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Antibiotic use in swine production contributes to the emergence and spread of resistant

bacteria, which poses a threat on human health. Therefore, alternative approaches

must be developed. The objective of this work was the characterization of the probiotic

properties of a Ligilactobacillus salivarius strain isolated from sow’s milk and its

application as an inoculated fermented feed to pregnant sows and piglets. The study

was carried in a farm in which metaphylactic use of antimicrobials (including zinc oxide)

was eliminated at the time of starting the probiotic intervention, which lasted for 2

years. Feces from 8-week-old piglets were collected before and after the treatment

and microbiological and biochemical analyses were performed. The procedure led to

an increase in the concentrations of clostridia and lactobacilli-related bacteria. Parallel,

an increase in the concentration of butyrate, propionate and acetate was observed and a

notable reduction in the presence of antibiotic resistant lactobacilli became apparent. In

conclusion, replacement of antimicrobials by a microbiota-friendly approach was feasible

and led to positive microbiological and biochemical changes in the enteric environment.

Keywords: swine, antimicrobials, antibiotic resistance, probiotics, Ligilactobacillus salivarius, short chain fatty

acids, microbiome

INTRODUCTION

During the last decades, antibiotic-(multi)resistant bacteria have become a global threat for human
health. The overuse, abuse and misuse of antibiotics in humans and animals have accelerated the
development and spread of resistances. It has been suggested that the current “antibiotic resistance
crisis” may lead us back to a “pre-antibiotic era” if effective actions to significantly decrease
antibiotic use are not undertaken rapidly (1–4).

Prolonged prophylactic and metaphylactic use of antibiotics is widespread in intensive food
animal management systems worldwide as low-cost growth promoters (5). The addition of
sub-therapeutic levels of antibiotics in feed or water can improve growth rates by reducing the
morbidity and mortality burden associated to bacterial diseases (6). However, such practice has
notably contributed to the emergence and spread of resistant bacteria, both by direct contact with
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antibiotic-resistant bacteria from livestock or by indirect contact
through food, water, and animal waste (7, 8). Swine production
is responsible for a high proportion of the antimicrobials used
in food animal production (6). Despite of the EU ban regarding
the use of antibiotics as growth promoters, these antimicrobials
have been frequently employed in the last years in swine farming
as either prophylactic or metaphylactic agents. The spread of
resistance to antibiotics will probably limit the therapeutic
choices and increasemorbidity andmortality rates due to porcine
or human infections caused by resistant bacteria (3). A worrying
example was the emergence of an Escherichia coli strain carrying
a plasmid-mediated colistin-resistance gene in both people and
pigs in China (9) and its rapid spread to these and other host
species in Europe and North America (10–13). In addition
to antibiotics, zinc oxide is another antimicrobial substance
generally employed in swine production to try to prevent
or minimize post-weaning diarrhea. Several alternatives have
been suggested in order to replace routine use of prophylactic
or metaphylactic antimicrobials in pig production, including
acidifiers, prebiotics and probiotics.

In this context, the objectives of this work were, first, to isolate
and characterize a probiotic candidate from milk of an in-house
sow with a good record of reproductive outcomes; second, to
apply the strain as strategy to replace routine metaphylactic use
of antibiotics in the farm where the strain was isolated; third,
to evaluate the microbiological and biochemical impact of that
replacement strategy.

MATERIALS AND METHODS

Isolation and Identification of L. salivarius
MP100 From Porcine Milk
Milk was collected as previously described (14) at day 14
after delivery from a healthy 7-years-old in-house sow with
a good record of reproductive outcomes. The sample was
kept frozen (−20◦C) until delivery to the laboratory. The
sample was diluted in peptone water, 100 µL of the dilutions
were spread on Man, Rogosa, and Sharpe (MRS; Oxoid,
Basingstoke, United Kingdom) agar plates supplemented with
L-cysteine (0.5 g/L) (MRS-Cys) and incubated aerobically
at 37◦C for 48 h. Only two colony morphologies were
observed on the plates; one representative of each was
selected and transferred to MRS broth tubes, which were
incubated overnight under the same conditions without
agitation. The isolate that reached the highest density (∼9
log10 CFU/mL) was identified as L. salivarius by 16S rRNA
gene sequencing following the procedure described by Kullen
et al. (15).

Survival of L. salivarius MP100 After
Exposition to Conditions Similar to Those
of the Porcine GIT
L. salivarius MP100 was tested using portions of a commercial
antibiotic-free swine feed (50 g) containing ∼109 CFU/mL of
the strain in an in vitro model simulating passage through the
oral cavity, the stomach and the small intestine, as described

by Marteau et al. (16) with the modifications included by
Martín et al. (17), using porcine gastric juice (5mL; chloride:
129 mmol/L; sodium: 68 mmol/L; pH 3.4) obtained in an
abattoir (Madrid Norte, San Agustín de Guadalix, Madrid,
Spain). The pH curve in the stomach-resembling compartment
was controlled as described for monogastric mammals (18). After
120min of total exposition, bacterial survival was determined
by plating the samples onto MRS agar plates, which were
anaerobically incubated at 37◦C for 48 h. Lacticaseibacillus
rhamnosus GG, a well-characterized probiotic strain was used as
a control because of its high survival rate in the same in vitro
model (17).

