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Abstract
Background Identification of variable epidermal growth factor receptor (EGFR) gene mutations in non-small cell lung can-
cer (NSCLC) is important for the selection of appropriate targeted therapies. This meta-analysis was conducted to provide 
a worldwide overview of EGFR mutation and submutation (specifically exon 19 deletions, exon 21 L858R substitutions, 
and others) prevalence, and identify important covariates that influence EGFR mutation status in patients with advanced 
NSCLC to address this clinical data gap.
Methods Embase® and  MEDLINE® in Ovid were searched for studies published between 2004 and 2019 with cohorts of 
 ≥ 50 adults with EGFR mutations, focusing on stage III/IV NSCLC (≤ 20% of patients with stage I/II NSCLC). Linear 
mixed-effects models were fitted to EGFR mutation endpoints using logistic transformation (logit), assuming a binomial 
distribution. The model included terms for an intercept reflecting European studies and further additive terms for other 
continents. EGFR submutations examined were exon 19 deletions, exon 21 L858R substitutions, and others.
Results Of 3969 abstracts screened, 57 studies were included in the overall EGFR mutation analysis and 74 were included 
in the submutation analysis relative to the overall EGFR mutation population (Europe, n = 12; Asia, n = 51; North America,  
n = 5; Central America, n = 1; South America, n = 1; Oceania, n = 1; Global, n = 3). The final overall EGFR mutations 
model estimated Asian and European prevalence of 49.1% and 12.8%, respectively, and included an additive covariate for 
the proportion of male patients in a study. There were no significant covariates in the submutation analyses. Most submu-
tations were actionable: exon 19 deletions (49.2% [Asia]; 48.4% [Europe]); exon 21 L858R substitutions (41.1% [Asia]; 
29.9% [Europe]).
Conclusions Although EGFR mutation prevalence was higher in Asian than Western countries, data support worldwide 
testing for EGFR overall and submutations to inform appropriate targeted treatment decisions.
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Key Points 

Testing for EGFR mutations is important for the selec-
tion of appropriate therapy.

Herein, EGFR overall and actionable submutation preva-
lence was high, with regional differences.

These data support testing for EGFR gene mutations to 
inform treatment decisions.

1 Introduction

Lung cancer, of which the non-small cell type accounts for 
almost 85% of cases, is the most commonly diagnosed can-
cer and the leading cause of cancer-related deaths world-
wide [1, 2]. Overall, it was predicted that in 2018 (the year 
for which the latest statistics are available), there would be 
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 2.1 million new diagnoses of lung cancer and 1.8 million 
associated deaths [1]. Not all cases of non-small cell lung 
cancer (NSCLC) are created equal, and NSCLC can be 
further classified on the basis of histology as adenocarci-
noma, which makes up about 40% of cases [3], squamous 
cell carcinoma, and large cell type, among other rare types 
[4]. Prognosis is primarily linked to the stage of disease, 
with the highest 5-year survival (61%) in those diagnosed 
with localized disease, which accounts for only about 30% 
of adenocarcinoma cases at diagnosis, falling to only 6% in 
those with distant metastatic disease, which encompasses 
about 50% of cases [5, 6]. In addition, a variety of tumor-
specific genomic abnormalities have been identified that pro-
vide insight into prognosis and predict response to specific 
targeted therapies, particularly for adenocarcinoma [7].

