-Strong CD8+ T cell
responses and NAbs

Belshe et al., 1998

(Continued)
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Table 1 | Continued

Study name and Immunogen Vectors, regimen and route Immune responses References

phase of immunization generated

(II) HOMOLOGOUS PRIME-BOOST OR SINGLE DOSE STUDIES

HVTN-070 and
-080 Phase I
studies

PV (PENNVAX(R)-B DNA
expressing Gag, Pol, Env
and DNA/IL-12

DNA+IL-12 (i.m. or by
electroporation)

-CD4+ and CD8+ T cell
responses

Kalams et al., 2013

IPCAVD-001 Ad26.ENVA.01 Intramuscular delivery of rAd26 -Binding antibodies
-Multiple CD8+ and CD4+ T
cell responses
-ADCC and virus inhibition

Baden et al., 2013;
Barouch et al., 2013

HVTN 090 Phase
Ia study

VSVINN4CT1Gag1
(recombinant VSV
expressing HIV-1 Gag)

Dose-escalating i.m. delivery Low level T cell responses
detected following initial
dosing

Fuchs et al., 2012, 2013

Phase I study Ad35-GRIN (Gag, RT,
Integrase, Nef) and
Ad35-GRIN/ENV

Intramuscular delivery of
Ad35-GRIN/Env or Ad35-GRIN

-Robust, broad and
polyfunctional CD4 and
CD8+ T cells

Keefer et al., 2012

Phase I/II study
(RISVAC02)

MVA-B (monomeric gp120
and clade B Gag/Pol/Nef
poly-protein)

Three doses of MVA (i.m.) -Durable antibody and
cellular immune responses

Garcia et al., 2011;
Gomez et al., 2011

Phase I study ADVAX (multigenic HIV-1
DNA vaccine)

DNA by i.m. electroporation -CD4 and CD8+ T cells with
multiple cytokines

Vasan et al., 2011

VAX 003 (Phase
III study)

Bivalent recombinant gp120
vaccine: AIDSVAX B/E

Seven i.m. injections; with Alum
adjuvant

-Binding and neutralizing
antibodies to gp120

Pitisuttithum et al.,
2006

VAX 004
(Multicentre
Phase III study)

Bivalent recombinant gp120
vaccine: AIDSVAX B/B

Seven i.m. injections; with Alum
adjuvant

-Binding and neutralizing
antibodies to gp120

Flynn et al., 2005;
Gilbert et al., 2005

i.m., intramuscular; i.n., intranasal; i.d., intradermal; s.c., subcutaneous; i.p., intraperitoneal; ADCC, antibody dependent cytotoxicity; NAbs, neutralizing antibodies;

BNAbs, broadly neutralizing antibodies.

2008; Patel et al., 2010; Jalah et al., 2014). In particular, the level
of HIV-specific immune responses to the multigenic ADVAX vac-
cine was increased by up to 70-fold when electroporation was
used for delivery (Vasan et al., 2011). Nonetheless, DNA vac-
cines consistently show much better immunogenicity when used
as priming components in conjunction with viral vectors such as
adenoviruses (Shiver et al., 2002; Hammer et al., 2013; Borthwick
et al., 2014), MVA (Sandstrom et al., 2008; Gudmundsdotter et al.,
2009; Bakari et al., 2011; Borthwick et al., 2014), fowlpox (Kent
et al., 1998), and NYVAC (Hel et al., 2001) in heterologous prime
boost regimens delivering the same vaccine inserts, or in co-
immunization strategies that combine DNA-prime with protein
boosting (Kennedy et al., 2008; Wang et al., 2008b). As a mat-
ter of fact, prime-boost regimens still remain the most successful
strategies that emphasize the potential of DNA vaccines. It was
recently shown that a DNA-prime/protein-boost regimen was sig-
nificantly better than either DNA/DNA or protein/protein alone
regimens for generating long-term protection of mice against
Leishmania donovani (Mazumder et al., 2011). The DNA and pro-
tein co-immunization modalities are particularly desirable as they
maximize induction of long-lived humoral and cellular immune

responses which can disseminate to mucosal sites, including the
genito-rectal mucosae (Patel et al., 2013; Jalah et al., 2014).
A recent study has demonstrated in small animal models that
concurrent, multiple-route DNA vaccinations comprising DNA
prime by electroporation, followed with intranasal, intramuscu-
lar, subcutaneous or transcutaneous homologous protein boost
induced strong HIV-specific B and T cell responses (Mann et al.,
2014). Independently, another study showed enhancement of
HIV gp120-specific IgA responses in serum and mucosal secre-
tions following a DNA env-prime and gp120 protein-boost deliv-
ered with novel carbohydrate-based adjuvants (Advax-M and
Advax-P) which were specifically designed for mucosal and sys-
temic immune enhancement (Cristillo et al., 2011). The tremen-
dous effect of a DNA prime in enhancing antibody responses
to protein vaccines was also documented in a Phase 1 clinical
study, where intramuscular delivery of a DNA priming vac-
cine followed with recombinant protein boost stimulated higher
frequencies of B and T cells, as well as higher neutralizing anti-
body titres and ADCC in contrast to immunization with protein
alone (Spearman et al., 2011). Perhaps the most exciting of the
DNA-prime/protein-boost studies is the 6-plasmid polyvalent
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Table 2 | Representative preclinical studies.

Animals Immunogen Vectors, regimen and Immune responses Outcomes References

route of immunization generated

(I) HETEROLOGOUS PRIME-BOOST STUDIES

Mice and
rabbits

HIV Env/Gag-Pol-Nef
DNA, MVA-C (HIV
Env/Gag-Pol-Nef and
CN54gp140 protein)

Intramuscular delivery of
DNA/MVA/Protein with
TLR4 (GLA-AF adjuvant) for
protein boost

Antibody and T cell
responses

– McKay et al., 2014

Rhesus
macaques

SIVmac239 Env/Gag
DNA, rmIL-12 DNA and
SIVmac239 protein
vaccines

DNA-prime (by
electroporation)/i.m. or i.d.
Protein-boost, or DNA and
protein co-immunization

Persistent mucosal
Envelope-specific
antibody responses

Enhanced
immunity by the
co-immunization
modality

Jalah et al., 2014

Rhesus
macaques

SIV-Gag mosaic
SIV-Env mosaic
SIVmac239 Env

DNA-prime (x3, i.m.)
Ad5-boost (i.m.)

-NAbs
-ADCC
-Cellular responses

Protection
against
SIVsmE660
challenge

Roederer et al., 2014

Rhesus
monkeys

DNA expressing
SIVmac239 antigens +
rmIL-12 and inactivated
SIVmac239 virus
particles as protein

DNA prime (i.m. followed by
in vivo electroporation)
/protein-boost

-SIV-specific CTLs
-CD4+ and CD8+
memory T cells
-Binding antibodies

-Protection from
SIVSME660
acquisition
-Reduced peak
and chronic
phase viremia

Patel et al., 2013

Mice pCCMp24
rddVTT-CCMp24

DNA prime/Tiantan boost
(i.m.)

Antibody and T cells – Excler et al., 2010; Liu
et al., 2013

Rhesus
macaques

SIVSME543-Gag/Pol/Env Prime-boost (i.m.) with:
Ad26/MVA, Ad35/Ad26,
DNA/MVA, MVA/Ad26

-NAbs
-Binding antibodies
-Cellular responses

Protection from
SIVmac251
acquisition or
disease
progression

Barouch et al., 2012

Mice Ad35-GRIN/ENV and
MVA-C (Gag/Env/Pol)

Ad35-GRIN/ENV-prime
(i.m.)/MVA-boost (i.m.)

Polyfunctional CD8+
T cells

– Ratto-Kim et al., 2012

Macaques SIV DNA/GM-CSF
(SIV239
Gag/PR/RT/Env/Tat/Rev)
and MVA-SIVgpe

DNA/GM-CSF- prime
(i.m.)/MVA-boost (i.m.)

-Neutralizing
antibody responses
-ADCC

Sterile
protection after
SIVsmE660
challenge

Lai et al., 2011

Murine DNA-Env and gp120
protein vaccines

DNA Env-prime/gp120
protein-boost (i.m. and i.n.)
(Advax-M and Advax-P
adjuvants)

-Persistent mucosal
and systemic Abs
-T cell responses

– Cristillo et al., 2011

New-born
and adult
mice

BCG-HIVA, MVA-HIVA
and HAdV5.HIVA

BCG-prime (i.p./i.d./s.c.)
followed with i.m. MVA- or
HAdV5- boost

-Strong, cytotoxic
CD8+ T cell
responses

– Hopkins et al., 2011a;
Saubi et al., 2011

Rhesus
macaques

VSV and SFV replicon
expressing SIV-Gag/Env

VSV-prime (i.m. and
i.n.)/SFVG-boost (i.m.)

-High titer NAbs to
Env proteins and
weak cellular
responses

-Sterilizing
immunity
Control of
SIVsmE660
breakthrough
infections

Schell et al., 2011

New-born
macaques

VSV-SIVgpe (rVSV-
Gag/Pol/Env) and
MVA-SIVgpe

VSV-prime (oral)/MVA-boost
(i.m.)