Determination of the Antimicrobial Activity
and Antimicrobial Compounds Produced
by L. salivarius MP100
An overlay method (19) was used to determine the ability of
L. salivarius MP100 to inhibit the growth of various bacterial
species. The strain was inoculated (∼2-cm-long lines) on MRS
agar plates and incubated at 32◦C for 48 h in anaerobic jars
(Oxoid). Then, the indicator microorganisms (∼104 CFU)
vehiculated in 10mL of soft (0.7% agar) BHI (Oxoid) were
inoculated on top. The bacteria employed as indicator organisms
(our own culture collection) were originally isolated from feces of
pigs or piglets with gastroenteritis (mainly diarrhea), septicemia,
arthritis or meningitis symptoms, and included Clostridium
perfringens MP34, Enterococcus faecalis MP42, Staphylococcus
aureus MP83, Streptococcus suis MP205, Trueperella pyogenes
MP214, Escherichia coli MP73 (F4) and MP77 (F18), Salmonella
enterica serovar TyphimuriumMP55, and Klebsiella pneumoniae
MP87. The plates overlaid with bacterial indicators were further
incubated according to the optimal growth temperature of the
indicator microorganism (32 or 37◦C) for 48 h. Finally, the
clear zones of inhibition (>2mm) around the strain streaks
were measured. All experiments assaying inhibitory activity were
performed in triplicate.

Subsequently, the concentrations of L- and D-lactic acid in
the supernatants obtained from MRS cultures (incubated for
16 h at 37◦C) of L. salivarius MP100 were determined with
an enzymatic kit (Roche Diagnostics, Mannheim, Germany),
following the manufacturer’s instructions. The pH values of the
supernatants were also measured. The ability of L. salivarius
MP100 to produce bacteriocins was determined in culture
supernatants by the agar well diffusion assay described by
Dodd et al. (20) and modified by Martín et al. (21), using
as indicator bacteria the Gram-positive strains employed for
the overlay method. The Gram-positive strains listed above for
the initial screening for antimicrobial activity were employed
as indicators of bacteriocinogenic activity. Since L. salivarius
MP100 showed bacteriocinogenic activity against some of the
indicators, PCR assays were performed to detect the structural
genes corresponding to the L. salivarius bacteriocins salivaricin
B and bacteriocin Abp-118 produced by this bacterial species,
following the procedures described by Çataloluk (22) and Flynn
et al. (23), respectively.
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Adherence to Epithelial Cells and Porcine
Mucin
The adherence of L. salivarius MP100 to HT-29 and Caco-2
cells was examined as described by Coconnier et al. (24). The
adhesion of bacterial cells of this strain to porcine mucin was
determined according to the procedure reported by Cohen and
Laux (25) and the modifications of Olivares et al. (26). The assays
were performed in triplicate and the values were expressed as the
mean (±SD) number of adherent cells in 20 randommicroscopic
fields. L. rhamnosus GG was used as a control strain in these
assays because of its high adherence to these epithelial cells and
to porcine mucin (17).

Safety-Related Characterization of
L. salivarius MP100
The sensitivity of L. salivarius MP100 to antibiotics was
determined by the E-test (BioMèrieux) using the cut-off levels
established by EFSA for the antibiotics indicated for this species
(27). The potential of L. salivarius MP100 to degrade partially
purified porcine gastric mucin (HGM; Sigma) in vitro was
evaluated following the plate procedure developed by Zhou et al.
(28). Other safety-related analysis included the study of potential
hemolysis using fresh horse blood agar plates (29), and the ability
of the strain to produce biogenic amines (cadaverine, putrescine,
histamine, and tyramine) from their respective precursor amino
acids (30). These assays were performed in triplicate.

Suppression of Metaphylactic
Antibiotherapy in an Intensive Swine Farm
and Replacement by Oral Administration of
L. salivarius MP100
General Design and Sampling
The trial was conducted in an industrial closed cycle pig farm
with a farrow-to-finish herd of 210 genetically similar Large
White × Landrace sows. Sows, weaning piglets and fattening
pigs were kept in high-investment indoor facilities following the
UE standards requirements for animal welfare. Strict biosecurity
protocols are followed on the farm, so that any animal or outsider
is prevented from entering the production areas. Production
farm management includes a 3-week batch system with an
“all-in, all-out” procedure, with extensive cleaning followed by
a sanitary break dry period of seven days between different
batches. Piglets are weaned at 4 weeks of age. Until a few months
before the starting of the assay, the farm had applied routine
metaphylactic treatment during the perinatal period, consisting
of the feed administration of zinc oxide, amoxicillin and colistin
at the doses and for the periods of time prescribed by the
veterinarian and recommended in the marketing authorization
of authorized premixes for medicated feeding stuffs. Following
the recommendations of the health authorities, the use of
antimicrobials was eliminated gradually, starting with colistin
and finishing with zinc oxide. The assay described below started
once all the antimicrobials had been withdrawn.

From day 0 (sampling time T1), the diet of the animals
was exactly the same that they were receiving before with the
only exception that all antimicrobials (including zinc oxide)

were completely removed from the feed. In addition, the
strain L. salivarius MP100 was orally administered (∼9 log10
CFU daily) to pregnant sows (during the week previous to
farrowing and throughout the lactation period) and, also, to
piglets continuously from 12 days after birth to the start of the
fattening stage, through an inoculated fermented feed (IFF). This
specific strain dose was selected because it has been shown to
be efficient to modulate the host microbiota in previous clinical
trials involving other L. salivarius strains (31, 32). This probiotic
supplementation was carried out continuously in the farm for 2
years (sampling time T2). No control or placebo batches were
included during the assay to avoid unintentionally transfer of
the strain from treated to untreated animals. At sampling times
T1 and T2, fecal samples from 15 different randomly-selected 8-
week-old piglets were collected in sterile containers directly from
the rectum with the aid of sterile gloves and spatula, aliquoted
(2 aliquots of ∼10 g), and stored at −20◦C until processed as
described below.