The epidermal growth factor receptor (EGFR) is a trans-
membrane protein that serves as a tyrosine kinase receptor 
for a variety of ligands involved in regulating cell prolifera-
tion, differentiation, and survival [8]. Mutations in EGFR 
were the first targetable alterations discovered in lung can-
cer and are among the most common driver mutations in 
NSCLC [9]. Before the introduction of targeted therapies, 
NSCLC with overexpression of EGFR was associated with 
a greater risk of metastasis, poor tumor differentiation, and 
a high rate of tumor growth [8, 10]. The first drugs that 
targeted EGFR were approved without a complete under-
standing of the genomic mutations associated with EGFR 
positivity. These tyrosine kinase inhibitors (TKIs) func-
tion by competitively inhibiting the binding of adenosine 
triphosphate to the active site of the EGFR kinase. Since 
then, mutations have been identified that have been shown to 
be associated with sensitivity to EGFR TKIs, with the most 
common being in-frame deletions of exon 19 and L858R 
substitutions in exon 21 [11]. Tumor genotyping is now 
considered to be essential to guide treatment decisions for 
patients with NSCLC, and EGFR mutations are now listed 
among several mutations that should be routinely screened 
in patients with lung cancer with an adenocarcinoma compo-
nent [12, 13]. Newer non-invasive analytical options, such as 
the analysis of circulating tumor DNA, offer high specificity 
as well as the testing of patients for whom biopsy sampling 
is not feasible [13].

Patients with advanced (regional and distant) disease, 
which totals 70% of cases, have few therapeutic options 
[5]. Historically, the standard of care has been systemic 
therapy involving platinum-based regimens; however, an 
overall survival of less than 2 years is associated with this 
modality in patients with advanced NSCLC [14, 15]. Clini-
cal trial results have supported the advances in the genom-
ics, showing significantly higher response rates and longer 
progression-free survival with EGFR TKIs compared with 
chemotherapy in patients whose tumors harbored activat-
ing mutations in EGFR, prompting the approval of these 

agents for first-line treatment of patients with EGFR-positive 
NSCLC and universal testing of tumors for EGFR muta-
tions [16, 17]. As confirmed in clinical studies, epidemio-
logic and retrospective database investigations have found 
that testing for genetic mutations and the use of appropriate 
targeted therapies have led to better therapeutic outcomes 
in advanced NSCLC [18, 19]. Thus, the identification of 
geographically different EGFR gene mutation patterns in 
NSCLC is important for the selection of appropriate tar-
geted therapies. However, current studies give an incom-
plete picture of regional differences in EGFR mutation and 
submutation prevalence. This meta-analysis was conducted 
to provide a robust and comprehensive overview of EGFR 
mutation and submutation (specifically exon 19 deletions, 
exon 21 L858R substitutions, and others) prevalence, and 
identify important covariates that influence EGFR muta-
tion status in patients with advanced NSCLC worldwide to 
address this clinical data gap.

2  Materials and Methods

This systematic review and meta-analysis abided by the Pre-
ferred Reporting Items for Systematic Reviews and Meta-
Analysis (PRISMA) statement guidelines [20]. A predefined 
protocol was followed.

2.1  Criteria for Study Inclusion

Studies included in this meta-analysis comprised phase II 
and III randomized controlled trials, real-world datasets, 
health record datasets, cohort studies, case-control studies, 
and cross-sectional studies. Case reports, preclinical studies, 
opinion pieces, letters, other systematic reviews, and phase I  
randomized controlled trials were excluded. Studies must 
have enrolled ≥ 50 adult patients with advanced NSCLC  
(stage IIIB/IV; locally [T3–T4] and/or regionally [N2–N3] 
advanced or distant metastatic [M1] disease [12, 21]) who tested 
positive for an EGFR mutation; up to 20% of patients could 
be stage I/II was added as an allowance after an initial search.  
Studies that did not explicitly state the stage were included 
if there were other indications suggesting that patients with 
advanced/metastasized disease were almost exclusively enrolled.