-Systemic Abs, both
systemic and local
cellular responses

– Van Rompay et al.,
2010

(Continued)
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Table 2 | Continued

Animals Immunogen Vectors, regimen and Immune responses Outcomes References

route of immunization generated

Mice,
rabbits and
macaques

Consensus or Polyvalent
mosaic DNA and protein
(gp120) vaccines

DNA-prime (i.m.)/i.m. and i.d.
rVaccinia-boost.
DNA-prime (gene gun)/
Protein-boost (i.d.) + IFA

-Broadly neutralizing
antibodies and CD8+
T cell responses

Enhanced
immunogenicity

Wang et al., 2006b;
Santra et al., 2010

Rhesus
macaques

VSV-SHIVGag/Pol/Env
MVA-SHIVGag/Pol/Env

VSV-prime (i.m.)/MVA-boost
(i.m.)

-Persistent
multi-functional
CD8+ T cells and
NAbs

Durable (over 5
years) control of
SHIV89.6P
replication

Rose et al., 2001
Schell et al., 2009

Rabbits
macaques

HIV-1 Env gp120 DNA (electroporation)/gp120
protein boost

-Persistent Th1, CTL
and Env responses

Neutralization of
sensitive SHIV
isolates

Cristillo et al., 2008

Rhesus
macaques

CMV-SHIVdEN and
SeV-Gag

DNA prime (i.m.)/Sendai Virus
boost (i.n.)

-CD8+ T cells Durable control
of SIVmac239
and SHIV89.6PD

Matano et al., 2001;
Takeda et al., 2003;
Kawada et al., 2007

Rhesus
Macaques

replication-defective
SHIV particles and
MVA-SHIV (SIV Gag, SIV
Pol and HIV Env)

Intrarectal DNA prime/MVA
boost

-Antibodies in
plasma
-Cellular responses

-Preserved CD4
T cells -Reduced
disease
progression after
SHIV 89.6P
challenge

Wang et al., 2004

Rhesus
macaques

SHIV-DNA plus IL-2 and
rMVA

DNA + IL-12-prime
(i.n.)/MVA-boost (i.n.)

-Mucosal and
systemic antibody
and cellular
responses

Protection from
SHIV 89.6P
challenge

Bertley et al., 2004

Mice and
monkeys

E1/E3-deleted AdHu5
and E1-deleted AdC7 or
AdC6, expressing Gag37

i.m. prime-boost with:
AdC7/AdC6/AdHu5 or
AdHu5/AdC6/AdC7

-Robust CD8+ CD4+
T cells
-Antibody responses

– Reyes-Sandoval
et al., 2004

Cynomolgus
macaques

DNA- HIV-1 IIIB
Env/Gag/RT/Rev/Tat/Nef,
MVA- HIV-1 IIIB Nef-Tat-
Rev, SIVmacJ5 Gag/Pol
and Vaccinia HIV-1 Env

DNA prime/MVA boost (i.m.
or mucosally)

-Antibody and
cellular responses

Protection from
infection

Makitalo et al., 2004

Mice HIV-1 Env IIIB Ag
(DNA-Env and MVA-Env)

DNA-Env-prime/MVA-Env-
boost (i.n. with Cholera toxin
adjuvant)

-Mucosal CD8+ T
cells, mucosal and
systemic antibodies
-Beta-chemokines

– Gherardi et al., 2004

Rhesus
monkeys

DNA, MVA and Ad5
vectors expressing
SIVmac239 Gag

DNA Prime (i.m.)/MVA- or
Ad5- boost (i.m.)

-Robust CD8+ T
cells with cytotoxic
activity

Pronounced
attenuation of
SHIV infection
and mitigated
disease
progression

Shiver et al., 2002

Macaques DNA and NYVAC SIV-gpe
(Gag/Pol/Env)

DNA-prime
(i.m.)/NYVAC-boost (i.m.)

-Durable CD8+ T cell
responses

– Hel et al., 2001

(II) HOMOLOGOUS PRIME-BOOST OR SINGLE DOSE STUDIES

Mice and
rabbits

Ad4Env160
Ad4Env140
Ad4Env120

i.m., i.n., or s.c. delivery of
rAd4

-T cell and antibody
responses

Neutralization of
tier-1 and tier-2
pseudoviruses

Alexander et al., 2013

(Continued)
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Table 2 | Continued

Animals Immunogen Vectors, regimen and Immune responses Outcomes References

route of immunization generated

Mice Ad35-GRIN/ENV and
MVA- Gag/Env/Pol

Ad35-prime (i.m.)/Ad35-boost
i.m.): MVA-prime
(i.m.)/MVA-boost (i.m.)

-Polyfunctional CD8+
T cells

– Ratto-Kim et al., 2012

Rhesus
macaques

SIVSME543-Gag/Pol/Env MVA-prime (i.m.)/MVA-boost
(i.m.)

-Neutralizing Abs,
binding antibodies
and cellular
responses

Protection from
SIVmac251
acquisition or
disease
progression

Barouch et al., 2012

Rhesus
macaques

RhCMV-SIV/Gag,
Rev/Nef/Tat, Pol, Env

RhCMV vectors delivered by
s.c. injection

-Strong and
persisting,
polyfunctional
effector memory
CD8+ and CD4+
cells

Viral clearance
and durable
protection from
SIVmac239
disease
progression

Hansen et al., 2009,
2011

Rhesus
monkeys

SIV-Gag, SIV-Env and SIV
Rev-Tat-Nef fusion
protein

Intravenous delivery of
recombinant Rhadinovirus

-Persistent effector
memory CD8+ T
cells

Control of
SIVmac239
replication

Bilello et al., 2011

Rhesus
macaques

Rabies virus (RV)
expressing SIVmac239
Gag/Pol or Env

Intramuscular delivery of rRV
constructs

-Polyfunctional CD8+
T cells in the mucosa
-NAbs

Control of
SIVmac251-CX
challenge

Faul et al., 2009

Rhesus
and
Cynomolgus
macaques

SIV-Gag DNA + rIL-12
DNA vaccines

Intramuscular DNA delivery T cell and Antibody
responses

Improved clinical
outcome after
SHIV[89.6P]
challenge

Boyer et al., 2005;
Chong et al., 2007

Juvenile
and Infant
Rhesus
macaques

ALVAC-SIV and MVA-SIV
both expressing
SIV-Gag/Pol/Env

Multiple immunizations with
ALVAC-SIV (i.m.) or MVA-SIV
(i.m.)

-High titres of
binding antibodies,
low-level T cell
responses

Protection from
oral SIVmac251
challenge, and
reduced viremia
in breakthrough
infections

Van Rompay et al.,
2005

Mice HIV-1 Env IIIB Ag
(DNA-Env and MVA-Env)

MVA-Env/MVA-Env
DNA-Env/DNA-Env (i.n. with
Cholera toxin adjuvant)

-Mucosal CD8+ T
cells, mucosal and
systemic antibodies
-Beta-chemokines

– Gherardi et al., 2004

Mice Influenza virus
expressing HIV-1
ELDKWA epitope

i.n. prime/boost with chimeric
influenza virus, followed with
i.p. boost with live virus

-Neutralizing
antibodies

Neutralization of
distantly related
HIV-1 isolates

Muster et al., 1994

i.m., intramuscular; i.n., intranasal; i.d., intradermal; s.c., subcutaneous; i.p., intraperitoneal; ADCC, antibody dependent cytotoxicity; NAbs, neutralizing antibodies;

BNAbs, broadly neutralizing antibodies.

DNA vaccine expressing gp120 and Gag, followed by QS21-
adjuvanted polyvalent gp120 protein boost (DP6-001 study) in
which multifunctional T cells and high-titre gp120-specific bind-
ing and broadly-neutralizing antibodies as well as ADCC were
induced (Graham et al., 2006; Bansal et al., 2008; Wang et al.,
2008b; Vaine et al., 2010).

Apart from effective delivery strategies and routes of immu-
nization, there is evidence showing that expression of DNA
vaccines and subsequent immunogenicity in humans and other
primates can be limited by serum amyloid P component (SAP),

a protein found in blood and known to bind strongly to DNA
(Wang et al., 2011, 2012). In small animals this protein either
binds weakly or does not exist at all. Thus, depletion of SAP
protein prior to administration of DNA vaccines is another new
strategy being tested to improve DNA vaccine immunogenic-
ity. This concept has been proven in mice, where depletion of
SAP using the bis-d-proline compound CPHPC (Bodin et al.,
2010; Gillmore et al., 2010) was shown to augment antibody and
cellular immune responses to a DNA vaccine expressing Hepatitis
B surface antigens (Wang et al., 2012). The concept is currently
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being tested in a Phase 1 clinical trial (HIVCORE003) of healthy
adults using the T-cell based HIV candidate vaccine, HIVconsv.