All animals were treated in strict accordance with the
guidelines of the European Directive 2010/63/UE on the
protection of animals used for scientific purposes. The study was
approved by Ethical Committee on Animal Experimentation of
the Faculty of Veterinary of the Universidad Complutense de
Madrid (Spain), under protocol 33/17.

Analysis of SCFAs
Analysis of SCFAs (acetate, propionate, and butyrate) was
performed using a dilution gas chromatography-mass
spectrometry (GC-MS) assay as previously described (33, 34).

Assessment of the Fecal Lactobacillus Population by

Culture-Dependent Methods
Fecal samples collected during the trial were serially diluted,
plated onto MRS-Cys plates and incubated anaerobically (85%
nitrogen, 10% hydrogen, 5% carbon dioxide) in an anaerobic
workstation (DW Scientific, Shipley, UK) for up to 72 h at
37◦C. After incubation, the number of colonies were recorded
and at least one representative of each colony morphology
was selected from the agar plates. The isolates were identified
by Matrix Assisted Laser Desorption Ionization-Time of Flight
(MALDI-TOF) mass spectrometry (Bruker, Germany). When
the identification by MALDI-TOF was not possible at the
species level (particularly in the case of lactobacilli isolates), the
identification was carried out by 16S ribosomal RNA (rRNA)
gene sequencing as described by Mediano et al. (35).

The isolates identified as Limosilactobacillus reuteri,
Lactobacillus johnsonii, and Lactobacillus amylovorus were
genotyped by RAPD profiling as described (36). The sensitivity
of one representative of each different genotype to antibiotics
was determined by the E-test (BioMèrieux) using the cut-off
levels established by the EFSA for the antibiotics indicated for
these species (27). Finally, a subset of 14 strains was assessed
for the presence of genes conferring transmissible resistance
to erythromycin (ermB) and tetracycline (tetW and tetL) as
described in previous works (37, 38).
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DNA Extraction From the Samples
Approximately 1 g of each fecal sample was used for DNA
extraction following a method described previously (39).
Extracted DNA was eluted in 22 µL of nuclease-free water and
stored at −20◦C until further analysis. Purity and concentration
of each extracted DNA was initially estimated using a
NanoDrop 1000 spectrophotometer (NanoDrop Technologies,
Inc., Rockland, USA). Negative controls (blanks) were processed
in parallel.

Real-Time Quantitative PCR Assays for the Specific

Detection and Quantification of L. salivarius and

L. reuteri DNA
Quantification of L. salivarius and L. reuteri DNA was carried
using the procedures described by Harrow et al. (40) and
Haarman and Knol (41), respectively. The DNA concentration
of all samples was adjusted to 5 ng/µL. A commercial real-time
PCR thermocycler (CFX96TM, Biorad Laboratories, Hercules,
CA, USA) was used for all experiments. Standard curves using
1:10 DNA dilutions (ranging from 2 ng to 0.2 pg) from L.
salivarius CECT5713 and L. reuteri MP07 (our own collection)
were used to calculate the concentrations of the unknown
bacterial genomic targets. Threshold cycle (Ct) values between
15.29 and 20.07 were obtained for this range of bacterial DNA
(R2 ≥ 0.992). The Ct values measured for DNA extracted from a
non-target species (Lactiplantibacillus plantarumMP02; our own
collection) was ≥39.27 ± 0.64. This control strain was selected
because it is closely related, from a taxonomical point of view, to
L. salivarius and L. reuteri (42). All samples and standards were
run in triplicate.

Metataxonomic Analysis
The V3-V4 hypervariable region of the 16S rDNA was amplified
by PCR using the universal primers S-D-Bact-0341-b-S-17
(CCTACGGGNGGCWGCAG) and S-D-Bact-129 0785-a-A-21
(GACTACHVGGGTATCTAATCC) (43) and sequenced in the
MiSeq system of Illumina at the facilities of Parque Científico
de Madrid (Tres Cantos, Spain). Barcodes appended to 3’ and
5’ terminal ends of the PCR amplicons allowed separation
of forward and reverse sequences in a second PCR-reaction.
DNA concentration of the PCR products was quantified in a
2100 Bioanalyzer system (Agilent, Santa Clara, CA, USA). After
pooling the PCR products at about equal molar ratios, DNA
amplicons were purified by using a QIAEX II Gel Extraction
Kit (Qiagen) from the excised band having the correct size
after running on an agarose gel. DNA concentration was then
quantified with PicoGreen (BMG Labtech, Jena, Germany). The
pooled, purified and barcoded DNA amplicons were sequenced
using the Illumina MiSeq pair-end protocol (Illumina Inc., San
Diego, CA, USA) following the manufacturer’s protocols.

Bioinformatic Analysis
Raw sequence data were demultiplexed and quality filtered
using Illumina MiSeq Reporter analysis software. Microbiome
bioinformatics was done with QIIME 2 2019.1 (44). Denoising
was performed with DADA2 (45). The forward reads were
truncated at position 285 by trimming the last 15 nucleotides

while the reverse ones were truncated at the 259 nucleotides
by trimming the last 10 nucleotides. Taxonomy was assigned to
amplicon sequence variants (ASVs) using the q2-feature-classifier
(46) and the naïve Bayes classifier classify-sklearn against the
SILVA database version 138 (47). Posterior bioinformatic analysis
was conducted using the R version 3.5.1 (R Core Team, 2013;
https://www.R-project.org). The decontam package was used in
order to identify, visualize and remove contaminating DNA with
the concentration of extracted DNA. The 5 most-abundant phyla
and the 19 most abundant genera from all the milk samples were
selected for comparison between groups of samples.