Studies must have had EGFR mutational data avail-
able, with clear distinctions between exon 19 deletions,  
exon 21 L858R substitutions, and other submutations. Stud-
ies where mutational analyses were performed on tissue 
were included, but studies in which only test results from 
blood or malignant pleural effusion were provided were 
excluded, as were studies that did not include patients with 
adenocarcinoma or if the study specifically looked at the 
T790M resistance mutation in patients who had undergone 
TKI therapy.
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2.2  Search Strategy

Embase® and  MEDLINE® in Ovid were searched for studies 
published between 2004 and 2019. A title and abstract screen 
was performed independently by a pair of the authors (JB, 
MM). An additional screen was performed by two review-
ers (JB, AK), with disagreements resolved by consensus. 
Duplicates were removed, and then a full-text screen was 
performed by one of the authors (AK), with disagreements 
resolved by consensus (AK, JB, and MM).

2.3  Data Synthesis

Study-level EGFR mutation endpoints (All EGFR, exon 19 
deletions, and exon 21 L858R substitutions) reported as per-
centages were converted into binomial probabilities prior to 
the meta-analysis. Missing study-level mutation counts were 
converted from percentages and vice versa. Where there was 
no study-level mutation information, baseline arm values 
were used to calculate study-level information. Covariate 
values were converted in a similar manner, with weighted 
averages employed for mean age. Where required, All EGFR 
mutation percentages were calculated using the number of 
patients evaluated for EGFR mutations as the denominator. 
Submutation percentages were calculated using the number 
of patients with any EGFR mutation as the denominator.

Associated EGFR mutation standard errors, used to 
weight each study, were derived using the log-odds approxi-
mation where “p” was the probability of EGFR mutation and 
“n” was either the number of tested subjects in the study (for 
the All EGFR analysis) or the number of patients with All 
EGFR mutations (for the submutation analyses).

Linear mixed-effects models were fitted to EGFR muta-
tion endpoints using logistic transformation (logit) and 
assuming a binomial distribution (EGFR mutation ~ bino-
mial [ni, pi], where ni is the number of tested subjects in the 
study or the number with All EGFR mutations depending on 
the endpoint and pi is the probability of the specific EGFR 
mutation endpoint in the study). The model included terms 
for an intercept reflecting European studies, further additive 
terms  C1i–C6i for other study continents (categorical = 0 
or 1), a between-trial random effect (ηi ∼ N[0, τ2]), and a 
residual random error term (εi ∼ N[0, σ2/ni]), where i is the 
study and θ is the model estimate:

SE ≈

√

1

np
+

1

n(1 − p)

Logit
(

pij
)

=intercept + �1 ∗ C1i + �2 ∗ C2i + �3 ∗ C3i

+ �4 ∗ C4i + �5 ∗ C5i + �6 ∗ C6i + �i + �i

Five potential covariates (age, percent male, percent Cau-
casian, percent adenocarcinoma, and percent stage I/II) were 
assessed visually for their relationship to the response. Only 
covariates with values for at least 70% of the studies and the 
majority of those values covering more than one level were 
included. Missing covariates were imputed as median per-
centages. Three covariates (age, percent male, and percent 
adenocarcinoma) were tested as additive terms in the model, 
each added as a single term. The covariates were centered on 
the mean for the logistic regression model; therefore, model 
estimates were assessed at the mean value of the covariate. 
Analysis was conducted in R [22], with the lme4 package 
[23], and figures produced using the package ggplot2 [24].

3  Results

3.1  Study Identification and Selection

Upon the initial title and abstract screen, 3969 potential stud-
ies were identified, of which 2974 were eliminated because 
they were duplicates or it was clear that they did not meet 
the prespecified criteria upon visual review. Of the remain-
ing 995 studies reviewed in more detail, 914 were excluded 
because they did not meet inclusion criteria. Data extraction 
of the remaining 81 studies eliminated an additional 11 stud-
ies, including two studies that did not differentiate between 
exon 19 deletions and exon 21 L858R substitutions, four 
that did not examine any rare mutations, one that enrolled  
< 50 patients with an EGFR mutation, one that had only 
malignant pleural effusion specimens, and three that included 
> 20% of patients with stage I/II disease. Five additional 
studies were added: one that was not listed in the primary 
literature search and found by chance, and four that were 
initially incorrectly excluded. This left 75 studies, of which 
one had submutation population overlap that did not allow 
for individual percentages of patients with each submutation 
to be calculated and was therefore excluded. Of the final  
74 studies that were included, 17 comprised populations 
that were non-representative of the typical overall NSCLC 
population (e.g., because of specific selection criteria) and 
were removed from the All EGFR mutation analysis, leaving  
57 studies. The selection process of studies is shown in 
Fig. 1.