Although the efficacy of an HIV DNA vaccine is yet to be
demonstrated in humans, various studies (prophylactic and ther-
apeutic) in the macaque model have reported protective immune
responses which controlled SIV/SHIV replication or protected
from infection (Rosati et al., 2005, 2009; von Gegerfelt et al., 2007;
Valentin et al., 2010; Patel et al., 2013). In particular, a study
combining a DNA/MVA mucosal delivery of a DNA construct
expressing replication-defective SHIV particles and MVA express-
ing SIV-Gag/Pol and HIV Env (MVA-SHIV) demonstrated sig-
nificant protection from disease progression after a SHIV89.6P
challenge (Wang et al., 2004). Furthermore, mucosal co-delivery
of a DNA priming vaccine together with an IL-2 encoding vec-
tor, followed by MVA boost also induced protective immunity
against SHIV89.6P challenge (Bertley et al., 2004). The results
in these macaque models, together with the documented efficacy
of DNA vaccines against animal diseases [e.g., equine West Nile
Virus (WNV) (Davis et al., 2001), melanoma in dogs (Bergman
et al., 2003) and infectious hematopoietic necrosis virus (IHNV)
in salmon (Garver et al., 2005; Kurath et al., 2006)] raise hopes
that with the right immunogen and effective delivery strate-
gies (including adjuvants), plasmid DNA vaccines for HIV/AIDS
could achieve efficacy in clinical trials, when used alone, but more
realistically in prime-boost combinations with live viral-vectored
or protein vaccines.

NON-REPLICATING RECOMBINANT VIRAL VECTORS
ADENOVIRUS VACCINE VECTORS
Adenoviruses are the most powerful vectors for inducing both
antibody and cell-mediated immunity to inserted transgenes
and are known to elicit between 5- and 10-fold stronger T cell
responses compared to conventional naked DNA or MVA/pox-
like virus vectors (Xiang et al., 1996; He et al., 2000; Fitzgerald
et al., 2003; Casimiro et al., 2003a, 2004; Tatsis and Ertl, 2004;
Catanzaro et al., 2006). The Adenovirus vectors use either the
Coxsackie and Adenovirus Receptor (CAR) or CD46 receptors
(Bergelson et al., 1997; Gaggar et al., 2003) and can infect a wide
variety of cells, including dendritic cells. In particular, group B
adenoviruses such as Ad35 recognize CD46 surface protein and
infect DCs more efficiently than group C isolates. These vectors
achieve higher levels of transgene expression which in turn results
in stronger and persistent immune effector functions (Zhang
et al., 2001; Hutnick et al., 2010; Suleman et al., 2011). Several
studies indicate that adenoviruses predominantly stimulate per-
sistent effector memory CD8+ T cell responses (Yang et al.,
2003a, 2007a; Tatsis et al., 2007a) which are more suitable for
immediate control of invading pathogens at peripheral entry sites
such as the genital mucosa (Cerwenka et al., 1999; Sallusto et al.,
2004; Huster et al., 2006), and have shown tremendous success in
animal studies (Liu et al., 2009). In addition to the effector mem-
ory T cells, stable central memory CD8+ T cell populations are
also generated, thus providing surveillance in both peripheral and
lymphoid sites. Although persisting adenovirus-driven immune
responses could also be due to the long-term presentation of
antigens by non-haematopoietic cells serving as unlimited anti-
gen depot (Finn et al., 2009; Kim et al., 2010; Bassett et al.,

2011), long-lived immunity is largely attributed to persisting low-
level expression of inserted immunogens. Adenovirus genomes
are known to persist for prolonged periods in various cell types
(including those at inoculation sites) where they remain tran-
scriptionally active and continuously produce low-levels of anti-
gen to prime naïve T cells while also maintaining the effector
memory T cells (Yang et al., 2006, 2007b; Tatsis et al., 2007a).
Furthermore, the arising effector memory T cells express the
IL-7 receptor (CD127) which allows their prolonged survival
in the absence of antigen. Besides induction of potent adaptive
immune responses, adenoviruses also stimulate innate immunity
via highly inflammatory responses which involve TLR2, TLR9,
NOD-like receptors and the type 1 interferon pathways that result
in abundant cytokine and chemokine secretion (Hensley et al.,
2005; Nazir and Metcalf, 2005; Appledorn et al., 2008; Muruve
et al., 2008). Another attractive feature of adenovirus vectors
is their ability to induce both systemic and mucosal immune
responses following parenteral delivery, as well as their suitabil-
ity for mucosal immunization (Sharpe et al., 2002; Xiang et al.,
2003; Bangari and Mittal, 2006; Haut et al., 2010).

The most well-characterized of the adenovirus vectors is
human Ad5, successfully used as a delivery vector for a rabies
vaccine and found to be very good at inducing protective virus
neutralizing antibodies concurrently with CD8+ and CD4+ T
cells (Xiang et al., 1995, 1996). In the HIV field, Ad5 was used
as a booster immunization following DNA priming and induced
strong CD8+ T cell responses in a large proportion of the STEP
study vaccinees (Buchbinder et al., 2008; McElrath et al., 2008).
However, clinical efficacy may have been significantly compro-
mised by pre-existing neutralizing antibodies (ranging from 40
to 70% in developed countries and greater than 90% in devel-
oping countries) and cellular immunity (Fitzgerald et al., 2003;
Holterman et al., 2004; Bangari and Mittal, 2006; Xiang et al.,
2006; Lasaro and Ertl, 2009; Ersching et al., 2010; Mast et al.,
2010; Barouch et al., 2011). These results were recapitulated in
a non-human primate study using low-dose penile exposure to
SIVmac251 in Ad5 seropositive animals immunized with SIV-
Gag/Pol/Nef (Qureshi et al., 2012). Possibly, adenovirus vacci-
nation boosted the numbers of activated CD4+ T cells which
are targets for HIV-1 (Benlahrech et al., 2009). While this might
seem a plausible explanation, especially when considering the
potential of such activated targets to traffic to the genito-rectal
mucosae (Tatsis et al., 2007a; Benlahrech et al., 2009), this argu-
ment is strongly contested by observations that other vaccine
carriers such as DNA and MVA do stimulate CD4+ T cell activa-
tion but have not been associated with increased HIV acquisition.
However, it is worth noting that DNA/MVA vaccines are yet to be
tested for efficacy in large clinical trials and as such their poten-
tial to enhance HIV acquisition has never assessed. Furthermore,
DNA/MVA vaccines combinations have not been associated with
long-term persistence of activated T cells or mucosal homing.
Another postulated theory is the formation of adenovirus-specific
antibody immune complexes that activate both dendritic and
CD4+ T cells hence fuelling infection (Perreau et al., 2008). In
this study, Ad5 immune complexes were strongly correlated with
higher HIV infection in the in vitro cultures, thus supporting a
stronger likelihood of enhanced HIV acquisition. Should either
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or both of these theories be true, this would have dire conse-
quences for other clinical trials using Ad5 to deliver non-HIV
immunogens such as malaria (Sedegah et al., 2011; Tamminga
et al., 2011; Chuang et al., 2013) and TB (Smaill et al., 2013) vac-
cines which will induce similar phenotypes and pre-dispose the
vaccinees to increased HIV acquisition risk, although this may not
be apparently detectable as these studies may not monitor HIV
acquisition.

Apart from the issue of pre-existing immunity, immunization
with Ad5 can induce neutralizing antibodies in naïve individ-
uals which can be a hindrance for successive immunizations
with the same or cross-reactive adenoviral vectors (Casimiro
et al., 2003b; Bangari and Mittal, 2006). Thus new rare aden-
ovirus vectors with lower pre-existing immunity such as Ad26
and Ad35 are becoming more attractive (Holterman et al., 2004;
Abbink et al., 2007; Barouch et al., 2012; Zhang et al., 2013),
although these are relatively less immunogenic compared to Ad5
(Colloca et al., 2012). Besides the lower sero-prevalence, Ad26
neutralizing antibody titres are usually very low compared to Ad5
(Abbink et al., 2007; Chen et al., 2010; Mast et al., 2010). As an
HIV vaccine delivery vector, Ad26 was shown to induce broadly
functional cellular and antibody responses with viral inhibitory
capacity in a first-in-human (IPCAVD-001) clinical trial of an
HIV envelope immunogen (Ad26.ENVA.01) (Baden et al., 2013;
Barouch et al., 2013). In this study, a dose-dependent expan-
sion of the magnitude, breadth, and epitopic diversity of Env-
specific binding antibody responses were observed. The responses
comprised multiple CD8+ and CD4+ T cell memory subpopu-
lations and cytokine secretion phenotypes. Antibody-dependent
cell-mediated phagocytosis and degranulation functional activity
were also observed. Ad35 has also shown high immunogenicity
in healthy volunteers, eliciting robust and polyfunctional CD8+
and CD4+ T cells in a majority of volunteers immunized with
Ad35-GRIN (an immunogen based on Gag, RT, integrase and
nef) or Ad35-GRIN/ENV (premixed Ad35-GRIN and Ad35-ENV
vaccines) (Keefer et al., 2012). Similarly, in BALB/c mice, an
Ad35-GRIN/ENV-prime followed by a boost with rMVA con-
taining Gag/Env/Pol genes from various HIV-1 clades induced
polyfunctional CD8+ Gag-specific central and effector mem-
ory T cells which were superior to those elicited in homologous
Ad35/Ad35 or MVA/MVA prime boosts (Ratto-Kim et al., 2012).