Statistical Analysis
The sample size required to detect a difference of 1 log10 CFU/g in
the mean value of fecal lactobacilli counts between samples taken
before (T1) and after (T2) the probiotic treatment in the pig farm
and of 2 log10 CFU/g in the mean value of fecal lactobacilli counts
between samples taken after the probiotic treatment in the pig
farm (T2) and samples from the control farm (C; an intensive
pig farm in which routine metaphylactic treatment was routinely
used) was calculated using G∗Power 3.1.5 (48). Preliminary data
indicated a great variation in the fecal lactobacilli counts in pig
fecal samples (1.25 log10 CFU/g) which, given the magnitude
of the difference to detect, rendered an effect size of 0.63. The
study would require 30 samples, equally distributed into two
groups (T1 and T2), using a one-way ANOVA test at 5% level
of significance and a statistical power of 95%.

Normally distributed data are reported as means and 95%
confidence intervals (CI) or as means and standard deviations
(SD), and non-normally distributed data by medians and
interquartile ranges (IQR). Exploratorymultifactorial or two-way
ANOVA tests were performed to assess globally the impact of
the supplementation with the probiotic strain. One-way ANOVA
tests were used to compare the mean values of the different
variables between the three groups of pigs. Tukey’s HSD post-
hoc tests were performed when required to identify which
specific group’s means were different after comparing all pairs
of means. t-Tests allowed comparing the changes between the
mean values of different parameters at the beginning and to the
end of the probiotic assay. For non-normally distributed data,
differences between groups were assessed using Kruskal-Wallis
tests and pairwise Wilcoxon rank sum tests to compare data
between farms. Bonferroni corrections were made to control
for multiple comparisons. Statistical analysis and plotting were
performed either using Statgraphics Centurion XVIII version
18.1.06 (Statgraphics Technologies, Inc., The Plains, VA, USA)
or in the R environment and ggplot2. Differences were considered
statistically significant at p < 0.05.

RESULTS

Isolation and Identification of the Strain
From the Porcine Milk Sample
Identification by 16S rRNA gene sequencing of the isolate
that showed the best growth revealed that it belonged to the
species Ligilactobacillus salivarius and the nomenclature MP100
was ascribed to the strain. This species was previously known
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TABLE 1 | Antimicrobial activity of neutralized culture supernatants of L. salivarius

MP100 (dimeter of the halos in cm).

Indicator Overlaid

method

Well

diffusion

assay

Enterococcus faecalis

MP42

0.8 0.7

Clostridium perfringens

MP34

1.9 1.8

Staphylococcus aureus

MP83

2.1 2.2

Streptococcus suis

MP205

0.7 0.6

Trueperella pyogenes

MP214

1.1 1.0

Escherichia coli MP73 (F4) 2.9 Nd

Escherichia coli MP77

(F18)

3.1 Nd

Salmonella enterica

serovar Typhimurium

MP55

3.2 Nd

Salmonella cholerasuis

CECT409

2.7 Nd

Salmonella cholerasuis

CECT443

2.4 Nd

Salmonella enteritidis

CECT4396

2.8 Nd

Klebsiella pneumoniae

MP87

3.0 Nd

Klebsiella pneumoniae

CECT 142

3.2 Nd

Nd, not detected.

as Lactobacillus salivarius but the name changed following
the recent reclassification of the species within the genera
Lactobacillus and Leuconostoc (49), and it is included in the QPS
list of microorganisms with qualified presumption of safety of the
European Food Safety Authority (EFSA) (50).

Survival of L. salivarius MP100 After
Exposition to Conditions Similar to Those
Found in the Porcine Gastrointestinal Tract
L. salivarius MP100 showed a significant survival rate under
simulated porcine GIT conditions. Exposure to a saliva-like
solution had no negative effect on the strain while the
survival rate after the transit through the stomach- and small
intestine-like compartments was∼45% of the population initially
inoculated. This value was comparable to that of the well-
characterized probiotic strain L. rhamnosus GG (41%).

Antimicrobial Activity of L. salivarius
MP100
L. salivariusMP100 showed a noticeable inhibitory antimicrobial
activity (inhibition zone > 0.5 cm around the streaks) against
all indicator organisms used in this study (Table 1). This

TABLE 2 | Minimum inhibitory concentrations (MICs) and cut-off values (µg/ml) for

the antibiotics included within the EFSA criteria (27) for L. salivarius MP100.

Antibiotics Cut-off values MICs (L. salivarius MP100)

Ampicillin 4 0.5

Clindamycin 4 0.5

Chloramphenicol 4 2

Erythromycin 1 0.5

Streptomycin 64 32

Gentamicin 16 2

Kanamycin 64 128

Tetracycline 8 2

Vancomycin n.r. >128

n.r., not required.

antibacterial effect was particularly effective against the Gram-
negative indicator strains because of their sensitivity to the low
pH of the L. salivarius MP100 supernatants, which is a result
of the production of lactic acid. In fact, neutralization of the
strain culture pH led to loss of the antimicrobial activity against
the Gram-negative indicators while remaining unaffected for the
Gram-positives. L. salivarius MP100 exclusively produced the
L-lactic acid isomer, which reached a concentration of 10.29
(±0.31) mg/mL (pH 3.92) after growth in MRS broth for 16 h
at 37◦C. The production by L. salivarius CECT9145 [a high
acidifying strain used as a control (16)] was 10.09 (±0.45)
mg/mL (pH 3.97). L. salivariusMP100 showed bacteriocinogenic
activity against some of the Gram-positive indicator bacteria
(Table 1) although it did not harbor the structural genes encoding
salivaricins B, OR-7 or Abp118. This suggests that this strain
produces a novel bacteriocin.