3.2  Characteristics of the Study Populations

The 74 studies enrolled a total of 59,707 patients who were 
tested for EGFR mutations, with 16,746 patients in the 
European studies, 37,594 patients from Asia, 3332 patients 
from North America, and 1298 patients from more than one 
global region, which encompassed multiple regions. There 
was a paucity of data from some continents. No South 
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American studies were included in the All EGFR mutation 
analysis, and the one study included in the submutation 
analysis had only 72 patients. Only one study was identified 
from central America (Mexico), encompassing 165 tested 
patients, and one study from Oceania (New Zealand) of  
500 tested patients.

The unweighted mean age across all studies where 
age was recorded ranged from 53.0 to 71.4 years, with 
25.0–75.1% male and 40.4–100% of patients having adeno-
carcinoma. Table 1 provides a summary of all of the studies 
included in this analysis [25–98].

3.3  All EGFR Mutation Analysis

The final model for the All EGFR mutation analysis included 
one covariate term for percentage of male patients (at the 
0.001% level). The percentage of adenocarcinomas was 
investigated in the model as an additive covariate but was not 
statistically significant, and thus was not included in the final 
model. Estimates for the prevalence of All EGFR mutations 
ranged from 11.9% (95% confidence interval [CI] 6.7–20.5) 
for Global to 49.1% (95% CI 46.5–51.7) for Asia (Fig. 2). 
The model was a good fit for the data as evidenced by the 
minimal difference between observed values and predicted 
estimates (Electronic Supplementary Material [ESM]). An 
informal assessment of the effect of study percentage of 
male patients as a covariate found that as the percentage of 

male patients increased, the percentage of All EGFR muta-
tions decreased for all continents (Table 2).

3.4  Exon 19 Deletions

There were no significant covariates. Estimates for the 
prevalence of the exon 19 deletion submutation, which were 
relative to the overall EGFR mutation population, ranged 
from 40.3% (95% CI 28.1–53.9) for Oceania to 66.8%  
(95% CI 51.7–79.0) for South America (Fig. 3). The CIs for 
the model estimates were not as precise as those for the All 
EGFR mutation model. This was because the study popula-
tions were smaller for this analysis, as only the number of 
patients with EGFR mutations was included (ESM).

3.5  Exon 21 L858R Substitutions

Similar to the exon 19 deletion analysis, there were no signif-
icant covariates for the exon 21 L858R substitution analysis, 
thus the base model was the final model. Estimates for the 
prevalence of the exon 21 L858R substitutions, which were 
relative to the overall EGFR mutation population, ranged 
from 27.7% (95% CI 17.3–41.2) for South America to 41.1% 
(95% CI 39.6–42.7) for Asia (Fig. 4). The CIs for the model 
estimates were not as precise as those for the All EGFR 
mutation model because the study populations were smaller 
for this analysis as only the number of patients with EGFR 
mutations was included (ESM).

