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The Phosphatase and tensin homolog (PTEN) gene is one of the most important
tumor suppressor genes, which acts through its unique protein phosphatase and lipid
phosphatase activity. PTEN protein is widely distributed and exhibits complex biological
functions and regulatory modes. It is involved in the regulation of cell morphology,
proliferation, differentiation, adhesion, and migration through a variety of signaling
pathways. The role of PTEN in malignant tumors of the digestive system is well
documented. Recent studies have indicated that PTEN may be closely related to many
other benign processes in digestive organs. Emerging evidence suggests that PTEN is
a potential therapeutic target in the context of several non-neoplastic diseases of the
digestive tract. The recent discovery of PTEN isoforms is expected to help unravel more
biological effects of PTEN in non-neoplastic digestive diseases.

Keywords: PTEN, tumor suppressor, PI3K/AKT pathway, digestive organs, infection, inflammation, fibrosis

INTRODUCTION

Phosphatase and tensin homolog (PTEN) gene, located on chromosome 10q23, was identified
as a tumor suppressor gene approximately 20 years ago (Li et al., 1997). This gene modulates
a wide range of biological processes by acting on both phosphoinositide and polypeptide
substrates via multiple signaling pathways such as phosphatidylinositol 3-kinase (PI3K)/Akt/
mammalian target of rapamycin (mTOR) (Maehama and Dixon, 1998; Manning and Cantley, 2007)

Abbreviations: PTEN, Phosphatase and tensin homolog; PIP3, phosphatidylinositol; PI3K, phosphatidylinositol 3-kinase;
mTOR, mammalian target of rapamycin; PBD, phosphatidylinositol (4,5) P2-binding domain; PIP3, Phosphatidylinositol-
3,4,5- trisphosphate; FAK, focal adhesion kinase 1; IRS1, insulin receptor substrate-1; CREB1, cAMP-responsive element-
binding protein 1; ER, endoplasmic reticulum; IP3Rs, inositol 1,4,5-trisphosphate receptors; PINK1, PTEN-induced putative
kinase protein 1; SALL4, SAL-like protein 4; HDAC, histone deacetylase; EGR1, early growth response 1; PPARγ, peroxisome
proliferators activated receptor γ; miRNA, microRNA; LncRNA, Long non-coding RNAs; ceRNA, complex competing
endogenous RNA; PTENP1, PTEN pseudogene 1; GC, gastric cancer; CRC, colorectal carcinoma; HCC, hepatocelluar
carcinoma; HBV, Hepatitis B virus; HCV, Hepatitis C virus; HBx, HBV X protein; ROS, reactive oxygen species; H. pylori,
Helicobacter pylori; TLR, Toll-like receptor; GSK, glycogen synthase kinase; IECs, intestinal epithelial cells; IBD, inflammatory
bowel disease; IL, interleukin; UC, ulcerative colitis; EECs, enteroendocrine cells; CgA, chromogranin A; 5-ASA, 5-
aminosalicylic acid; AP, acute pancreatitis; SAP, severe acute pancreatitis; TGF, transforming growth factor; BM-MSCs, Bone
marrow mesenchymal stem cells; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; T2DM,
type 2 diabetes mellitus; MBH, mediobasal hypothalamus; OA, Oleic acid; KCs, kupffer cells; HSCs, hepatic stellate cells;
ECM, extracellular matrix; DNMT, DNA methyltransferase; HOTAIR, homeobox transcript antisense RNA; PSCs, pancreatic
stellate cells; Mfn2, mitofusin-2.
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and Ras/Raf/MEK/ERK (Hettinger et al., 2007). In addition,
PTEN also acts through other non-enzymatic mechanisms. The
phosphatase independent activity of PTEN contributes to the
chromosomal stability and double-strand DNA breaks repair
(Milella et al., 2015). Dysregulation of PTEN and its downstream
signaling molecules may lead to abnormal cellular processes
such as aberrant proliferation, abnormal survival, metabolism
disorder, anomalous motility, and carcinogenesis.

Tumor, inflammation, infection, metabolic abnormalities, and
fibrosis are common characteristics of organic diseases of the
digestive system. PTEN mutation, PTEN loss, or its inactivity has
been documented in the context of several cancers of the digestive
tract (Eng, 2003; Bettstetter et al., 2013). However, since PTEN
modulates a variety of biological processes, an increasing number
of studies have investigated the changes in PTEN in the context
of non-neoplastic digestive diseases such as hepatitis, colitides,
pancreatitis, hepatic insulin resistance, and liver fibrosis. These
studies have partially unraveled the potential role of PTEN and its
dual phosphatase activity in non-neoplastic digestive diseases and
the associated underlying mechanisms. In order to characterize
the potential role of PTEN in the treatment of benign diseases, we
reviewed the contemporary literature pertaining to PTEN protein
published in the last decade, and highlight the potential role of
PTEN in non-neoplastic digestive diseases.

STRUCTURE AND ACTIVITY OF PTEN
PROTEIN

PTEN protein consists of 403 amino acids and is encoded by
the PTEN gene located on chromosome 10q23.31 (Li et al.,
1997). Crystallographic analysis conducted in 1999 revealed its
five functional domains, i.e., an N-terminal phosphatidylinositol
(Ptdlns) (4,5) P2-binding domain (PBD), a phosphatase domain,
a C2 lipid or membrane-binding domain, a carboxy-terminal tail,
and a class I PDZ-binding (PDZ-BD) motif (Figure 1; Lee et al.,
1999). The N-terminal domain is the main functional region
of PTEN, which is homologous to tensin and auxilin, and is
responsible for regulating the phosphatase activity by forming
a wide substrate-binding pocket (Maehama and Dixon, 1998;
Walker et al., 2004). The C-terminal domain is responsible for the
activity, stability, and cellular localization of PTEN by regulating
protein-protein interactions (Vazquez et al., 2000; Raftopoulou
et al., 2004).

Phosphorylation of the C-terminal tail regulates the
conformation of PTEN, which can affect the activity and
stability of the PTEN protein. Unlike most proteins, the changes
in PTEN function after phosphorylation may seem contradictory.
Phosphorylation of S370 and cluster Ser380, Thr383, and Ser385
in the tail increases the stability of the protein and renders it
less active (Fragoso and Barata, 2015). However, tail-deficient
in PTEN causes loss of stability and confers phosphatase
activity (Vazquez et al., 2000). This phenomenon has been
shown to be associated with the transformation of closed and
open conformation. The closed conformation is attributed to
C-terminal phosphorylation, which promotes the interaction
between acidic tail and C2 domain, and appears to increase

stability but decrease lipid phosphatase activity via inhibiting
membrane binding of PTEN (Vazquez et al., 2001). In the open
conformation, dephosphorylation of PTEN reverses this change,
and allows PTEN recruitment to the membrane and its binding
to the PDZ domain-containing proteins (Chia et al., 2015).