Adherence of L. salivarius MP100 to
Epithelial Cells and Porcine Mucin
L. salivarius MP100 was strongly adhesive to both Caco-2 and
HT-29 cell cultures. The mean± SD number of adherent cells in
20 randommicroscopic fields was 351.4± 99.3 and 844.6± 137.8
in Caco-2 and HT29 cells, respectively. These values were similar
to those achieved by L. rhamnosus GG (361.6 ± 108.9 and 820.2
± 150.4, respectively). L. salivarius MP100 strongly adhered to
porcine mucin since ∼12.7% of the fluorescence was retained
in the wells after the washing steps of the assay. This value was
higher than that obtained for L. rhamnosus GG (9.57± 1.46).

Safety Characterization of L. salivarius
MP100
L. salivarius MP100 was susceptible to all antibiotics included
within the EFSA criteria (27), with the exception of kanamycin
(MIC: 128µg/mL; EFSA cut-off value: 64µg/mL) (Table 2).
However, recent reports indicate that L. salivarius is intrinsically
resistant to kanamycin (29, 51–54) due to lack of a transport
system for this antibiotic (55). Moreover, L. salivariusMP100 was
not hemolytic, was unable to degrade gastric mucin and did not
produce biogenic amines in vitro.
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TABLE 3 | Microbiological and biochemical parameters, expressed as mean

(±SD), in the feces of 8-week-old piglets (n = 15) in the farm under study before

(T1) and after 2 years (T2) of supplementation with L. salivarius MP100.

Parameter T1 T2 p-value

Colony-forming units (log10 CFU/g)

Total Lactobacillaceae 7.05 (0.51) 8.95 (0.30) <0.001

L. salivarius 2.63 (0.45) 4.30 (0.98) 0.006

L. reuteri 6.59 (0.50) 8.40 (0.33) <0.001

L. johnsonii 5.28 (0.57) 5.14 (0.66) 0.603

L. amylovorus 4.66 (0.48) 4.57 (0.51) 0.692

qPCR (DNA copies/g)

L. salivarius 2.58 (0.63) 4.14 (1.41) 0.031

L. reuteri 6.78 (0.62) 8.47 (0.45) <0.001

Short chain fatty acids (mg/g)

Butyrate 0.38 (0.06) 0.52 (0.05) <0.001

Acetate 2.86 (0.14) 3.24 (0.25) <0.001

Propionate 1.23 (0.05) 1.40 (0.05) <0.001

Suppression of Metaphylactic
Antimicrobial Therapy in an Intensive
Swine Farm With Replacement by Oral
Administration of L. salivarius MP100
L. salivariusMP100 was administered (∼9 log10 colony-forming
units (CFU)/day) to pregnant sows (from the week before
farrowing to the end of the lactation period) and to piglets (from
day 12 after birth to day 15 after weaning) through an inoculated
fermented feed (IFF). At the start of the IFF treatment, all
antimicrobial supplementation was retired and only individual
injectable treatments were applied when required. The treatment
was systematically applied for a 2-year period.

The IFF administration of the putative probiotic strain
led to substantial microbiological changes in the piglet feces
over time. The total mean (±SD) microbial counts found
by culture analysis in a subset of 8-week-old piglets tested
before the start of the treatment (sampling time T1) was
7.05 (0.51) log10 CFU/g while in a similar subset, placed
in the same box 2 years later (sampling time T2) it
raised to 8.95 (0.30) log10 CFU/g. L. reuteri (formerly
L. reuteri), L. johnsonii and L. amylovorus were the dominant
Lactobacillaceae species found in the samples at T1 and
T2. However, L. salivarius and L. reuteri counts significantly
increased after 2 years of probiotic treatment (Table 3). Analysis
by qPCR also revealed a significant increase of L. salivarius and
L. reuteri DNA.

The L. reuteri, L. johnsonii, and L. amylovorus isolates
from T1 samples showed a high rate of antibiotic resistance,
especially for tetracycline (100% for the L. johnsonii and
L. amylovorus and >87.5% for the L. reuteri isolates) (Table 4).
This last antibiotic was used in the farm under study until the
sampling time T1. Interestingly, the antibiotic resistance rates
sharply decreased after 2 years of antimicrobials withdrawal and
concurrent probiotic treatment. In the case of tetracycline, it
fell to 37.5, 25, and 12.5% for the L. reuteri, L. johnsonii, and

L. amylovorus isolates, respectively. Similarly, the resistance rates
for ampicillin, clindamycin, chloramphenicol and erythromycin
dropped to 0% of the L. reuteri and L. johnsonii isolates
(Table 4). The search for genes conferring resistance to
tetracycline (tetL, tetW) and erythromycin (ermB), detected
ermB and tetW in some T1 isolates. In contrast, none of
these genes were harbored by the isolates pertaining to the
T2 samples.

The concentrations of SCFAs (acetate, propionate and
butyrate) were highest in the feces of T2 piglets (Table 3). The
differences between the T1 and T2 samples were statistically
significant for all SCFAs.

The 16S rRNA gene-based metataxonomic analysis of the 45
fecal samples (15 from each group of piglets) yielded 4,606,781
high quality filtered sequences, ranging from 56,400 to 106,665
reads per sample [median (IQR) = 74,441 (70,811–84,339)
sequences per sample]. The Shannon index median was 4.02
(3.70–4.21) (p < 0.001) and 4.05 (3.73–4.35) (p = 0.008) for the
T1 and T2 samples, respectively.