Fig. 1  Flow diagram of the 
selection of studies included in 
this meta-analysis. EGFR epi-
dermal growth factor receptor
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Abstracts identified:
3969 

Assessed for extraction: 995

Studies added: 5
Not in initial literature search: 1
Initially incorrectly excluded: 4

Extracted: 81

Curated data file: 75 studies

Final data file: 74 studies
•  Total EGFR mutation data: 57
•  Submutation data: 74

1 unable to calculate
percentages due to
population overlap

11 did not meet inclusion
criteria on second review

914 did not meet inclusion
criteria on first review

Excluded

2974 duplicates or did not
meet the prespecified criteria
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Table 1  Characteristics of included studies

Study 
number

Region No. of 
patients 
tested for 
EGFR

Mean age, 
years

Male, % Adenocarci-
noma, %

All EGFR 
mutation, %

EGFR 
exon 19 
dele-
tions, %a

Exon 21 
L858R substi-
tutions, %a

Other 
submuta-
tions, %a

References

1 Europe 282 64.0 45.7 100.0 b 45.0 28.0 27.0 [25]
2 Europe 2052 N/A N/A N/A 10.6 41.3 32.1 26.6 [26]
3 Europe 181 71.4 38.1 89.0 b 57.1 22.6 20.3 [27]
4 Europe 360c 62.0 47.5 97.5 15.3 42.5 40.0 17.5 [28]
5 Europe 778 N/A 54.1 79.7 9.1 54.9 29.6 15.5 [29]
6 Europe 462 66.0 49.4 68.2 12.3 57.9 22.8 19.3 [30]
7 Europe 4196 66.0 62.1 69.4 10.3 48.3 35.3 16.5 [31]
8 Europe 1201 N/A 61.2 84.1 9.8 61.0 22.9 16.1 [32]
9 Europe 753 65.0 62.0 80.0 16.1 47.3 24.8 27.9 [33]
10 Europe 3269 68.4 52.6 46.6 9.3 38.9 30.4 30.4 [34]
11 Europe 1427 61.0 75.1 40.4 8.9 52.0 42.5 5.5 [35]
12 Europe 1785 64.0 60.7 78.0 13.8 43.3 28.3 36.4 [36]
13 Asia 484 N/A 57.6 88.4 37.6 56.6 33.5 9.9 [37]
14 Asia 177 60.0 48.0 100.0 b 53.1 40.1 13.6 [38]
15 Asia 310 57.0 52.3 100.0 42.9 46.6 45.1 8.3 [39]
16 Asia 627 58.0 61.1 87.7 38.8 53.5 40.3 6.2 [40]
17 Asia 441 60.3 62.6 70.4 37.6 56.6 28.9 14.5 [41]
18 Asia 1230d N/A N/A 100.0 38.5 43.6 50.5 5.9 [42]
19 Asia 74 59.0 25.0 97.0 b 50.0 46.0 4.0 [43]
20 Asia 437 57.0 36.9 N/A 59.7 53.6 42.5 8.0 [44]
21 Asia 134 57.0 57.7 75.7 50.7 60.3 29.4 10.3 [45]
22 Asia 159 63.0 39.6 100.0 b 54.1 42.1 3.8 [46]
23 Asia 1672 N/A 57.6 N/A 27.8 58.9 39.8 1.3 [47]
24 Asia 69 61.0 60.9 100.0 b 52.2 43.5 4.3 [48]
25 Asia 741 57.4 53.0 100.0 50.2 48.9 45.4 5.6 [49]
26 Asia 145 64.0 57.0 86.0 44.1 46.9 37.5 15.6 [50]
27 Asia 1450 60.0 56.6 94.9 51.4 43.0 40.6 16.4 [51]
28 Asia 879 63.0 50.8 78.6 b 48.0 48.7 3.3 [52]
29 Asia 183 N/A 43.5 100.0 65.0 51.3 37.0 11.8 [53]
30 Asia 178 68.0 49.4 100.0 53.4 35.8 51.6 12.6 [54]
31 Asia 228 59.3 43.4 60.5 b 53.1 38.2 8.8 [55]
32 Asia 169 53.2 52.1 100.0 49.1 50.6 41.0 8.4 [56]
33 Asia 552 N/A N/A N/A 64.5 40.2 42.7 17.1 [57]
34 Asia 148 65.2 51.0 86.8 b 49.5 41.8 8.8 [58]
35 Asia 598e 62.0 56.5 81.3 49.0 57.1 28.6 14.3 [59]
36 Asia 169 56.0 68.6 100.0 37.9 57.8 35.9 6.3 [60]
37 Asia 496 62.0 45.8 100.0 58.7 40.2 38.8 21.0 [61]
38 Asia 134 56.0 73.1 80.6 b 60.3 29.4 10.3 [62]
39 Asia 109 N/A 46.8 100.0 56.9 50.0 37.1 12.9 [63]
40 Asia 1632 N/A N/A 100.0 51.5 42.1 42.4 15.5 [64]
41 Asia 145 57.5 37.0 100.0 b 44.1 48.3 7.6 [65]
42 Asia 16,840 N/A N/A 100.0 35.0 44.6 44.7 10.6 [66]
43 Asia 266 57.0 53.4 91.0 45.5 52.9 41.3 5.8 [67]
44 Asia 69 56.0 55.1 88.4 b 52.9 35.3 11.8 [68]
45 Asia 575 59.6 62.7 70.5 36.3 56.5 29.7 13.9 [69]
46 Asia 217 59.0 44.7 80.2 63.1 50.4 40.9 8.8 [70]
47 Asia 949 N/A 58.7 100.0 51.4 44.5 45.9 9.6 [71]
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4  Discussion and Conclusions