Two recent studies have suggested PTEN dimerization as a
new working model for the function of PTEN protein (Papa
et al., 2014; Heinrich et al., 2015). The homo-dimeric PTEN
complexes are critical for the lipid phosphatase function of
PTEN and are more active than PTEN monomer in PIP3
dephosphorylation. However, the hetero-dimerization of cancer-
associated PTEN mutants with wildtype PTEN has a dominant
negative effect in cancer (Papa et al., 2014). The underlying
mechanism for this phenomenon was revealed by another study
which found PTEN homo-dimers in vitro. Dephosphorylation
of the PTEN-tail, which confers it a more open conformation,
was shown to allow dimerization and stabilize the homo-dimer
(Heinrich et al., 2015). These findings provide insights into the
cellular function and the molecular mechanism of PTEN activity
regulation, which may provide a novel approach for cancer
prevention and treatment.

BIOLOGICAL FUNCTIONS AND
REGULATION OF PTEN

With dual specific phosphatase activity, PTEN protein acts
on both phosphoinositide and polypeptide substrates.
Phosphatidylinositol (PtdIns)-3,4,5-trisphosphate (PIP3),
a component of the lipid membrane, is considered to be
the main substrate of PTEN (Maehama and Dixon, 1998).
Dephosphorylation of this lipid substrate induces an inhibitory
effect of PTEN on the PI3K-AKT-mTOR signaling pathway
which is involved in cell growth, proliferation, survival, and
metabolism (Manning and Cantley, 2007; Lee et al., 2018).
In addition, PTEN can also cause dephosphorylation of some
protein substrates, including focal adhesion kinase 1 (FAK),
Shc, insulin receptor substrate-1 (IRS1), and cAMP-responsive
element-binding protein 1 (CREB1) (Gu et al., 1999, 2011;
Schneider et al., 2011; Shi et al., 2014). As both FAK and Shc
are involved in integrin signaling, inhibition of their tyrosine
phosphorylation by PTEN suppresses the integrin-mediated cell
migration, which is independent of its effect on the PI3K/AKT
pathway (Schneider et al., 2011; Zhang et al., 2014). Besides,
PTEN selectively dephosphorylates IRS1, a mediator in insulin
signaling, which plays a key role in metabolic diseases (Shi
et al., 2014). Despite the discovery of an increasing number of
polypeptide substrates of PTEN, further studies are required to
characterize the biological roles of the dual phosphatase activity
of the PTEN protein.

In addition to cytoplasm, PTEN is also found in nucleus,
mitochondria, and endoplasmic reticulum (ER). The nuclear
pool of PTEN is generally believed to exert its effects in a lipid
phosphatase-independent way (Lindsay et al., 2006). Nuclear
PTEN has been shown to play a role in DNA repair and
maintenance of genomic stability (Shen et al., 2007). Additionally,
it may also act as a pro-apoptotic factor by regulating cell
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FIGURE 1 | Schematic illustration of the structure of the PTEN protein. PTEN is a tumor suppressor with five functional domains: N-terminal phosphatidylinositol
(Ptdlnsf4, 5) P2-binding domain (PBD), a phosphatase domain, a C2 lipid or membrane-binding domain, a carboxy-terminal tail, and a class I PDZ-binding (PDZ-BD)
motif. The protein function largely depends on its lipid phosphatase and protein phosphatase activity. The C2 domain or C-terminal tail regulates the protein activity
and stability.

cycle via suppressing cyclin D1 activity or by directly binding
to the anaphase-promoting complex (APC/C) E3 ligase (Song
et al., 2011). However, the underlying mechanisms are not well
characterized. Presence of PTEN in mitochondria and ER was
shown to be associated with cell apoptosis (Zhu et al., 2006;
Bononi et al., 2013). ER-localized PTEN was found to enhance
the transfer of calcium (Ca2+) from the ER to mitochondria and
induce apoptosis. In addition, the interaction with inositol 1,4,5-
trisphosphate receptors (IP3Rs) and the related Ca2+ release were
involved in this process (Bononi et al., 2013). Moreover, PTEN-
Long, a membrane permeable lipid phosphatase secreted from
cells, was recently discovered as a variant of PTEN (Hopkins
et al., 2013). It was also found to exhibit tumor suppressor
effect after entering cells. A recent study demonstrated the
localization of PTEN-Long at the outer mitochondrial membrane
where it negatively regulated mitophagy by increasing the
expression of PTEN-induced putative kinase protein 1 (PINK1)
(Wang L. et al., 2018).

Several isoforms of PTEN have been identified in recent years.
PTENα (also termed as PTEN-Long) is the first characterized
isoform of canonical PTEN. It translates from a CUG start
codon, and adds an alternatively translated region (ATR) at the
N-terminus of PTEN (Hopkins et al., 2013). PTENα acts as
a mitochondrial protein in mitochondrial bioenergetics (Wang
L. et al., 2018). Another isoform of PTEN, PTENβ, whose
translation is initiated from an AUU codon upstream of and in-
frame with the AUG initiation sequence for canonical PTEN.
It is mainly distributed in the nucleus and regulates pre-
rRNA synthesis and cellular proliferation (Liang et al., 2017).
PTENε (also termed as PTEN5) is a novel N-terminal-extended
PTEN isoform initiated from the CUG816 codon within the
5′UTR region of PTEN mRNA, which suppresses tumor invasion
and metastasis (Zhang Q. et al., 2021). Interestingly, a recent
study related to PTEN isoforms demonstrated that PTENα and
PTENβ can promote tumorigenesis via recruiting WDR5, but
not regulation of AKT, to promote trimethylation of H3K4 and
induce activation of relative oncogenes (Shen et al., 2019). This
indicates that PTEN gene may act like a double-edged sword in
the tumorigenesis process. Therefore, further studies are required
for in-depth characterization of the role of the PTEN gene.

PTEN expression is regulated by various molecular
mechanisms, including genetic alterations, epigenetic

modifications, transcriptional post-transcriptional regulation,
and post-translational regulation.