At the ASV level, the PCoA plots of the Bray-Curtis
distance matrix (abundance) revealed that most of the samples
clustered according to their origin (T1 and T2) (Figures 1, 2).
The subsequent pairwise analysis of similarity (PERMANOVA)
revealed that the differences between the two sets of samples
were statistically significant for all pairwise comparisons (p <

0.01). In the same way, differences were found in the Binnary
Jaccard distance matrix (presence/absence) PCoA plot. Again,
the samples clustered according to their origin (p < 0.01 for all
pairwise comparisons) (Figures 1, 2).

Firmicutes was the most abundant phylum in both sampling
times (median (IQR) relative abundance of 90.9% (89.88–
95.13%) and 94.47% (92.64–95.78%), respectively; p = 0.348)
(Table 5). At the genus level, Clostridium was the most abundant
both in the T1 and T2 samples but its abundance increased from
T1 to T2 samples (p < 0.001) (Table 5). Parallel, the relative
abundance of Turibacter, Romboutsia, and Lachnospiraceae was
higher in T1 samples than in T2 samples (p < 0.001). In
addition, the relative abundance of the genera Subdoligranulum,
Ruminococcus, and Blautia (which also contains several SCFAs-
producing species) and, also, that of the genus Streptococcus
were significantly higher in T2 than in T1 samples (Table 5).
In relation to Lactobacillus-related sequences, its abundance
increased from T1 to T2 samples (p=0.034).

DISCUSSION

In this work, the effects of the replacement of routine
antimicrobial metaphylaxis by the oral administration of a
putatively probiotic isolate of L. salivarius is described. The strain
was obtained from the milk of a healthy sow with a record of
reproductive excellence and was included in the feed of both sows
and piglets, leading to a significant shift in the fecal metabolome
and microbiota of 8 weeks-old piglets. The most relevant
changes were the significant increases in the concentration of
clostridia and the related SCFA metabolites (butyrate, acetate
and propionate) that was accompanied by the improvement
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TABLE 4 | Antibiotic resistance rates (%) among the L. reuteri, L. johnsonii, and L. amylovorus strains isolated from the feces of 8-week-old piglets in the study farm

before (T1) and after 2 years of antibiotic withdrawal and supplementation with L. salivarius MP100 (T2).

L. reuteri L. johnsonii L. amylovorus

Antibiotic T1 T2 T1 T2 T1 T2

Ampicillin 75 0 42 0 57 14

Clindamycin 25 0 42 0 62.5 12.5

Chloramphenicol 25 0 14 0 0 0

Erythromycin 50 0 12.5 0 75 12.5

Streptomycin 75 25 56 0 75 12.5

Gentamicin 75 25 84 25 12.5 12.5

Kanamycina 100 100 100 100 50 25

Tetracycline 87.5 37.5 100 25 100 12.5

Vancomycina 100 100 0 0 0 0

The cut-off values were those established by EFSA (27).
aL. reuteri and L. johnsonii are intrinsically resistant to kanamycin. L. reuteri is intrinsically resistant to vancomycin [assays for these antibiotics and species are not required by EFSA (27)].

FIGURE 1 | Principal coordinate analysis (PCoA) plots of bacterial profiles at the genus level based on (A) the Bray-Curtis dissimilarity analysis (relative abundance)

and (B) the Jaccard’s coefficient for binary data (presence or absence). The values on each axis label represent the percentage of the total variance explained by that

axis. The differences between the groups of fecal samples (T1, T2) were analyzed using the PERMANOVA test with 999 permutations.

of practically all the productivity parameters associated to this
farming. As expected, there also was a significant increase in the
concentration of Lactobacillus related bacteria.

Weaning transition is one of the most critical periods in
intensive swine farming (56). Piglets are weaned at an age
in which they should still be consuming sow’s milk for some
additional weeks and, therefore, neither their intestinal tract
nor their immune system are fully developed (57). At the same
time, they have to adapt to very stressful conditions (maternal
separation, changes in diet and environment, mixing with new
mates), a fact that usually leads to a temporary reduction in the
feed intake and a post-weaning growth retardation (58). As a
result, they become an easy target for “nosocomial” microbes that
are highly prevalent in intensive farming, including pathogenic
bacteria causing sepsis, meningitis, arthritis and gastrointestinal
diseases. This is the reason why antibiotics were used as growth
promoters and, although the European Union has banned them,

they are still widely and routinely used as metaphylactic or false
therapeutic agents.

Several approaches have been proposed to improve gut
health that might allow antibiotic use discontinuation.
In this context, the gut microbiota is considered a key
factor in swine’s health, due to its metabolic (including feed
conversion efficiency) and immune differentiation roles and
its contribution in preserving the integrity of the intestinal
barrier (59–61). As a consequence, the intestinal microbiota
exerts a strong influence on sow productivity (62, 63). Some
of the beneficial effects associated to the gut microbiota are
the result of specific bacterial metabolites, such as SCFAs,
including acetate, propionate, and butyrate. SCFAs play
several roles in the gut, from primary source of energy to
colonocytes, immunomodulation and protection against
pathogens to biosynthesis of mucus, and water and mineral
absorption (64–66).
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FIGURE 2 | Heatmap showing the relative abundance of the 20 most abundant bacterial genera (x axis) detected in the fecal samples. The relative abundance of

each bacterial genus within each sample is indicated by the color of the scale ranging from white (high relative abundance) to green (low relative abundance) as

indicated in the scale shown at the left upper corner. Dendrogram linkages are based upon relative abundance of the genus within the samples and hclust was used

as the clustering algorithm. The column between the dendrogram of the fecal samples and the individual values of the relative abundance of bacterial genera indicates

the group of samples (T1 and T2).