Other rare adenovirus vectors include human Ad6, chim-
panzee Ad3, Ad63, and Ad68 (Barnes et al., 2012; Colloca et al.,
2012; Dicks et al., 2012; O’Hara et al., 2012; Roshorm et al., 2012).
The chimpanzee adenoviruses remain attractive in particular due
to their high immunological potency and low sero-prevalence,
as well as extremely low or virtually absent cross-reactivity with
human adenoviruses (Xiang et al., 2006; Chen et al., 2010;
Colloca et al., 2012). Furthermore, chimpanzee adenoviruses
induce stronger T and B cell responses in heterologous prime-
boost regimens even in the presence of pre-existing immunity to
Ad5 (Tatsis et al., 2009). Apart from using these naturally occur-
ring human and chimpanzee adenoviruses, new derivatives of
adenovirus vectors that have equivalent immunogenicity but with
significantly lower pre-existing antibodies are currently being
developed (Dicks et al., 2012; Lopez-Gordo et al., 2014). However,
it is worth noting that pre-existing cellular immunity (CD8+ and

CD4+ T cells) may be a major deterrent as unlike antibodies,
these cells are highly cross-reactive across adenovirus serotypes
because they are directed to conserved sequences of adenovirus
(Olive et al., 2002; Fitzgerald et al., 2003; Frahm et al., 2012).
Nevertheless, some studies indicate that Ad5 and Ad26 vectors
can still elicit significant systemic and mucosal responses even in
people with pre-existing immunity (Barouch et al., 2013; Smaill
et al., 2013). Immunogenic adenoviruses faced with significant
pre-existing immunity problems can be improved by modifica-
tion of the antibody-binding sites, especially within the variable
hexon loops in order to reduce NAb binding whilst maintaining
immunogenicity (Bruder et al., 2012). This can be achieved via
point mutations or complete replacement (Roberts et al., 2006;
Abe et al., 2009; Pichla-Gollon et al., 2009; Bruder et al., 2013).

Besides their immunogenicity when used alone, adenovirus
vaccines are also very immunogenic when used to prime
responses which are then boosted by other vaccine vectors (Tatsis
et al., 2007b; Ratto-Kim et al., 2012). In particular, adenovirus-
prime followed with MVA-boost can induce high frequencies
of much more long-lived, potent T cells (Reyes-Sandoval et al.,
2008, 2010; Capone et al., 2010; Hill et al., 2010). A Phase I
clinical trial of a T-cell HIV vaccine based on the conserved
regions was recently shown to elicit exceptionally high mag-
nitude and polyfunctional T cell responses (circa 5000 IFN-γ
ELISPOT SFU/million cells) in HIV-negative healthy volun-
teers when primed with chimpanzee Ad63 (ChAdV63-HIVconsv)
followed with MVA-HIVconsv boost (Borthwick et al., 2014).
The vaccine-induced CD8+ T cells exhibited potent in vitro
antiviral activity. This study also demonstrated that the mag-
nitude and functional capacity of T cells induced in a regi-
men comprising three priming doses of DNA followed with
ChAdV63 and MVA (DDDCM) did not differ significantly
from those in a simplified ChAdV63-prime and MVA-boost
(CM) regimen. The superior immunogenicity of this regimen
is not unique to HIV immunogens, as it has also been demon-
strated in preclinical and clinical studies of experimental malaria
vaccines (Dunachie et al., 2006; Draper et al., 2010). Such
repeated heterologous immunizations with the same transgene
are known to increase both the magnitude and functional quality
of vaccine-specific T cells and to allow more efficient migra-
tion to mucosal-associated tissues (Tatsis et al., 2007b). This
is important in HIV infection, as effector immune cells in
mucosal sites could block HIV transmission. It has also been
shown that DNA priming followed with adenovirus boost-
ing can reduce the level of anti-vector antibodies and increase
transgene-specific immune responses (Xiang et al., 1999; Yang
et al., 2003b), although this is questionable when considering
the STEP study which employed a DNA-prime/Ad5-boost regi-
men. However, it is possible that this regimen effectively reduced
the anti-vector antibody effect, thus curtailing a potentially
worse outcome in the absence of DNA priming. Furthermore,
prime-boost regimens with various combinations of adenovirus
vectors were shown to induce robust frequencies of HIV-1 Gag-
specific CD8+ T cells in nonhuman primates (Reyes-Sandoval
et al., 2004), although it has to be appreciated that the level
of pre-existing Ad5 immunity in NHPs would be lower or
absent.
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Adenoviruses are only associated with benign human patholo-
gies, but their greatest limitation is pre-existing immunity which
dampens vaccine-specific immunity by limiting transgene expres-
sion, while potentially exacerbating HIV acquisition. However,
all else considered, Adenoviruses remain by far the most promis-
ing vaccine carriers for HIV-1, because unlike other vectors, they
induce exceptionally high and persistent frequencies of vaccine
specific T cells, which is a requirement for sustained HIV con-
trol. Although their efficacy has probably been hampered by high
sero-prevalence, this no longer seems an insurmountable hur-
dle in light of the enormous amount of research efforts directed
at finding strategies to circumvent the problems of pre-existing
immunity (Gabitzsch et al., 2009). Additionally, replicating ade-
noviruses such as AdH4 and AdHu7 which can be delivered
orally in the form of edible capsules might help to overcome pre-
existing immunity (Xiang et al., 2003). Moreover, intranasal or
oral delivery of adenoviruses has been shown to provide supe-
rior protection in animal models, and might trigger mucosal
immune responses well-situated for preventing HIV acquisition.
Perhaps adenovirus vectors engineered not to induce CD4+ T
cells could be an alternative to overcome increased HIV-1 acqui-
sition risk, although lacking CD4+ T cell help for the CD8+ T
cells might compromise the differentiation and stability and thus
efficacy of both CD8+ T cells and antibody responses (Yang et al.,
2007b).

RECOMBINANT MVA (rMVA) VECTORS
Apart from their excellent safety profile, inherent adjuvant prop-
erties and ease of large scale production, recombinant vaccinia
virus vectors are also popular for their large genomes which
facilitate insertion of larger immunogens (Smith and Moss,
1983). MVA does not replicate in humans (Carroll and Moss,
1997) due to serial passaging in chick embryo fibroblasts which
resulted in loss of more than 10% of its genome (Meyer et al.,
1991), and its safety was well-documented during the smallpox
eradication campaign (Mahnel and Mayr, 1994). MVA’s potent
immunostimulatory properties are achieved in a cascade of events
involving induction of type 1 interferons, various chemokines
for cell migration and activation of several cellular signaling
pathways (Price et al., 2013). The immunostimulatory potency
of MVA is largely attributed to the absence of genes involved
in immune evasion (such as those that interfere with IFN-α,
IFN-β, and TNF-α), thus allowing for stronger innate immu-
nity to be generated (Antoine et al., 1998). MVA vectors are
particularly important for generating strong T cell immunity
against intracellular pathogens and cancers, but have also been
shown to induce potent, high titre antibodies in a variety of dis-
ease models including SIV and malaria (Gherardi et al., 2003;
Draper et al., 2008, 2013; Barouch et al., 2012). However, it
is now well established that MVA vectors are more suited for
boosting rather than priming, and depending on the priming
vector (e.g., DNA or live vectors such as fowlpox and aden-
oviruses), MVA can induce various phenotypes of T cells, either
predominated by CD4+ or CD8+ subsets or a combination of
both.

In pre-clinical and clinical studies of malaria, recombinant
MVA was shown to be highly immunogenic as it induced strong

(and protective) cellular and antibody responses to malaria anti-
gens, either on its own or when used to boost responses primed by
vectors such as DNA, fowlpox or AdHu5 (Schneider et al., 1998,
1999; Gilbert et al., 1999, 2002; McConkey et al., 2003; Anderson
et al., 2004; Webster et al., 2005; Bejon et al., 2007; Sheehy et al.,
2011). Recombinant MVA85A (expressing the mycobacterial anti-
gen Ag85A) was also shown to induce strong and durable T cell
responses in various clinical studies (Scriba et al., 2012; Tameris
et al., 2013, 2014). Furthermore, it was demonstrated that MVA
expressing influenza A virus antigens (MVA-NP+M1) efficiently
boosted CD8+ T cell responses to achieve clinical efficacy in
humans (Berthoud et al., 2011; Lillie et al., 2012). As a therapeu-
tic vaccine for cancer, recombinant MVA expressing the human
papilloma virus antigens E2, E6, or E7, with or without IL-12 was
shown to induce T and B cell immunity resulting in controlled
HPV load and subsequent regression or complete elimination of
precancerous lesions in a majority of vaccinees (Corona Gutierrez
et al., 2004; Garcia-Hernandez et al., 2006; Albarran et al., 2007).
Additionally, MVA expressing 5T4 antigen (TroVax) induced 5T4-
specific antibody and cellular responses which correlated with
tumor regression in a clinical trial of patients with advanced
colorectal cancer (Harrop et al., 2006).