As a tumor suppressor gene, genetic loss or mutations
of PTEN have been demonstrated in many primary human
cancers and cancer cell lines (Guldberg et al., 1997; Ying et al.,
2011). Early studies have demonstrated germline mutations of
PTEN gene in PTEN hamartomatous tumor syndrome and
Cowden syndrome; subsequently, more novel mutations have
gradually been discovered in recent years (Liaw et al., 1997;
Seol et al., 2015; Williams et al., 2018). Additionally, epigenetic
modifications (such as DNA methylation and histone acetylation)
may also regulate the expression of PTEN. PTEN loss caused
by aberrant hypermethylation of the DNA promoter region
has been identified in various malignant and benign (non-
tumor) diseases (Mueller et al., 2012; Zhang et al., 2016;
Geybels et al., 2017). Moreover, histone acetylation induced by
the interaction of transcription factor SAL-like protein 4 and
NuRD (a histone deacetylase repressor complex) at the promoter
region can regulate PTEN transcription (Lu et al., 2009). In
addition, inhibition of histone deacetylase (HDAC) has been
shown to suppress the growth and invasion of cancer cells,
which may provide a basis for novel anticancer therapies (Meng
et al., 2016; Qian et al., 2018). Various transcription factors
can upregulate or downregulate the expression of PTEN via
multiple signaling pathways. For instance, p53, early growth
response 1 (EGR1), and peroxisome proliferators activated
receptor γ (PPARγ) can activate PTEN transcription via directly
binding to the promoter region of PTEN (Stambolic et al.,
2001; Lee et al., 2006; Kim et al., 2014); on the contrary, the
ecotropic virus integration site 1 protein homologue (EVI1),
B-lymphoma Mo-MLV insertion region 1 (BMI1) protein,
and Ras/Raf/MEK/ERK pathway were shown to play a role
in suppressing PTEN expression (Song et al., 2009; Yoshimi
et al., 2011; Ciuffreda et al., 2012). Furthermore, at the post-
transcriptional level, PTEN mRNA is regulated by microRNAs
(miRNA; miRNA-21, -32, and -106b) (Wu et al., 2013, 2017c;
Yang et al., 2014) and Long non-coding RNAs (LncRNA;
LncRNA FER1L4, MEG3, and GAS5, etc.) (Qiao and Li, 2016;
Gao et al., 2017; Wang J. et al., 2018). Moreover, some
of the miRNAs and LncRNAs participate in the complex
competing endogenous RNAs (ceRNAs) networks, represented
by the mRNA of PTEN pseudogene 1 (PTENP1) and Versican
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FIGURE 2 | PTEN expression in the pathological process of digestive system diseases. Aberrant PTEN expression is implicated in several diseases of the digestive
system. Gene mutation, translational or post-translational regulation is involved in the pathological process. EACs, esophageal adenocarcinomas; ESCC, esophageal
squamous cell carcinoma; GC, gastric cancer; CRC, colorectal carcinoma; HCC, hepatocellular carcinoma; IBD, inflammatory bowel disease; AP, acute pancreatitis,
NAFLD, non-alcoholic fatty liver disease; HBV, hepatitis B virus; HCV, hepatitis C virus; Hp, helicobacter pylori.

(Lee et al., 2010; Poliseno et al., 2010). In addition, PTEN protein
is regulated by phosphorylation, ubiquitination, sumoylation,
acetylation, and redox regulation at the post-translational level
(Worby and Dixon, 2014). Collectively, these findings illustrate
the complex and diverse mechanisms of PTEN regulation, and
lay the groundwork for therapeutic strategies against PTEN-
associated diseases.

PTEN AND NON-NEOPLASTIC
DIGESTIVE DISEASE

The protein encoded by the PTEN gene is ubiquitous in the
human body, including in the organs of the digestive system. As
a critical tumor suppressor, mutation or deficiency of PTEN gene
contributes to tumorigenesis in the digestive system, including
esophageal carcinoma (Eng, 2003), gastric cancer (GC) (Wadhwa
et al., 2013), colorectal carcinoma (CRC) (Ling et al., 2015),
hepatocellular carcinoma (HCC) (Horie et al., 2004), pancreatic
cancer (Ni et al., 2017), gall bladder cancer (Roa et al., 2015),
and cholangiocarcinoma (Lee et al., 2012). However, studies
conducted in recent years have demonstrated the regulatory
role of PTEN in non-neoplastic diseases of the digestive system
(Figure 2). It is increasingly being acknowledged that the
biological role of PTEN in the pathogenesis of non-neoplastic
digestive diseases may be mediated via mechanisms other
than the dephosphorylation of PIP3 (Figure 3). In particular,
many miRNAs and LncRNAs have been found to regulate the
expression of PTEN in the pathogenesis of digestive system
diseases (Table 1), laying an increasing emphasis on their role in
gene regulation.

PTEN in Infectious Diseases of Gut
Hepatitis B and C Virus Infection
Hepatitis B virus (HBV) and Hepatitis C virus (HCV) are
major causes of viral hepatitis, and contributors to the incidence
of HCC. Hepatitis virus induces dysregulation of hepatocyte
metabolism; in addition, immune evasion of these viruses
contributes to the development of chronic virus infection.
Several studies have indicated the involvement of PTEN in
these processes.

HBV X protein (HBx) is a key regulatory protein among
the four proteins encoded by the HBV genome. Although
HBx does not directly bind to the DNA, it influences the
transcriptional activity of genes through interacting with the
transcription factors or molecules of signaling pathways in host
cells (Park et al., 2020). PI3K/AKT is one of the pathways
activated by HBx, which regulates cell proliferation, cell death,
and survival. Therefore, HBx is believed to play a pivotal role in
the pathogenesis of HCC (Chung et al., 2004). PTEN is a specific
inhibitor in the PI3K/AKT pathway; HBx downregulates PTEN,
which promotes the proliferation and migration of liver cancer
cells (Tu et al., 2019). Studies have identified several mechanisms
by which HBx regulates the PTEN gene, including by influencing
the epigenetic alterations of PTEN gene promoter, upregulating
PTEN-targeted miRNAs (miRNA-21, miR-19a, miR-29a), and
by promoting the production of reactive oxygen species (ROS)
to inactivate PTEN (Ha and Yu, 2010; Kong et al., 2011; Um
et al., 2011; Yu et al., 2016; Hou and Quan, 2017). Due to the
regulation and alteration of the pro-apoptotic ability of PTEN by
HBx, CRISPR/Cas9-mediated p53, and Pten somatic mutation
was shown to accelerate hepatocarcinogenesis in adult HBV
transgenic mice (Liu et al., 2017). In addition, PTEN has also
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FIGURE 3 | The role of dual phosphatase activity of PTEN in non-neoplastic digestive diseases. PTEN acts in regulating a wide spectrum of biological functions. The
above summarizes the biological role of PTEN in the pathogenesis of non-neoplastic digestive diseases via lipid or protein phosphatase activity. HBV, hepatitis B
virus; HCV, hepatitis C virus; Hp, helicobacter pylori; AP, acute pancreatitis; NAFLD, non-alcoholic fatty liver disease; HSC, hepatic stellate cells; PSCs, pancreatic
stellate cells; CgA, chromogranin A; EECs, enteroendocrine cells; PI3K, phosphatidylinositol 3-kinase; FAK, focal adhesion kinase 1; IRS1, insulin receptor
substrate-1.