Among SCFAs, butyrate has attracted most research attention
because of its additional beneficial effects on animal production,
including the improvement of growth performance (67–71).
Butyrate is the main end product of some non-pathogenic species
of the genus Clostridium (72–74), which contribute to preserve
a healthy intestinal microecology through the control of the
growth of pathogenic microbes (75–77), while living in harmony
with commensal members of the families Bacteroidaceae,
Enterococcaceae, and Lactobacillaceae (77). In a previous
study, the relative abundance of SCFA-producing bacteria
and the concentrations of acetate, propionate and butyrate
were significantly higher among fecal samples from high-
reproductive performance farms than among those from low-
reproductive performance farms (78). Streptomycin treatment
depleted butyrate-producing clostridia from the murine gut,
decreased butyrate levels, and increased the population of
pathogens like Salmonella enterica serovar Typhimurium (79). In
contrast, direct administration of butyrate to pigs has shown to
produce a variety of benefits to gut health, including the control
of inflammation and the reinforcement of the barrier function

(80, 81). Such positive effects of butyrate may depend on the age
of the animals and, therefore, in-feed supplementation should be
performed as early as possible in order to obtain better health
outcomes (82). Overall, any strategy resulting in an increased
production of SCFAs (and particularly butyrate) will have a
relevant role in the post-antibiotic era of animal production.

In this work, the abundance of Lactobacillus and Clostridium
sequences increased simultaneous. This observation is not
strange since both kinds of microbes usually establish a
collaborative network in the porcine’s gut. Lactobacilli decrease
the intestinal pH and produce lactic acid, which is required
by clostridia to produce butyrate. In turn, it has been
repeatedly observed that butyrate-producing clostridia have
the ability to inhibit pathogenic bacteria in the intestinal
tract while promoting the growth of lactobacilli (83–85).
It has been shown that severe damage in the epithelium
of the ileum mucosa of pigs experimentally infected with
Salmonella Typhimurium was correlated with a decrease
of Lactobacillus and butyrate-producing anaerobic bacteria,
including Clostridium spp. (86).
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TABLE 5 | Relative frequencies, medians and interquartile ranges (IQR) of the relative abundance (%) of the most abundant bacterial phyla (in bold) and genera (in italics)

detected in the T1 and T2 samples.

Phylum/genus T1 T2 p-valuea

nb (%) Median (IQR) n (%) Median (IQR)

Firmicutes 15 (100%) 90.9 (89.88–95.13) 15 (100%) 94.47 (92.64–95.78) 0.348

Bacteroidota 15 (100%) 2.04 (1.22–3.12) 15 (100%) 2.43 (1.50–3.59) 1.000

Actinobacteriota 15 (100%) 1.41 (0.74–2.12) 15 (100%) 1.20 (0.91–1.77) 1.000

Proteobacteria 15 (100%) 0.07 (0.04–0.33) 14 (93%) 0.03 (0.01–0.07) 0.110

Euryarchaeota 15 (100%) 1.44 (0.60–2.22) 13 (87%) 0.50 (0.13–0.85) 0.054

Clostridium 15 (100%) 12.07 (8.44–20.46) 15 (100%) 22.9 (19.23–36.66) <0.001

Lactobacillus 15 (100%) 7.68 (2.79–13.34) 15 (100%) 8.84 (4.43–16.69) 0.034

Turicibacter 15 (100%) 18.42 (13.88–22.33) 15 (100%) 4.54 (2.83–8.03) <0.001

Romboutsia 15 (100%) 10.63 (8.66–12.11) 15 (100%) 1.78 (1.06–4.80) <0.001

Subdoligranulum 15 (100%) 0.13 (0.04–0.20) 14 (93%) 1.47 (0.41–5.32) 0.005

Eubacterium 15 (100%) 1.34 (0.86–2.24) 15 (100%) 2.67 (1.97–2.78) 0.056

Lachnospiraceae 15 (100%) 4.52 (3.11–4.88) 15 (100%) 0.86 (0.36–1.67) <0.001

Ruminococcus 15 (100%) 0.33 (0.26–0.56) 15 (100%) 1.57 (0.43–3.11) 0.017

Bacillus 14 (93%) 0.74 (0.43–2.21) 15 (100%) 0.84 (0.43–3.54) 1.000

Blautia 15 (100%) 0.17 (0.06–0.26) 14 (93%) 0.80 (0.15–2.99) 0.044

Streptococcus 8 (53%) 0.01 (<0.01–0.03) 15 (100%) 0.51 (0.12–5.04) <0.001

Mogibacterium 15 (100%) 0.38 (0.23–0.61) 15 (100%) 0.29 (0.19–0.58) 1.000

Treponema 15 (100%) 0.83 (0.41–1.11) 15 (100%) 0.31 (0.14–0.59) 0.180

aWilconson rank sum test.
bn (%): number of samples in which the phylum/genus was detected (relative frequency of detection).