Although there is clear demonstration of the clinical efficacy of
prophylactic and therapeutic MVA-vectored vaccines for malaria,
TB, influenza virus and cancer, MVA vaccines for HIV are yet to
be evaluated for clinical efficacy. However, Phase I and II stud-
ies of MVA expressing HIV antigens, either alone or in various
prime-boost combinations indicate modest to strong immuno-
genicity (Guimaraes-Walker et al., 2008; Howles et al., 2010;
Bakari et al., 2011; Garcia et al., 2011; Goepfert et al., 2011; Gomez
et al., 2011). In particular, the MVA-B candidate HIV vaccine
expressing monomeric gp120 and Gag-Pol-Nef poly-protein of
clade B where MVA was administered without prior priming,
induced long-lasting robust and polyfunctional effector mem-
ory T cell and antibody responses in Phase I/II studies (Garcia
et al., 2011; Gomez et al., 2011). Furthermore, MVA has shown
much higher immunogenicity when combined in prime-boost
regimens with other priming vectors such as DNA, fowlpox or
adenovirus (Goepfert et al., 2011; Keefer et al., 2011; Borthwick
et al., 2014). In Phase 1 studies of the HIVA immunogen (based
on HIV clade A and a string of CTL epitopes), priming with DNA
(pTHr.HIVA) followed with MVA boosting (MVA.HIVA) was
found to be immunogenic, inducing multifunctional and prolif-
erative CD8+ and CD4+ T cell responses in greater than 70% of
the vaccinees (Mwau et al., 2004; Goonetilleke et al., 2006).

As discussed earlier, a Phase I study combining DNA- and/or
ChAdV63-prime followed with MVA boost to deliver an HIV-
1 T cell immunogen induced high magnitude T cell responses
with potent antiviral capacity (Borthwick et al., 2014). This study
and similar studies of malaria vaccines (Sheehy et al., 2011,
2012; O’Hara et al., 2012) showed that the magnitude of T cell
responses induced by ChAdV63 alone were modest, but sig-
nificant boosting was achieved following MVA administration,
thus highlighting the superior immunogenic potential of MVA
when combined with appropriate priming vectors such as BCG
(Whelan et al., 2009; Scriba et al., 2012), natural influenza A
virus (Berthoud et al., 2011) or ChAdV63 (Colloca et al., 2012).
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Remarkably, a DNA/MVA prime boost of a vaccine express-
ing multiple HIV antigens induced responses in about 90% of
volunteers and demonstrated strong immunogenicity despite pre-
existing immunity to vaccinia virus (Sandstrom et al., 2008). As
a therapeutic HIV vaccine vector, rMVA was found to be safe
and to significantly augment HIV-specific CD4+ and CD8+ T
cell responses in HAART-treated HIV-infected volunteers immu-
nized with the MVA.HIVA candidate vaccine (Dorrell et al., 2006;
Ondondo et al., 2006; Yang et al., 2007c). Furthermore MVA was
found to be safe in neonates in a Phase 1 trial where MVA.HIVA
was administered to infants born to HIV-infected or uninfected
mothers (Afolabi et al., 2013). Therapeutic administration of
MVA prime followed with fowlpox boost expressing Env, Gag,
Tat, Rev, and Nef-RT fusion antigens increased the frequencies
and breadth of T cell responses in young adults (Greenough et al.,
2008).

One very attractive feature of rMVA (and other poxvirus
vectors) is their ability to induce mucosal immune responses
when administered via mucosal routes (Gherardi and Esteban,
1999, 2005). In particular, murine and macaques studies using
rMVA vectors demonstrated induction of protective HIV-specific
immune responses within the genito-rectal mucosae, which in
some cases correlated with reduced disease progression (Belyakov
et al., 1998a; Makitalo et al., 2004; Wang et al., 2004). Enhanced
immunogenicity of rMVA in combination with DNA priming
was also achieved by using the non-toxic B subunit of cholera
toxin (CTB) as mucosal adjuvant (Gherardi et al., 2004). Thus,
even though MVA may be inadequate as a stand-alone delivery
platform, it definitely shows greater potential as a boosting vec-
tor (especially for the chimpanzee adenoviruses) and should be
evaluated for efficacy in advanced HIV vaccine trials.

RECOMBINANT NYVAC VACCINE VECTORS
NYVAC vector is also a vaccinia-based vector which was highly
attenuated by deletion of 18 genes involved in host range vir-
ulence. It has been shown to induce mainly CD4+ T cell
responses, in contrast to MVA which has a stronger immunos-
timulatory potential and is known to induce both CD8+ and
CD4+ responses (Mooij et al., 2008). However, in a trial of
chronically infected patients on HAART, a NYVAC-based vac-
cine expressing Gag/Pol/Nef/Env from an HIV-1 clade B isolate
(NYVAC-B) was found to be highly immunogenic and induced
high magnitude, broad and polyfunctional CD4+ and CD8+
T cells (Harari et al., 2012). Similar to MVA, NYVAC elicits
greater immune responses when used in prime-boost combina-
tions rather than on its own (Harari et al., 2008; McCormack
et al., 2008). In these EuroVacc studies, priming with DNA-
C followed with NYVAC-C boost elicited broad, polyfunctional
and durable CD4+ T cell responses in greater than 90% of
volunteers, compared to only 40% when NYVAC was used
alone (Harari et al., 2008). Moreover, in a preclinical study
with a DNA prime followed with NYVAC boost, responses to a
vaccine expressing SIV-Gag/Pol/Env were boosted 10-fold with
improved quality and quantity of T cell responses (Hel et al.,
2001). A NYVAC/SIV-gpe vaccine (expressing SIV Gag/Pol/Env)
also elicited mucosal immune responses in macaques follow-
ing both mucosal and systemic delivery (Stevceva et al., 2002).

Despite the skewing toward CD4+ T cell responses, NYVAC
has potential to stimulate and boost more balanced immune
responses when combined with other vectors, and its potential
should be fully explored, especially for therapeutic HIV vaccines
which require re-invigoration of CD4+ T cell functions (and
frequencies).

CANARYPOX (ALVAC) VACCINE VECTORS
ALVAC is an attenuated derivative of the canarypox virus that
was repeatedly passaged in chick embryo fibroblasts and thus has
restricted tropism with very minimal pathogenicity in humans
(Yu et al., 2006). Despite the comparatively lower immunogenic-
ity with respect to other poxvirus vectors such as MVA (Zhang
et al., 2007) and NYVAC, the fact that ALVAC has no poten-
tial pre-existing immunity in humans makes it a more attractive
HIV vaccine delivery vector. The ALVAC vector (vCP205) was
shown to be safe and to induce strong CD8+ CTL and antibody
responses to an HIV vaccine expressing gp120/41 and Gag/Pol
sequences [ALVAC-HIV(vCP205)] in a Phase 1 clinical trial in the
USA in the 1990 s (Belshe et al., 1998). A related ALVAC-based
vaccine expressing multiple HIV antigens comprising Gag, Env,
Nef, Pol and Pro [ALVAC-HIV(vCP300)] also induced durable
CTL responses in healthy volunteers (Evans et al., 1999). In pre-
clinical studies, ALVAC expressing SIV Gag/Pol/Env protected
against low-dose oral SIVmac251 challenge of neonate rhesus
macaques in a study design aiming to mimic HIV transmission
through breast milk (Van Rompay et al., 2005). More recently
ALVAC-based HIV vaccines have been tested in both adults and
infants, where they have shown modest immunogenicity (Kintu
et al., 2013; Kaleebu et al., 2014) and in the RV144 trial of ALVAC
prime [ALVAC-HIV(vCP1521)] and protein boost (AIDSVAX
B/E rgp120), the only HIV vaccine candidate to show efficacy
(Rerks-Ngarm et al., 2009, 2013).

While it is unclear whether the modest success of RV144 was
due to the immunostimulatory potential of canarypox virus vec-
tor or immunogenicity of the vaccine inserts, the fact that the
immunogens in the RV144 trial vaccines are not significantly dis-
tinct from those used in other HIV vaccines in the field eliminates
the “immunogen effect,” thus leaving the vectors and delivery
methods as possible explanations. But, as the AIDSVAX vaccine
(recombinant gp120) showed no efficacy in earlier trials (VAX003
and VAX004), the success of RV144 points to the delivery vec-
tor (ALVAC) and possibly the benefits of a combined viral vector
and protein immunization regimen as opposed to homologous
boosts. This might suggest that combined live vector-priming and
protein-boost immunization modalities could be further refined
to achieve greater potential for increased efficacy. Alternatively,
protection by the combined vaccines could be attributed to T cell
help for the antibody responses. It must however be noted that
unlike the RV144 study, VAX003, and VAX004 were conducted
in high-risk populations, which might be a strong confound-
ing factor, although this might as well be reflective of the very
limited efficacy of stand-alone protein subunit vaccines for HIV.
Despite the modest efficacy of RV144, the immune responses
waned within a short time indicating that ALVAC may not
be a particularly suitable vector to induce long-lived anti-HIV
immunity, unless it is combined with other powerful vectors. In

www.frontiersin.org August 2014 | Volume 5 | Article 439 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Microbial_Immunology/archive


Ondondo Challenges of HIV vaccine delivery

direct comparison of immunogenicity, ALVAC was found to be
less immunogenic than MVA, possibly due to MVA’s enhanced
antigen expression within dendritic cells (Zhang et al., 2007).
Nonetheless, ALVAC is still quite promising for HIV vaccine deliv-
ery, as it is also already licensed for delivery of several veterinary
vaccines including the feline leukemia virus (FeLV) and feline
rabies vaccine (PUREVAX) and RECOMBITEK vaccine which
protects against canine distemper, equine influenza and West Nile
Virus.