This systematic review and meta-analysis showed that the 
prevalence of EGFR mutations in patients with advanced 
NSCLC differed with geographic region. The high-
est prevalence for All EGFR mutations was observed in 
Asian patients (49.1%) compared with other continents 
(11.9–33.0%). These results are similar to another system-
atic review that found the overall rate of EGFR mutations 
was lowest for Europe (14.1%) and highest for Asia (38.4%), 
with a combined North and South America region in the 

middle (24.4%) [99]. However, this study did not restrict 
the population to patients with advanced NSCLC, did not 
distinguish between specific EGFR submutations, compris-
ing only 73% of patients with adenocarcinoma, and char-
acterized regions more broadly. Other systematic reviews 
have also been published; however, these studies did not 
analyze EGFR mutation incidence according to the same 
criteria as in the present study [100–104]. Our study was 
unique in that it also examined the prevalence of the most 
prominent TKI-sensitizing submutations. Although there 
were regional differences in the distribution of submutations 

Table 1   (Continued)

Study 
number

Region No. of 
patients 
tested for 
EGFR

Mean age, 
years

Male, % Adenocarci-
noma, %

All EGFR 
mutation, %

EGFR 
exon 19 
dele-
tions, %a

Exon 21 
L858R substi-
tutions, %a

Other 
submuta-
tions, %a

References

48 Asia 259 68.0 64.5 70.0 28.2 56.2 31.5 12.3 [72]
49 Asia 812 59.0 51.0 100.0 39.5 59.5 37.7 6.5 [73]
50 Asia 246 68.0 58.0 100.0 39.8 42.9 53.1 5.1 [74]
51 Asia 207 60.8 37.7 97.1 b 52.7 42.0 5.3 [75]
52 Asia 1195 N/A 56.4 90.8 46.4 42.3 40.0 17.7 [76]
53 Asia 229 61.0 55.5 48.9 52.4 50.1 41.7 8.3 [77]
54 Asia 220 59.0 55.9 80.0 51.8 56.1 30.7 20.2 [78]
55 Asia 206 55.8 47.6 100.0 51.5 44.3 40.6 15.1 [79]
56 Asia 90 66.7 35.8 91.5 61.1 36.4 41.8 21.8 [80]
57 Asia 265 N/A 45.3 100.0 55.8 45.9 47.3 6.8 [81]
58 Asia 170 57.1 54.7 85.3 58.2 40.4 47.5 12.1 [82]
59 Asia 352 59.0 49.1 77.6 64.8 53.5 44.7 1.8 [83]
60 Asia 140 57.5 64.3 59.3 72.9 32.4 35.3 32.4 [84]
61 Asia 100 53.0 57.0 90.0 51.0 51.0 35.3 13.7 [85]
62 Asia 246 67.0 63.0 100.0 41.0 45.0 48.0 7.0 [86]
63 Asia 171 61.0 53.2 N/A b 54.1 44.4 1.5 [87]
64 N. America 860 N/A 41.2 100.0 27.0 48.3 30.2 21.6 [88]
65 N. America 289 62.4 40.0 100.0 18.7 33.3 27.8 38.9 [89]
66 N. America 838 61.0 40.6 100.0 22.7 44.7 26.3 28.9 [90]
67 N. America 336 61.0 41.0 87.0 16.7 41.1 35.7 30.4 [91]
68 N. America 1009 66.0 41.1 89.1 19.0 41.1 31.3 27.6 [92]
69 Central 