Lactobacilli are dominant bacteria in the pig gut microbiota
during early life (87). Among the different Lactobacillus species,
L. reuteri and L. salivarius are host-adapted species which share
a long-term evolutionary history with swine (88, 89). In fact,
they are among the few Lactobacillus species that can be isolated
from mammalian milk, including sow’s milk (14). As normal
residents, this group of bacteria thus has an advantage over others
in ecology for colonizing the gut. However, the normal process
of acquisition of the piglet gut microbiota is greatly disrupted
by the high social and physiological stress together with the
abrupt interruption of the immune protection imposed by early
weaning (90). Under such circumstances, the gut microbiota is
characterized by a severe dysbiosis (91–93), with a sharp decrease
of lactobacilli (93), and a high susceptibility to pathogen infection
(94, 95). In this study, the administration of L. salivarius MP100
led to an increase of the Lactobacillus abundance. Culture-
dependent analysis and species-specific detection of L. salivarius
and L. reuteri by qPCR indicated that the increase in the
Lactobacillus abundance was not due to a sharp increase in the
concentration of L. salivarius (which was actually moderate) but
to a notable increase in the population of L. reuteri. It has been
previously shown that the administration of a probiotic strain
may have a low impact in terms of colonization of that probiotic
strain but a high impact in relation to the promotion of the
growth of other beneficial members of the gut microbiota (96).

A large number of in vivo studies have assessed the impact of
different probiotic Lactobacillus on the performance and health
of weaned piglets (97). However, the results have been very
heterogeneous depending on the tested probiotic product and

the posology. This highlights the need for a better selection
and characterization of the strains aimed to be used as swine
probiotics. Anyway, some probiotics have successfully improved
the health and performance in neonatal and growing pigs (98–
100), including L. reuteri and L. salivarius strains (101–109).

The strategy followed in this work implied the administration
of the probiotic strain to both sows and piglets. Previous studies
have reported that providing sows and their piglets with the same
strain simultaneously was more effective than feeding sows or
piglets alone (21, 110–116).

As it has been stated above, both the use of butyrate and
probiotics are usually considered among the potential candidates
to substitute antibiotics. In this work, we have shown that the
use of a well-characterized L. salivarius strain isolated from sow
milk was able to drive a significant increase in the abundance of
Lactobacillus and butyrate-producing clostridia, which resulted
in significant increases in the concentration of the three assayed
SCFAs, including butyrate.

This shift in the gut ecology of the treated animals was
associated with a decrease in the prevalence of antibiotic-
resistant lactobacilli. These microbes are good indicators of
antibiotic pressure since they easily adapt to antibiotic-rich
environments by different mechanisms, including the acquisition
of transmissible genes (117, 118). This study shows that a 2-year
period of antibiotic withdrawal is enough to reduce notably the
burden of antibiotic resistances in a pig farm, a fact that must
be highlighted in the frame of the current antibiotic resistance
crisis. In this study a high percentage of L. reuteri, L. johnsoni, and
L. amylovorus strains showed phenotypic resistance against many
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of the tested antibiotics. Antibiotic resistances among lactobacilli
can be intrinsic [e.g., changes in the composition of the cell wall,
as in the case of the intrinsic resistance of many Lactobacillus
species to vancomycin (119)] or acquired through chromosomal
mutations [e.g., a single mutation in the 23S rRNA gene reducing
the affinity of erythromycin for the ribosome (120)]. The risk of
inter-bacterial transfer of antibiotic resistances is insignificant for
lactobacilli displaying intrinsic resistances or acquired resistances
due to chromosomal mutations. In contrast, the potential of
transmissible resistance genes (particularly those associated to
mobile genetic elements) for horizontal spread is high and
this risk deserves special attention because of its connotations
for public health. In this context, several genes responsible
for transmissible antibiotic resistance among lactobacilli have
already been reported [reviewed in (118)].

Tetracycline resistance (tet) genes are the most common
determinants of transmissible resistance in lactobacilli. It has
been recently reported that the use of tetracycline selects the
presence of transmissible genes conferring resistance not only
to tetracycline (tet genes) but, also, to erythromycin (erm genes)
in nursery pigs (121). As a consequence, such genes are widely
spread in intensive pig farms using antibiotic metaphylactic
approaches (122, 123). Presence of tet and erm genes seems to
be relatively frequent among L. reuteri and L. johnsonii isolates
from pork and poultry meat (124, 125), two of the farm sectors
in which the use of antibiotics is particularly high. Sequencing
of the tetM genes from such origin has revealed that there
are almost identical (>99% sequence similarity) to tetM genes
previously identified in human pathogens (Neisseriameningitidis,
Listeria monocytogenes) (124). With respect to lactobacilli, it
is long known that transference of transmissible antibiotic
resistance can occur in different directions: (a) between different
lactobacilli species/strains; (b) from lactobacilli to different
Gram-positive bacteria, including relevant human pathogens
(e.g., Staphylococcus aureus); and (c) from other Gram-positive
bacteria to lactobacilli (126–128). In fact, the prevalence of tet and
erm genes is very high among staphylococci (including S. aureus
and S. epidermidis) isolates in the different steps of the chain of
swine production, which pose a considerable risk for consumers
(129). The presence of antibiotic selective pressure enhances
the transfer of these resistance determinants (130). Use, abuse
or misuse of antibiotics in intensive food production systems
increases the chances of transmission of antibiotic resistant
bacteria from livestock to humans (131–133). In addition, routine
zinc supplementation in the swine diet has also been identified
as a factor contributing to increase and maintain the presence of
tetracycline resistance genes in the porcine gut (134–136).

Although lactobacilli are usually sensitive to β-lactamases and
the blaZ gene has been rarely detected among these microbes
(124), resistance to ampicillin was high among the strains isolated
in this study. Future work will involve genome sequencing of
those strains displaying high phenotypic resistance against this
and other antibiotics and harboring the 3 resistance genes assayed
in this work (tetL, telW, ermB).

Overall our study shows that the replacement of antibiotics
by other microbiota-friendly approaches was feasible and
led to positive microbiological and biochemical shifts in the
enteric environment.
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