been considered as a potential prognostic marker in patients
with virus-induced HCC (Khalid et al., 2017). In addition, the
interactions between PTEN polymorphisms and HBV mutations
may help identify individuals who are susceptible to HCC (Du
et al., 2015). HBx and HBV polymerase (HBp) were shown to
enhance PD-L1 expression through PTEN-dependent pathway,
which induces inhibition of T cell response and promotes virus
immune evasion in mice (Sun et al., 2020).

PTEN is also a target pathogenic pathway of hepatitis C virus
core protein. HCV core protein, an important agent related to
HCC, can inhibit PTEN expression and promote virion egress
(Clément et al., 2019). Studies have demonstrated that the dual
phosphatase activity of PTEN has a protective effect against HCV
infection by acting at different stages of its pathogenesis. The
lipid phosphatase activity of PTEN inhibits HCV entry, while
the protein phosphatase activity of PTEN helps decrease HCV
replication through the interaction between domain I of HCV
core and PTEN residues. In addition, HCV infection in turn
increases the lipid phosphatase activity of PTEN (Wu et al.,

2017b). In human hepatocyte-engrafted (MUP-uPA/SCID/Bg)
mice model, PTEN depletion was shown to play an important
role in the initiation of HCV infection-associated HCC (Wang
et al., 2015b). Based on the role of PTEN in the process of
HCV infection, PTEN-Long, a translation isoform of PTEN, may
inhibit HCV replication by interacting with the HCV core protein
(Wu et al., 2017a). Therefore, exogenous administration of PTEN
is a potential therapeutic strategy against viral hepatitis.

Helicobacter pylori Infection
Helicobacter pylori (H. pylori) infection is the main risk factor
for GC. Chronic H. pylori infection contributes to chronic
non-atrophic gastritis, which eventually develops into dysplasia
and ultimately GC. Only a few studies have focused on the
involvement of PTEN in H. pylori infection. GC patients with
H. pylori infection showed significantly decreased expression of
PTEN gene in serum as compared to healthy volunteers; this
suggested a potential role of PTEN gene in GC patients with
H. pylori infection (Ranjbar et al., 2018). A series of studies
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TABLE 1 | The influence of microRNAs and long non-coding RNAs on PTEN in non-neoplastic digestive diseases.

Disease miRNAs or Lnc RNAs Impact on
PTEN

Biological function Reference

Hpatitis B miR-21, miR-19a, miR-29a Inhibition Promote cell proliferation and migration Kong et al., 2011; Yu et al., 2016;
Hou and Quan, 2017

IBD miR-214
miR-26a

miR-374a

Inhibition
Inhibition

Activation

Maintain persistent inflammatory response
Suppress the intestinal inflammatory
response in macrophages
Promote cell apoptosis and intestinal
inflammation

Polytarchou et al., 2015
Zhang Q. et al., 2021

Xiong et al., 2018

AP miR-148a-3p, miR-27a-5p
miR-216a
miR-214-3p

miR-181a-5p

Inhibition
Inhibition
Inhibition

Inhibition

Promote cell necrosis
Promote AP
Exacerbate the hyperlipidemic pancreatitis
with acute renal injury
Alleviate inflammatory respond and cell
apoptosis

Cai et al., 2018; Kong et al., 2019
Zhang et al., 2015
Yan et al., 2020

Li H. Y. et al., 2020

NAFLD miR-146b Activation Decreased the lipid accumulation Alexandrov et al., 2012

Hepatic
insulin
resistance

miR-152
miR-20a-5p
miR-291b-3p

Inhibition
Inhibition
Activation

Promote glycogenesis
Promote glycogenesis
Hyperglycemia and insulin resistance

Wang et al., 2016
Fang et al., 2016
Guo et al., 2017

Hepatic
fibrosis

miR-21, miR-140-3p, miR-141, miR
-1273g-3p, miR-138, miR-181b,
miRNA-23a, miR-23a-5p

lncRNA-p21, lncRNA GAS5, lncRNA
LOC102551149
miR-29a, miR-29b
HOTAIR

Inhibition

Activation

Activation
Inhibition

Suppresse cell apoptosis, promote fibrosis

Suppresse fibrosis

Inhibit HSCs activation
Promote fibrosis

Niu et al., 2016; Yu Q. et al., 2017;
Hao et al., 2018; Wu et al., 2019;
Dong et al., 2019, 2020; Geng
et al., 2020; Liang et al., 2020
Bian et al., 2012; Yang et al., 2017

Yang et al., 2017; Yu F. et al., 2017
Yu F. et al., 2017

Pancreatic
fibrosis

miR-200a
miR-21

Activation
Inhibition

Inhibit PSCs activation and fibrosis
Alleviates ROS-induced activation,
migration, glycolysis of PSCs

Xu et al., 2017
Yan et al., 2018

miRNAs, microRNAs; lincRNA, long non-coding RNAs; IBD, inflammatory bowel disease; AP, acute pancreatitis; NAFLD, non-alcoholic fatty liver disease; HSCs, hepatic
stellate cells; HOTAIR, homeobox transcript antisense RNA; PSCs, Pancreatic stellate cells; ROS, Reactive oxygen species.

investigating the role of PTEN in the pathogenesis of H. pylori
infection yielded interesting findings. First, phosphorylation of
PTEN at residues Ser380/Thr382/383 induced by H. pylori was
found to promote the survival of gastric epithelial cells, since the
phosphorylation of PTEN leads to the loss of phosphatase activity
and activation of the PI3K/AKT pathway (Yang et al., 2015).
Subsequently, PLK1 were found to influence p-PTEN level, which
may be involved in the early stage of H. pylori-induced GC (Xu
et al., 2018). Another study also found that H. pylori can promote
cell invasion via phosphorylation of PTEN and activation of
FAK (Yang et al., 2018). Further studies are required to clarify
the mechanisms of PTEN regulation in H. pylori infection and
H. pylori-induced GC.