MYCOBACTERIUM BOVIS BACILLUS CALMETTE-GUERIN
(BCG) VACCINE VECTORS
Prevention of breast milk transmission of HIV-1 remains an
important goal for HIV vaccine researchers. BCG is an attenuated
vaccine proven to be safe and has for many years been admin-
istered to new-born babies to immunize against Mycobacterium
tuberculosis (Mtb). As such, BCG provides a platform to co-
deliver HIV immunogens in neonates to potentially protect
against mother-to-child transmission of HIV-1. The potential use
of BCG as an HIV vaccine vector was explored in preclinical stud-
ies of adult and new-born BALB/c mice using the HIV-1 clade
A Gag immunogen (HIVA) (Mwau et al., 2004). Priming with
recombinant BCG expressing HIVA (BCG.HIVA) induced HIV-
specific T cell responses which were efficiently boosted with rMVA
(MVA.HIVA) (Hopkins et al., 2011a,b; Saubi et al., 2011, 2012).
In further related studies, priming with BCG.HIVA and boosting
with a combination vaccine expressing HIVA and the Mtb anti-
gen 85A (mMVA.HIVA.85A) induced robust IFN-γ-producing T
cells to both HIV-1 and Mtb antigens. Moreover, in adult mice,
BCG.HIVA primed weak HIV-1-specific CD8+ T cell responses,
which were strongly boosted with either Ad5 (HAdV5.HIVA)
or rMVA (MVA.HIVA). Thus, immunization of neonates with
recombinant BCG expressing HIV-1 immunogens, followed with
an MVA boost expressing the same HIV immunogen might con-
currently protect against Mtb and HIV-1. It remains to be seen
how these rBCG-vectored HIV-1 vaccines will perform in clinical
studies.

REPLICATION-COMPETENT VIRAL VECTORS
The unprecedented success of the SIVmac239�nef experimen-
tal vaccine in rhesus macaques (Reynolds et al., 2008, 2010)
gives a hint that possibly, a successful HIV vaccine will require
a live delivery vector, as these are known to induce high mag-
nitude, durable and broadly effective immunity. But as exciting
as this may sound, there are significant challenges in terms of
balancing the safety and immunogenicity vs. replicative capacity.
Of the adenoviruses, Ad4 and Ad7 have been tested in clin-
ical studies (by oral delivery) and were successfully used for
the prevention of respiratory and enteric illnesses (Hoke and
Snyder, 2013). These replication competent adenoviruses nat-
urally infect and replicate in mucosal tissues (Patterson and
Robert-Guroff, 2008) and could thus be quite relevant for HIV
vaccines. Preclinical studies of recombinant Ad4 expressing HIV-
1 clade C envelope gp160 (Ad4Env160), gp140 (Ad4Env140), and
gp120 (Ad4Env120) demonstrated induction of envelope-specific
T cells in mice and antibody responses in rabbits (Alexander
et al., 2013). Serum from the rabbits was able to neutralize a tier

1 clade C pseudovirus and to a lesser extent, homologous and
heterologous tier 2 pseudoviruses.

A replicating CMV vectored SIV vaccine (RhCMV-SIV/Gag,
Rev/Nef/Tat, Pol, Env) was shown to persist in vaccinated rhesus
macaques and conferred durable protection from disease pro-
gression owing to induction of high magnitude effector memory
CD8+ T cells, despite pre-existing CMV immunity (Hansen et al.,
2009, 2011, 2013). Other replication-competent viruses in clinical
development include the TianTan vaccinia virus (TT), Vesicular
stomatitis virus (VSV), a derivative of NYVAC (NYVAC-C-KC)
and Sendai virus (SeV). The TianTan vaccinia virus was used in a
DNA-prime (pCCMp24)/Tiantan boost (rddVTT-CCMp24) reg-
imen where it was shown to induce antibody and HIV-specific T
cell responses (including memory phenotypes) following intra-
muscular delivery and has now been advanced to Phase II clinical
study in China (Excler et al., 2010; Liu et al., 2013). The NYVAC-
C-KC vectors have shown superior cellular and humoral immu-
nity compared to the non-replicating NYVAC, at least in mice
(Kibler et al., 2011; Gomez et al., 2012).

A Sendai virus vector expressing SIV Gag (SeV-Gag) admin-
istered intranasally as a boost following intramuscular priming
with an envelope-independent DNA vaccine (CMV-SHIVdEN)
demonstrated very strong suppression of intravenous SIVmac239
challenge in rhesus macaques, which was extended over a 3-
year period (Matano et al., 2001; Takeda et al., 2003; Kawada
et al., 2007). Clinical investigations of a SeV-based candidate HIV
vaccine expressing Gag [SeV-G (NP)] are ongoing in Rwanda,
Kenya and the UK, and it is expected that results of these tri-
als will provide a feel of the potential of Sendai virus as an
HIV vaccine vector. Attenuated VSV is a non-pathogenic, low
sero-prevalence vector that was also found to be quite promis-
ing as it achieved virus control during SHIV89.6P challenge
experiments in rhesus macaques immunized with rVSV express-
ing Gag and Env (Rose et al., 2001). Recombinant VSV vector
was shown to induce strong memory CTL responses to HIV-
1 Gag and Env in mice, which were significantly amplified by
boosting with heterologous recombinant vaccinia virus vectors
(Haglund et al., 2002). It is postulated that intranasal delivery
of rVSV vaccines in combination with IL-12 administered during
DNA priming may elicit mucosal immunity for HIV (Egan et al.,
2004, 2005). Priming with rVSV-Gag/Pol/Env (VSV-SIVgpe) fol-
lowed with MVA-Gag/Pol/Env (MVA-SIVgpe) boost was shown
to induce strong and long-lived antibody and cellular responses
that achieved long-term control of SHIV replication (Schell et al.,
2009; Van Rompay et al., 2010). An ongoing phase 1 trial of
rVSV-HIV-1 Gag vaccine (HVTN090) has demonstrated clini-
cal safety and T cell immunogenicity following intramuscular
delivery (Fuchs et al., 2012, 2013), although the magnitude of
responses was limited and will most likely require priming (or
boosting) with suitable vectors.

Other vectors being explored include rhadinovirus (Bilello
et al., 2011), yellow fever virus (Bonaldo et al., 2010), rabies
virus (Faul et al., 2009), Venezuelan equine encephalitis virus
(VEEV) (Caley et al., 1997) and Semliki Forrest virus (Schell
et al., 2011), all of which have shown strong immunogenic-
ity, with some achieving efficacy in NHP challenge protec-
tion models. Influenza virus vaccine vectors have also been
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studied extensively and have been successfully used as delivery
vehicles for several experimental HIV vaccines (Li et al., 1993a,
2013; Muster et al., 1994, 1995; Garcia-Sastre and Palese, 1995;
Palese et al., 1997; Sexton et al., 2009). As natural mucosal
pathogens, influenza virus vectors are well-adapted for stimulat-
ing robust mucosal and systemic immunity comprising both anti-
body and cellular immune responses (Garcia-Sastre and Palese,
1995; Palese et al., 1997; Li et al., 2013). Mucosal immuniza-
tion of mice with chimeric influenza virus vectors expressing
the HIV-1 gp120 V3 loop peptide (IHIGPGRAFTYTT) (Li et al.,
1993a) or the gp41 epitope (ELDKWA) (Muster et al., 1993,
1994, 1995) was shown to induce persistent antibody and CTL
responses. Influenza virus vectors might be successfully com-
bined in prime-boost regimens as demonstrated in influenza
virus-prime and MVA-boost studies in mice (Gherardi et al.,
2003), although they have a limited capacity for immunogen
insertion.

HETEROLOGOUS PRIME-BOOST STRATEGIES FOR
ENHANCED HIV VACCINE EFFICACY
Repeated vaccination in heterologous prime boost approaches
employing different vector combinations in a specific order is
widely accepted as the most efficient means to induce supe-
rior quality and quantity of vaccine-specific immune responses
(Li et al., 1993b; Ramshaw and Ramsay, 2000; Estcourt et al.,
2002; McShane, 2002; Newman, 2002). Heterologous prime boost
regimes allow immune boosting without creating problems of
anti-vector immunity. Furthermore, heterologous prime-boosts
result in increased frequencies of memory T cells, and it has
been shown that the number of immunizations can significantly
influence the phenotype of vaccine-specific memory T cells, with
secondary and tertiary immunizations generating effector-like
memory T cells which preferentially accumulate in non-lymphoid
organs (Masopust et al., 2006; Nolz and Harty, 2011). These
findings have huge implications on the quality and potential of
mucosal surveillance of cells induced in prime-boost vaccination
protocols.

Distinct live viral vectors can be combined in prime-boost
regimes to maximize immune responses. In most studies DNA
has been used for priming, but recently a number of virus
vectors including Adenoviruses, influenza viruses as well as
fowlpox and canarypox have been tested in prime-boost regi-
mens. Prime-boost regimens comprising Adenovirus and MVA
or heterologous Adenovirus strains have recently been shown
to induce both cellular and humoral immune responses to SIV
and malaria antigens (Draper et al., 2008; Liu et al., 2009;
Tatsis et al., 2009; Barouch et al., 2012). In particular, impres-
sive protection against SIV acquisition in rhesus monkeys was
achieved following immunization with a SIVSME543-Gag/Pol/Env
vaccine delivered by Ad26/MVA and Ad35/Ad26 prime-boost
regimens which induced a mixture of neutralizing and binding
antibody as well as cellular immune responses (Barouch et al.,
2012). This study further demonstrated induction of both sys-
temic and mucosal immune responses and achieved protection
from both acquisition and disease progression, thus providing
proof of concept that HIV-1 acquisition and post-infection con-
trol might be achieved by improved immunogen design and

delivery strategies. Heterologous or homologous regimens com-
prising DNA/MVA, MVA/Ad26, and MVA/MVA were compar-
atively less efficacious than Ad26/MVA or Ad35/Ad26, which
reduced viral load set-points by greater than 100-fold. A Phase
1 clinical trial (B003/IPCAVD-004) assessing the immunogenic-
ity of various prime-boost combinations of Ad26 and Ad35
is ongoing, and will inform the field on the clinical utility of
these two promising human adenovirus vector combinations.
Another NHP study employing three doses of plasmid DNA
followed with Ad5 to deliver various immunogens comprising
SIV-Gag, SIV-Env mosaic immunogens or SIVmac239 Env also
induced cellular and antibody responses (neutralizing antibodies
and ADCC) and achieved significant protection against intra-
rectal challenge of rhesus macaques with SIVsmE660 that was a
mismatch of the vaccine strain (Roederer et al., 2014). Moreover,
superior immunogenicity of prime-boost combinations using
DNA/ChAdV63/MVA or ChAdV63/MVA has been demonstrated
in a Phase I study (Borthwick et al., 2014).

The success of a viral vector for priming has already been
demonstrated in the RV144 study which used ALVAC to prime
antibody and T cell responses, followed with a protein boost
(Rerks-Ngarm et al., 2009). Although priming with DNA has
always seemed a better strategy as it focuses the immune response
to the immunogen transgene, as opposed to viral vectors which
carry multitudes of immunogenic antigens within their back-
bones, the efficacy of viral-vector priming followed by protein
boosting in the RV144 study and the superior immunogenicity
of virus-prime/virus-boost in the studies discussed above sup-
port the use of viral vectors for both priming and boosting.
Therefore, heterologous prime-boost regimens combining DNA,
Adenovirus and MVA or ALVAC are likely to achieve efficacy
against HIV in clinical trials, although this will require that HIV
Env or genes encoding NAb epitopes are included in the immuno-
gen formulations (Barouch et al., 2012, 2013). Preclinical studies
investigating the potential of combined chimpanzee adenovirus,
MVA and protein prime-boost regimens to deliver immuno-
gens which can stimulate broadly neutralizing antibodies such
as BG505 are underway. The success of recombinant adenovirus
vector priming followed with MVA boost in inducing high-titre
antibodies either on their own or in conjunction with molecu-
lar adjuvants has already been proven in preclinical studies of
malaria (Draper et al., 2008). Possibly the persistence of aden-
ovirus ensures continuous antigen supply which is suitable for
B cell priming. It is envisaged that optimal delivery modalities
which combine HIV immunogens eliciting BNAbs with those
that stimulate strong T cell immunity will achieve enhanced vac-
cine efficacy. Of course a major caveat of combining strong T
cell vectors with antibody-producing immunogens is the possi-
ble immune interference of antibody production by these vectors.
Nevertheless, this can be optimized perhaps by employing sev-
eral protein boosts with powerful adjuvants in order to deliver
the most balanced immune responses.

POTENTIAL VACCINE-ASSOCIATED RISK OF HIV
ACQUISITION
The increased risk of HIV-1 acquisition in the STEP and
HVTN505 trial vaccinees despite strong immune responses has
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raised many unanswered questions as to whether the vaccine
delivery modalities, suboptimal potency of the HIV immuno-
gens or other unknown external factors are responsible for
vaccine failure. As far as immunogen design, the vaccine con-
struct used in the STEP, Phambili and HVTN505 studies repre-
sents one of the most comprehensive immunogens with broad
coverage, as it comprised a 6-plasmid DNA and rAd5 vec-
tors expressing Gag/Pol/Nef/Env proteins from multiple clades.
Other immunogens based on similar or far less comprehen-
sive HIV protein coverage have also been tested and showed
varied degrees of immunogenicity. Thus, an understanding on
whether the outcomes of the STEP/Phambili/HVTN505 studies
(efficacy, immunogenicity or increased risk of acquisition) would
have been different if other delivery vectors (such as DNA/MVA,
DNA/ALVAC or DNA/Ad35/Ad26 or even a replicating CMV vec-
tor) had been used to deliver the same immunogens in these trials
is key for further progression in the field. An Alternative way to
look at this is to ask whether the results of RV144 trial would
have been worse if Ad5 was used instead of ALVAC, assuming that
the prevalence of Ad5 neutralizing antibodies in the RV144 pop-
ulation does not differ significantly from the STEP and Phambili
study populations.

The finding that the vaccine was not at all efficacious amongst
men who were circumcised or in uncircumcised men who did not
have pre-existing Ad5 immunity raises doubts as to whether effi-
cacy was genuinely hindered by Ad5 serostatus. This is further
supported by the results of HVTN505 study which tested only
circumcised individuals without Ad5 antibodies, yet no protec-
tion was observed. Moreover, the absence of Ad5 antibodies in the
HVTN505 study participants (which should in theory allow for
higher immunogenicity) was not associated with any significant
enhancement of the magnitude and quality of immune responses
over those seen in the STEP and Phambili studies. Therefore,
Ad5 serostatus can be safely removed from the equation, leav-
ing the only plausible explanation for vaccine failure to be the
quality and quantity of immune responses. If this can be fully
documented beyond doubt then it implies that either the Ad5
delivery vector or the HIV-1 antigens used were not immunogenic
enough to afford protection from infection or post-infection
virus control. However, considering that Ad5 is one of the most
immunogenic vectors currently available, (and that the immuno-
gen used in these studies was comprehensive and well-designed),
this would have serious implications for vaccine design, as it sets
the bar really high for new candidate vaccines which would be
expected to stimulate responses of extremely higher magnitudes
and superior qualitative properties in order to achieve even the
minimal efficacy. On a brighter side, this would perhaps insti-
gate intense scrutiny of the current methods used for assessing
vaccine immunogenicity in order to standardize and synchronize
with those for efficacy measurements.

One other interesting question is whether (and how) Ad5
sero-positivity is intrinsically associated with HIV acquisition.
Although studies of uncircumcised men document increased
risk of natural HIV acquisition due to a high frequency of
CD4+CCR5+ target cells in the foreskin (Prodger et al., 2012),
how this relates their Ad5 sero-positivity and titre levels with
infection risk is not very clear. However, the fact that the risk

of HIV-1 acquisition in the STEP study diminished with time
after immunization, and eventually leveled up with placebo recip-
ients (Buchbinder et al., 2008) might in actual fact support a
role for vaccine-induced immune activation in HIV acquisition
(Tenbusch et al., 2012). Perhaps this could be as a result of
generalized immune activation or induction of activated vaccine-
specific HIV-1 targets with mucosal-homing properties. Should
this be the case, then this would not be unique to Ad5 vectors
alone and it would therefore be expected to equally affect other
delivery vectors capable of inducing activated mucosal-homing
target cells. However, as there were no notable differences in
activated circulating T cells between vaccinees and placebos, it
is unlikely that generalized vaccine-induced immune activation
played a role, although it remains possible that there could have
been significant differences in activated targets at mucosal sites
which were not measured.

This then raises another interesting question as to whether
the outcome of the STEP/Phambili/HVTN505 studies would have
been significantly worse (or better) had the vaccines been admin-
istered mucosally. This question might have two sides to it, in
the sense that mucosal delivery would probably have generated
higher frequencies of activated HIV targets at the genital mucosae,
hence increasing the potential of fuelling infection. On the other
hand, induction of robust and polyfunctional effector immune
responses at mucosal portals of HIV entry would probably have
cleared the incoming HIV before infection became established.
Although these questions have no clear cut answers and cannot be
addressed retrospectively in the context of the clinical trials they
relate to, they however highlight the extreme challenges in HIV
vaccine delivery, and new studies designed to directly tackle these
issues will be quite informative for future vaccine development
research. Studies looking at whether the most promising deliv-
ery vectors (and the respective immunogens) can concurrently
induce activated HIV-1 target cells that preferentially home to and
persist in the genito-rectal and GALT mucosae, and whether or
not such vaccine-induced cells become highly permissive to HIV
infection will be of particular interest in efforts aimed at limit-
ing the risk of vaccine-induced HIV-1 acquisition and accelerated
disease progression.