Salmonella Infection
Salmonella enterica (Gram-negative enteropathogenic bacteria)
is one of the most common causes of food poisoning. People are
generally susceptible to Salmonella, especially infants and elderly
people; the clinical manifestations depend on the virulence
of the strain and the immune status of the host (Kurtz
et al., 2017). PTEN has been considered vital for Toll-like
receptor (TLR) 5-induced immune and inflammatory responses
in the intestinal epithelial cells (IECs). PTEN deficiency in
IECs can increase the susceptibility to Salmonella infection
(Howe et al., 2019). Besides, when challenged with Salmonella

infection, PTEN was epigenetically suppressed by CUL4B, which
negatively regulates the TLR-triggered signaling and maintains
the anti-inflammatory pathway PI3K-AKT-glycogen synthase
kinase (GSK) 3β. However, overexpression of PTEN caused by
CUL4B deletion contributed to excessive activation of GSK3 and
uncontrolled immune response, which may increase the risk of
septic shock in infected individuals (Song et al., 2021).

SopB is an important modulator of signal transduction with
phosphatase activity in host cells during Salmonella infection.
SopB activates pro-survival kinase Akt, which optimizes bacterial
replication in host, while PTEN can inhibit Akt activation during
Salmonella invasion (Roppenser et al., 2013). These findings
indicate a vital role of PTEN in the process of Salmonella
infection, including in determining the susceptibility to bacterial
invasion and modulating the inflammatory response in host cells.
However, further studies are required to unravel the precise
mechanism of the involvement of PTEN in these processes.

PTEN in Inflammation Disease of Gut
Colitides
Colitides is a generic term used to describe inflammatory diseases
of colon, including inflammatory bowel disease (IBD)–associated
colitis and non-IBD forms of colitis (such as microscopic colitis,
radiation colitis, eosinophilic colitis, and ischemic colitis). PTEN
is believed to play an important role in the inflammation
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associated with collagenous colitis (Norén et al., 2018) and IBD
(Li et al., 2013), as PTEN deficiency has been documented during
this process. Upregulation of interleukin (IL)-6 was shown to
induce STAT3-mediated miR-214 expression in active ulcerative
colitis (UC). miR-214 was shown to activate and amplify the
inflammatory response through a feedback loop mediated by
PTEN and PDZ and LIM domain 2 (PDLIM2) suppression,
and with increased AKT phosphorylation and NF-κB activation
(Polytarchou et al., 2015). A recent study conducted in miR-26a
myeloid-cell-specific overexpression mice showed that miR-26a
attenuates the intestinal inflammatory response in macrophages
by inhibiting the activation of NF-κB/STAT3 and decreasing the
production of IL-6. In addition, PTEN was identified as one of
the potential targets of miR-26a (Zhang W. et al., 2021). The
above findings indicate that PTEN reduction may contribute to
the circuit activation and persistent inflammatory response in UC
and even progression to CRC.

Mutation of gene encoding IL-10 is believed to play a role
in the pathogenesis of early onset UC which is characterized by
severe colitis in infancy and early childhood. IL-10(−/−) mice
were shown to develop spontaneous colitis in the presence of
intestinal microbiota; in addition, disruption or inhibition of
PTEN was found to increase the severity of colitis and influence
colitogenic bacteria in these mice. Due to the impact of PTEN
on important cell functions and TLR signaling, disruption of
PTEN in the intestinal epithelium of IL-10(−/−) mice hastened
the occurrence of severe colitis. Moreover, increased abundance
of Bacteroides species was detected in fecal microbiota of PTEN
loss IL-10(−/−) mice (Im et al., 2014). On the other hand,
inhibition of PTEN function in IL-10(−/−) mice was also
shown to enhance the production of inflammatory factors and
to increase the proportion of colitogenic bacteria (Bacteroides
and Akkermansia) in fecal microbiome (Mitchell et al., 2018).
However, on the contrary, PTEN deletion was found to attenuate
colonic inflammation in IL-10(−/−) mice. Microbial factors
play an essential role in the development of colitis. In a study,
flagellin elicited colonic inflammation in IL-10(−/−) mice.
However, deletion of PTEN was shown to disrupt Mal-TLR5
interaction and diminish the flagellin-promoted inflammatory
responses by impeding Mal localization at the plasma membrane
and preventing Mal-TLR5 interaction (Choi et al., 2013). The
available evidence suggests that PTEN may mediate the microbe-
induced inflammatory immune response in the intestines;
however, the specific regulatory mechanisms are not clear.

IBDs are characterized by increased intestinal permeability,
which is mainly attributable to the impaired integrity of the
tight junctions. Decreased expressions of tight junction-related
genes (such as MAGI3, PTEN, and TJP1) were observed in
the colonic mucosa of patients with IBD (Norén et al., 2017).
These findings support the role of PTEN gene in modulating
the intestinal epithelial barrier function in IBD. In addition,
increase in the enteroendocrine cells (EECs) in mucosa is another
manifestation in IBD patients. Pro-inflammatory cytokines
promote the number of EECs producing chromogranin A (CgA)
along with inactivation of PTEN and increased expression of
AKT and autophagy markers in EECs. However, inhibition
of AKT and autophagy was found to block the increase in

CgA-positive cells (Hernández-Trejo et al., 2016). These findings
suggest that PTEN and downstream AKT signaling pathway as
well as autophagy regulate the differentiation of EECs during
colonic inflammation.

Currently, several drugs that regulate the activity and
expression of PTEN are used in the treatment of IBD. 5-
aminosalicylic acid (5-ASA), an important drug for treatment of
UC, is a potent antioxidant. It can reduce the phosphorylated
and oxidized levels of PTEN protein via inducing PPARγ binding
to the PTEN promoter; this promotes the activation of PTEN
and inhibition of the PI3K/Akt signaling pathway (Managlia
et al., 2013). This ultimately reduces the UC-induced ROS in
the IECs. In addition, fortunellin, which is isolated from the
kumquat fruit, was shown to ameliorate IBD (Vezza et al., 2016).
However, contrary to the effects of 5-ASA, fortunellin suppresses
the expression of PTEN to reduce epithelial cell apoptosis and
ameliorate the symptoms of colitis by targeting miR-374a in rats
(Xiong et al., 2018). Chlorogenic acid, an abundant polyphenol
in medicinal plants, has been demon- strated to have anti-
inflammatory property. Upregulation of PTEN and suppression
of Akt and STAT3 expression has been detected in dextran sulfate
sodium-induced UC mice model (Vukelić et al., 2018). Thus,
regulation of PTEN is a potential therapeutic target for treatment
of intestinal inflammation.