PERSPECTIVES AND CONCLUSION
Ideally, vectors for HIV-1 vaccines should directly target anti-
gen presenting cells (APCs) or other immune cells to induce
long-lived, strong antibody and cellular responses that can
broadly disseminate to systemic and mucosal compartments.
The vaccine-specific T cells in particular should be broad and
contain activated effector, effector memory and central mem-
ory phenotypes in various proportions in order to achieve a
proper balance between immediate virus clearance and sus-
tained immune-surveillance for long-term protection, as demon-
strated by the RhCMV-SIV vaccine which controlled and cleared
pathogenic SIV infection (Hansen et al., 2009, 2011, 2013).
Furthermore, vectors which can stimulate polyfunctional CD4+
and CD8+ T cells that act in concert with B cells to inhibit HIV
replication through a variety of mechanisms would be more suc-
cessful than those inducing only mono-functional T cells of either
subset alone.
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Of particular relevance to protection from infection would be
vaccine vectors associated with homing and long-term persistence
of vaccine-induced immune responsive cells at the genito-rectal
mucosae (Chanzu and Ondondo, 2014) as well as other mucosal
sites serving as HIV reservoirs. This remains a very important
priority in consideration of the significant rapid CD4+ T cell
depletion in the intestinal mucosa despite successful HAART
(Brenchley et al., 2004; Mehandru et al., 2004). Thus, vac-
cine vectors which naturally infect cells within mucosal induc-
tive sites, especially the replication-competent viruses such as
adenovirus and influenza virus vectors (Gherardi et al., 2003;
Sexton et al., 2009) which can be administered mucosally to
trigger mucosal immunity, would be more suited for HIV vac-
cine delivery. Alternatively, delivery of vaccines via routes which
enhance mucosal immunity (Holmgren et al., 2003; Holmgren
and Czerkinsky, 2005; Czerkinsky and Holmgren, 2012) or vec-
tors possessing an inherent ability to induce mucosal immunity
in addition to systemic immune responses following parenteral or
mucosal vaccine delivery (Moser et al., 2007) may be employed.
Virosome vectors for instance, possess intrinsic adjuvant prop-
erties and a unique ability to target antigen presenting cells,
hence have been very successful at inducing protective mucosal
immunity in SHIV challenge models (Moser et al., 2007; Bomsel
et al., 2011; Leroux-Roels et al., 2013). Other vectors suitable for
mucosal vaccine delivery include VEEV (Caley et al., 1997). In
the absence of mucosal delivery vectors, new delivery technolo-
gies such as the “prime and pull” approach may be utilized in
conjunction with systemic delivery methods to enhance mucosal
homing and subsequent immunity (Azizi et al., 2010; Shin and
Iwasaki, 2012; Tregoning et al., 2013). In this approach, spe-
cialized chemokines are administered in mucosal compartments
following parenteral immunization in order to chemo-attract
the activated vaccine-specific immune cells from the systemic
compartments. Furthermore, use of mucosal adjuvants such as
CTB and LT-B (Albu et al., 2003; Yuki and Kiyono, 2003), pro-
inflammatory cytokines (IL-1α, IL-12, and IL-18) (Belyakov et al.,
1998b; Bradney et al., 2002; Albu et al., 2003) or immunostim-
ulatory CpG motifs (Horner et al., 2001; Dumais et al., 2002;
Daftarian et al., 2003; Jiang et al., 2005) which target recruitment
of immune cells to the mucosal sites would be useful. Co-delivery
of vaccines with genes encoding CCL19 and CCL28 was also
shown to enhance HIV-1-specific T and B cell responses in the
systemic as well as mucosal compartments (Hu et al., 2013).

In consideration of both safety and immunogenicity goals as
already discussed, and with particular emphasis on the pivotal
role of CTL responses in controlling HIV replication, it seems that
non-replicating viral vectors with lower sero-prevalence would
be highly desirable, mainly due to excellent safety profiles and
potent adjuvant effect allowing for induction of very strong, high
quality and long-lived cellular and humoral immunity. However,
although safety and reduced immune interference would be guar-
anteed, a major caveat would be that these lower sero-prevalence
vectors may not be adequately immunogenic. Perhaps these vec-
tors can be re-engineered to improve their immunogenic poten-
tial. For instance, the immunogenicity of vectors such as MVA
and NYVAC can be improved by removal of genes associated
with immune evasion which counteract immune responses to the

vaccine (Kibler et al., 2011; Gomez et al., 2012; Garcia-Arriaza
et al., 2013). In other cases, addition of cytokine-encoding genes
such as type 1 interferons, IL-12 or GM-CSF can enhance vac-
cine efficacy (Gherardi et al., 1999, 2000; Rodriguez et al., 1999;
Ramshaw and Ramsay, 2000; Bayer et al., 2011). Furthermore,
chemokines such as CCL3 which recruits professional APCs can
be co-delivered with HIV antigens to enhance vaccine immuno-
genicity (Lietz et al., 2012).

Alternatively, vectors capable of inducing substantial immuno-
genicity in the presence of pre-existing natural or vaccine-induced
anti-vector immunity may be worth considering, although it is
expected that finding highly attenuated vectors which are safe
and remain immunologically potent will be equally challeng-
ing. As discussed earlier, combining some of the most promising
vectors in heterologous prime-boost regimens will significantly
enhance the quantity, quality and protective efficacy of immune
responses. However, in consideration of the possible catastrophic
effects of elevated immune activation likely to arise from var-
ious vector combinations, it would be expected that suitable
HIV vaccine vectors maintain lower levels of immune activa-
tion to limit the numbers of activated HIV-1 targets (Perreau
et al., 2008; Benlahrech et al., 2009) likely to fuel infection in
the event of exposure. Furthermore, it is documented that in the
absence of a very strong protective immune responses to coun-
teract the incoming virus, the presence of vaccine-specific T cells
which are activated and hence more susceptible to infection may
increase the risk of acquisition (Tenbusch et al., 2012). Whether
it is possible to achieve potent immunostimulatory capacity but
with minimal immune activation still remains a subject of intense
investigation.

When safety and versatility are considered, and in full view of
the enormous technology advancements in DNA plasmid formu-
lations and delivery, in conjunction with other immunomodula-
tory interventions such as SAP depletion and use of molecular
adjuvants, recombinant DNA vaccines remain very attractive,
although efforts to improve stimulation of long-lived effec-
tor/memory CD8+ T cell phenotypes are still needed to achieve
long-term efficacy. Undoubtedly, repeated immunizations or
combining DNA vaccines with persistent (replicating) vectors
or vectors with slow immunogen release features would induce
durable immunity. Nonetheless, replicating vectors with lower
sero-prevalence and minimal pathogenicity (Rose et al., 2001;
Kawada et al., 2007; Fuchs et al., 2013; Liu et al., 2013) are
being considered as they would provide a persistent pool of
HIV vaccine-specific effector memory phenotype cytotoxic T cells
which are critical for long-term protection from disease progres-
sion (Hansen et al., 2009, 2011, 2013). Such effector memory
responses would otherwise be expected to wane with time, in the
absence of antigen. Replicating vectors may also be better-suited
for induction of broadly neutralizing antibodies since persisting
expression of the Env antigens is likely to drive high levels of
somatic mutations required for affinity maturation of these anti-
bodies (van Gils and Sanders, 2013). A new strategy that has
been proven to induce durable and protective antibody responses
in humanized mice challenged with high doses of diverse HIV
strains is vectored immunoprophylaxis, which involves inser-
tion of immunoglobulin genes into viral vectors such as the
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adeno-associated virus (AAV) to provide long-term expression
of neutralizing antibodies (Balazs et al., 2012, 2014). Moreover,
inclusion of Th2 cytokines such as IL-4, IL-5, and IL-6 which
enhance B cell maturation into long-lived antibody secreting cells
is yet another strategy already shown to induce high titres of
neutralizing antibodies which protected mice from Friend Virus
(Ohs et al., 2013). Other possible strategies include use of lentivi-
ral vectors expressing B cell receptor genes encoding neutralizing
antibodies to HIV-1 to transduce haematopoietic stem cells (Luo
et al., 2009).

Since optimum induction of immune responses to vaccines
strongly depends on innate immune triggering as well as the levels
of transgene expression, vectors with natural adjuvant proper-
ties and therefore capable of strongly inducing innate immu-
nity are particularly immunogenic and thus highly desirable.
However, care must be taken to balance between strong innate
function stimulation and the potential risk of inducing potent
stimulation of immuno-pathological effects, including immune
hyper-activation.

In conclusion, a successful vaccine for HIV will have to stimu-
late potent antibody and CTL responses broad enough to cover
multiple HIV variants and with potential to neutralize, bind
or suppress HIV-1 replication for sustained (possibly infinite)
lengths of time. Of utmost importance, however is generation of
vaccine-specific immune responses in the genito-rectal mucosae,
the major portals of HIV entry. Emerging evidence strongly
suggests that non-pathogenic, low-level replicating viral vectors
which can mimic live attenuated vaccines, but with low sero-
prevalence might be the best way to achieve HIV vaccine efficacy.
As these vectors persist long after immunization, they are capable
of inducing and maintaining effector/memory CTLs for contin-
ued immune surveillance that is necessary to protect from infec-
tion, disease progression and to clear or prevent establishment of
latent reservoirs. Thus, to achieve protective efficacy HIV vaccine
development will need ingenious state of the art technologies to
create the very best of T cell and antibody immunogens, deliv-
ered by the most potent but safe vectors possessing remarkably
high capacity to induce both systemic and mucosal immunity, but
without significant immune activation likely to fuel HIV acquisi-
tion. Recent significant advances in vaccine delivery technologies
and HIV immunogen design provide hope that this is not far from
reality.
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