Acute Pancreatitis
Acute pancreatitis (AP) is a necro-inflammatory disease. Severe
acute pancreatitis (SAP) is associated with multiple organ
insufficiency and high mortality. A series of studies have focused
on the role of miRNAs in AP progression and treatment
via regulating PTEN. miR-148a-3p and miR-27a-5p, which are
highly expressed in AP, were shown to induce acinar cell
apoptosis through targeting PTEN (Cai et al., 2018; Kong et al.,
2019). In a mouse model of AP and in rat pancreatic acinar cells,
transforming growth factor (TGF)-β was shown to upregulate
miR-216a, which inhibited the expressions of PTEN and Smad7
and promoted AP via the PI3K/Akt and TGF-β feedback pathway
(Zhang et al., 2015). SAP usually leads to multiple organ
dysfunction, especially renal damage. Overexpression of miR-
214-3p in a rat model of hyperlipidemic pancreatitis was shown
to inhibit PTEN expression and up-regulate the level of P-Akt
in kidneys to exacerbate hyperlipidemic pancreatitis with acute
renal injury (Yan et al., 2020).

Bone marrow mesenchymal stem cells (BM-MSCs) have an
anti-inflammatory effect and showed a protective effect in SAP
(Zhao et al., 2016). miR-181a-5p secreted by BM-MSCs reduced
the level of angiopoietin, IL-1β, IL-6, and TNF-α, and promoted
the expressions of IL-4 and IL-10 to alleviate inflammatory
response and cell apoptosis by targeting the PTEN/Akt/TGF-
β1pathway (Li H. Y. et al., 2020). Rosiglitazone is widely used
for the treatment of diabetes as it increases insulin sensitivity.
In recent years, several studies have demonstrated the effects
of rosiglitazone on inflammatory response and cell metabolism
(Ji et al., 2018). Rosiglitazone was shown to prevent AP by
downregulating miR-26a, inhibiting PTEN degradation, and
blocking the PI3K/AKT signaling pathway in AP rats (Chen et al.,
2019). Thus, an increasing body of evidence has demonstrated
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the important role of the interaction between miRNAs and PTEN
in the context of AP, identifying novel potential therapeutic
targets for SAP.

PTEN in Metabolic Abnormalities of
Digestive Organs
Non-alcoholic Fatty Liver Disease
Non-alcoholic fatty liver disease (NAFLD) is one of the most
common chronic liver diseases. It is associated with increased
risk of type 2 diabetes and cardiovascular diseases (Musso et al.,
2011). The term NAFLD encompasses a spectrum of fatty liver
diseases including simple steatosis, non-alcoholic steatohepatitis
(NASH), and NASH-related fibrosis (Kleiner and Makhlouf,
2016). Different from alcoholic liver disease, patients with
NAFLD exhibit decreased expression of PTEN in liver tissues;
in addition, the degree of downregulation is associated with the
percentage of steatosis (Sanchez-Pareja et al., 2016). Furthermore,
in mice models, long-term exposure to high-fat diet decreased the
PTEN expression in liver and led to mild-to-moderate NAFLD
(Nalloor et al., 2017). PTEN deficiency is believed to accelerate
the development of NAFLD (Jeong et al., 2018). Knock-down of
PTEN in rat liver via CRISPR/Cas-based hydrodynamic injection
of pX330-Pten plasmid has been used to construct rat model of
NAFLD (Yu Q. et al., 2017).

Hypoxia is one of the factors that aggravate the NAFLD
phenotype with increased lipogenesis and inflammation in
PTEN-deficient mouse (Byrne, 2009). Another study reported
the involvement of spleen in the pathogenesis of NAFLD.
Splenectomy was shown to accelerate hepatic steatosis and to
increase serum lipid levels through down regulating hepatic
PTEN expression and promoting the ratio of pAkt/Akt (Wang
et al., 2015a). On the contrary, PTEN upregulation was shown
to alleviate NASH. Since miR-146b directly suppresses the
IL-1 receptor-associated kinase 1 and tumor necrosis factor
receptor-associated factor 6, the downstream molecules NF-
κB and PTEN were down and up regulated, and decreased
lipid accumulation in the liver cells (Jiang et al., 2015). The
above results indicate that PTEN is a potential target for
treatment of NAFLD.

Hepatic Insulin Resistance
Glucose homeostasis is achieved by balancing pancreatic insulin
secretion with intake or secretion of glucose. Hepatic insulin
resistance is defined as the impaired ability of hepatocytes
to respond to insulin, which contributes to the progression
of type 2 diabetes mellitus (T2DM) and metabolic syndrome
(Leclercq et al., 2007). Binding of insulin with the insulin
receptor induces tyrosine phosphorylation of insulin receptor
substrates (IRS1/2). This process enhances the PIP2 to yield
PIP3 via PI3K, which can be inhibited by PTEN. PIP3
contributes to membrane localization of PDK1 and Akt1,
and induces Akt1 phosphorylation resulting in glucose uptake
and utilization. A recent study showed that phosphorylating
IRS-1 at Ser 307 can lead to inhibition of phosphorylation
of Akt and GSK-3β and reverse the insulin resistance in
HepG2 cells (Malik et al., 2019). Further study revealed the

mechanisms by which endosomes activate the hepatic insulin-
evoked Akt signaling pathway. The results demonstrated that
the binding of IRS 1 and 2 (IRS1/2) and the endosomal
insulin receptor (INSR) can promote IRS1/2 phosphorylation
and initiate downstream Akt2/GSK-3β and FoxO1 signaling in
the liver (Zhang et al., 2020).

Owing to the role of PI3K/Akt signaling in insulin function
and glucose metabolism, increased expression of PTEN is
believed to promote insulin resistance in liver (Alexandrov
et al., 2012; Zuo et al., 2019). A series of studies have
revealed aberrant expression of microRNAs associated with
insulin resistance through regulating PTEN directly or indirectly.
miR-152, which directly targets PTEN expression, was shown
to be downregulated in the liver of high fat diet-fed mice,
which resulted in increased expression of PTEN and subsequent
impaired glycogenesis as well as hepatic insulin resistance. The
AKT/GSK pathway was found to be involved in this process
(Wang et al., 2016). In addition, miR-20a-5p suppresses p63
and in turn binds to p53, diminishing PTEN expression and
participates in hepatic glycogen synthesis by activating AKT and
GSK (Fang et al., 2016). However, miR-291b-3p augments PTEN
expression and impairs AKT activation by targeting p65, leading
to hyperglycemia and hepatic insulin resistance (Guo et al., 2017).
A recent study investigated the molecular mechanism of PTEN
regulation in balancing insulin action via an oxide transport chain
NSAPP. NADPH oxidase-4 (NOX4), a part of insulin signaling
NSAPP, generates superoxide (O2–) after being stimulated by
insulin; NOX4 combines with superoxide dismutase-3 to transfer
O2– converting it to hydrogen peroxide. Finally, aquaporin-
3 transports H2O2 across the plasma membrane to inactivate
PTEN. Thus, disruption of any molecule in the NSAPP chain
may lead to persistent PTEN activation and imbalanced insulin
action (Wu et al., 2020). In addition to liver, muscle, and adipose
tissue, brain has been identified as a new target for insulin and
a site for glucose metabolism. Insulin acts on the mediobasal
hypothalamus (MBH) to improve the glycometabolism through
PI3K activation. In addition, inhibition of PTEN activity in MBH
was shown to decrease food intake and weight gain, and also
regulate liver insulin resistant independently in high-fat-fed rats
(Sumita et al., 2014).

HCV infection was shown to be a risk factor for insulin
resistance and T2DM. Owing to the close relationship between
viral hepatitis and NAFLD, steatosis is one of the characteristics
of HCV infection. HCV genotype 3a core protein was shown
to block PTEN translation via miRNA-dependent mechanism.
The diminished expression of PTEN in turn led to reduced
expression of IRS1 and formation of large lipid droplets (Clément
et al., 2011). Similarly, upregulation of PTEN expression was
shown to promote insulin sensitivity and reduce the release of
proinflammatory factors in mice liver infected with HCV core
protein (Jia et al., 2018). However, other studies indicated that
liver steatosis is not always associated with insulin sensitivity
(Matsumoto et al., 2006; Wu et al., 2012). Oleic acid (OA)
was shown to induce hepatic steatosis but with normal insulin
sensitivity; this was attributable to activation of the G protein-
coupled receptor 40 (GPR40)-phospholipase C (PLC)-calcium
pathway by OA and upregulation of PPARδ. PPARδ further
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reduced the expression of PTEN to enhance insulin sensitivity in
hepatic steatosis.

PTEN in Digestive Organ Fibrosis
Hepatic Fibrosis
Hepatic fibrosis, a prominent pathological feature of chronic
liver disease, leads to liver cirrhosis, liver failure, and hepatic
carcinogenesis. Activation of Kupffer cells (KCs) and hepatic
stellate cells (HSCs) plays a pivotal role in this pathogenesis.
A growing body of evidence supports the link between PTEN and
hepatic fibrosis.

KCs refer to a type of tissue macrophages resident in
liver. In a CCl4-induced mouse model of liver fibrosis,
KCs showed mixed induction of hepatic classical (M1) and
alternative (M2) macrophage markers. PTEN regulates the
activation and polarization of M2 macrophages by inhibiting the
PI3K/Akt/STAT6 signaling pathway to counteract liver injury
(Cheng et al., 2017).

Deposition of extracellular matrix (ECM) caused by the
activation of HSCs is a key process in the development of hepatic
fibrosis. Hence, identification of potential targets to inhibit the
activation of HSCs is a potential strategy for prevention and
treatment of hepatic fibrosis. Several recent studies have focused
on the role of regulatory non-coding RNAs, such as miRNAs and
long intergenic non-coding RNAs (lincRNAs) in the activation
of HSCs by affecting PTEN. MiR-21 (Hao et al., 2018), -140-
3p (Wu et al., 2019), -141 (Liang et al., 2020), and -1273g-3p
(Niu et al., 2016) have been shown to be negative regulators of
PTEN, which lead to HSCs activation, cell apoptosis inhibition,
and fibrosis formation through regulating the PI3K/AKT or
AKT/mTOR pathway. Additionally, Dicer, an enzyme with
endonuclease activity, is involved in cutting precursor miRNAs
to produce functional forms. Among several miRNAs affected
by dicer, miR-138, which targets PTEN, can be downregulated
most significantly, resulting in altered collagen synthesis in HSCs
(Yu et al., 2014). LincRNAs have also been shown to play a
pivotal role in the regulation of biological behavior of HSCs and
liver fibrosis. Since PTEN is the target of miR-181b, lincRNA-
p21 promotes PTEN expression, inhibits HSCs activation and
ECM deposition through competitive binding to miR-181b (Yu
et al., 2014; Geng et al., 2020). Other studies have shown that
lncRNA GAS5 (Dong et al., 2019) and lncRNA LOC102551149
(Dong et al., 2020) can decrease the expressions of miRNA-23a
and miR-23a-5p, respectively, increase the level of PTEN, and
suppress liver fibrosis via acting on the PI3K/Akt/mTOR/Snail
signaling pathway.

PTEN expression is also regulated at the epigenetic level.
DNA methyltransferase (DNMT) 1 mediated hypermethylation
of PTEN promoter and loss of PTEN expression were shown to
induce the activation of HSCs by influencing the PI3K/AKT and
ERK pathways (Bian et al., 2012). In addition, miR-29a has been
shown to decrease the expressions of DNMT1 and DNMT3b,
reduce the methylation of PTEN, and inhibit the activation
of HSCs (Yang et al., 2017). Hence, as promoters of miR-
29a expression, curcumin (Zheng et al., 2014) and adiponectin
(Kumar et al., 2018) can suppress the activation of HSCs and

inhibit liver fibrosis by decreasing the methylation of PTEN
CpG. In another study, homeobox transcript antisense RNA
(HOTAIR), a lincRNA associated with attenuation of miR-29b’s
epigenetic regulation and downregulation of PTEN expression
through sponging miR-29b, promoted the development of liver
fibrosis in CCl4 treated mice (Yu Q. et al., 2017).

The above findings strongly suggest a role of PTEN
in inhibiting hepatic fibrosis. Administration of adenovirus
encoding PTEN was shown to decrease collagen deposition in
a rat model of liver fibrosis (Xie et al., 2017). This indicated
that gene therapy using adenovirus-mediated PTEN is a potential
novel therapeutic strategy for liver fibrosis.

Pancreatic Fibrosis
Pancreatic fibrosis is a key pathological finding in several
pancreatic diseases including chronic pancreatitis, autoimmune
pancreatitis, and cystic fibrosis of the pancreas. Activation of
pancreatic stellate cells (PSCs) is a key step in the initiation
of pancreatic fibrosis. PTEN has recently been recognized as a
potential regulatory target for ameliorating pancreatic fibrosis.
PTEN protein exhibits dual phosphatase activity. The wildtype
PTEN was shown to be more effective than mutant (G129E)
PTEN (which only has protein phosphatase activity) in inhibiting
the proliferation and migration of PSCs and collagen synthesis
(Zhang et al., 2018). PTEN was shown to regulate cell cycle
by affecting p27Kip1 and cyclinD1 in activated PSCs; this
indicates a potential role of nuclear PTEN in the activation
of PSCs. The activity of cyclin D1 is required for cell cycle
G1/S transition. PTEN can negatively regulate the cell cycle by
suppressing cyclin D1in PSCs, which is consistent with lung
fibroblasts (Geng et al., 2016) and hepatic stellate cells (An et al.,
2016). The similar suppression ability of wildtype and mutant
(G129E) suggests that PTEN mainly suppresses cyclin D1 via its
protein phosphatase activity in PSCs. However, p27Kip1, which
specifically binds to CDK-cyclin complexes to initiate cell cycle
arrest, was upregulated by PTEN (Zhang et al., 2018). The role
of PTEN in regulating cell cycle seems to be similar in different
pro-fibrotic cell types. Besides, the protein expressions of BAX
and Bcl-2 were up- and down-regulated, respectively, by PTEN-
induced apoptosis of PSCs; thus, further studies are required to
identify the step where mito-PTEN or the cellular localization
changes of PTEN are involved in this process. In another study,
miR-200a promoted the expression of PTEN and attenuated the
TGF-β1-induced activation of PSCs and deposition of ECM in rat
(Xu et al., 2017).

Some recent studies have shown that autophagy leads to
the activation of PSCs (Xue et al., 2017; Li Z. et al., 2020).
As a negative regulator of the PI3K-AKT-mTOR signaling
pathway, PTEN is believed to play an important role in
autophagy. However, the role of PTEN in regulating mytophagy
during activation of PSCs and the underlying mechanisms are
largely unknown. A study revealed that PTEN inhibition can
promote the expression of Mitofusin-2 (Mfn2) and improve
mitophagic flux via AMP-activated protein kinase (AMPK)-
cAMP-response element-binding protein (CREB) signaling (Li P.
et al., 2020). Phosphorylation of Mfn2 has been shown
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to dissociate mitochondria from ER, inducing initiation of
mitophagy. Intriguingly, PTEN and Mfn2 are both localized at
the ER-mitochondrial contact site (de Brito and Scorrano, 2008;
Bononi et al., 2013). Thus, further studies should assess whether
the interaction between PTEN and Mfn2 at ER-mitochondrial
contact plays a vital role in the activation of PSCs.

Activated PSCs are also key precursor cells for cancer-
associated fibroblasts and produce a microenvironment that
enhances malignancy in pancreatic cancer. Silencing of miR-
21, which targets PTEN, was shown to alleviate ROS-induced
activation, migration, and glycolysis of PSCs and to inhibit
pancreatic cancer cells simultaneously (Yan et al., 2018). In
pancreatic ductal adenocarcinoma (PDAC) stroma, blocking the
Hedgehog signaling in stromal fibroblasts induced proliferation
of tumor cells, which was caused by PTEN degradation and
AKT activation. Therefore, decreased stromal PTEN is associated
with reduced survival in PDAC patients (Pitarresi et al.,
2018). The above results indicate the crucial role of PTEN in
pancreatic fibrosis. Further studies are required to unravel the
underlying mechanisms.

CONCLUSION AND PERSPECTIVES

It has been recognized that subtle variations in PTEN gene, PTEN
expression, or PTEN protein level have enormous consequences
in terms of susceptibility to digestive system cancers. Advances
in biotechnology have helped enhance our understanding of the
biological functions of PTEN. An increasing body of evidence
indicates that PTEN loss or inactivity is one of the major causes
of cellular dysfunction in a broad spectrum of non-neoplastic
digestive diseases, such as infection, inflammation, metabolic
abnormalities, and fibrosis. Though these diseases seem to be
benign, their long-term existence or repeated occurrence may
trigger carcinogenesis. Hence, early alterations in PTEN and the
degree of these changes in non-neoplastic diseases may warn
against occurrence of cancer.

Along with the discovery of canonical and non-canonical
PTEN, multiple sites of cellular localization and various
molecular interactions of this protein have been identified.
However, the difference of PTEN cellular localization and the
shuttling process of PTEN between cytosol and nucleus during
the development of non-neoplastic digestive diseases is not well

characterized. Especially, PTEN-Long can be secreted from cells
and taken up by other cells; its localization in mitochondria
has been found to suppress mitophagy in central nervous
system diseases and kidney inflammation. However, the role
and mechanism of PTEN-Long and the effect of the changes
in its cellular localization on the development of non-neoplastic
digestive diseases is not well understood. Hence, the molecular
mechanisms for PTEN in the mitochondria and the nucleus
in the context of non-neoplastic digestive diseases should be
further investigated.

Clinical trials of PTEN-targeted therapies have been
conducted in patients with cancer (Bang et al., 2019) and
Alzheimer’s disease (Mohamed et al., 2019). Recent years have
witnessed rapid advances in gene therapy and its application
in clinical settings (Dunbar et al., 2018). In particular, the
CRISPR/Cas9 gene-editing technology has provided researchers
with revolutionary tools for gene therapy. However, gene
therapies targeting PTEN are still in the animal experiment
stage. Due to the difference between the in vivo and in vitro
environment, and the discrepancy between species, the results
obtained from the cell or animal models have some inherent
limitations. However, no clinical trials involving PTEN targeting
have been conducted in patients with non-neoplastic digestive
diseases. As PTEN is a potential therapeutic target in the
context of several benign diseases of the digestive system,
more work is required to unravel the related molecular
mechanisms. Translation of research results into clinical
application needs more time.
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