America
165 N/A 40.3 100.0 41.8 46.3 33.3 20.4 [93]

70 Oceania 500 70.0 49.8 61.4 21.8 40.4 33.0 26.6 [94]
71 S. America 72 62.0 26.4 100.0 b 66.7 27.8 5.6 [95]
72 Global 129 61.0 42.0 100.0 b 40.0 42.0 18.0 [96]
73 Global 121 61.5 50.4 71.1 b 56.2 27.3 16.5 [97]
74 Global 1048f 61.2 59.1 93.0 10.4 50.5 35.8 13.8 [98]

EGFR epidermal growth factor receptor, N north, N/A not available, S south
a Relative to the overall EGFR mutation population
b Study was excluded from the All EGFR mutation analysis
c n = 40 for submutation analyses
d n = 872 for submutation analyses
e n = 99 for submutation analyses
f n = 109 for submutation analyses
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(exon 19 deletions and exon 21 L858R substitutions), these 
differences were less pronounced than for the overall EGFR 
mutation analysis.

For the overall EGFR mutation analysis, the percentage 
of male patients in the study population was identified as a 
significant covariate. Percent adenocarcinoma and age were 
not determined to be significant covariates. As the percent-
age of male patients increased, the percentage of overall 
EGFR mutations decreased. It is well recognized that not 
only do female patients with NSCLC have a decreased risk 
of progression and death, they also have a greater incidence 
of EGFR mutations and respond better to EGFR TKI therapy 
than male patients [51, 99, 101–103, 105–107]. Importantly, 
our study did not find any covariates, including percentage 
of male patients in the study population, that were mean-
ingful in terms of individual submutations. It is concluded, 
therefore, that testing for mutations is crucial regardless of 
sex and other patient characteristics. However, our study 

did not investigate the influence of other covariates, such 
as smoking status, that have been shown to be associated 
with an increased incidence of EGFR mutations [108]. The 
studies included in our analysis used very different forms 
of categorization for smoking behaviors (e.g., some studies 
used “yes/no” only, while others used “heavy/light/former/
never”), which made it difficult to standardize; furthermore, 
we believe an influence of smoking status on submutations 
was unlikely.

Although a strength of this analysis was that it inves-
tigated EGFR mutation and submutation status in a large 
meta-analysis on a worldwide basis, the number of patients 
in certain geographic regions was limited. The majority of 
studies came from Europe and Asia; there was only one 
study from South America included in the submutation 
analyses and this study was not included in the overall EGFR 
mutation analysis. This low number of studies from central 
and South America may be because EGFR mutation testing 
is low in Latin American countries, potentially as a result 
of lack of access [109]. A recent analysis of 4389 patients 
has shown that molecular testing is requested in only 76% 
of lung-cancer cases in Latin America, compared with 97%, 
79%, and 90% in the USA, Europe, and Japan, respectively 
[110]. Moreover, specific regions may have high diversity in 
EGFR mutation prevalence, which was not captured in our 
analysis because data on race and ethnicity were scarce in 
many publications, thus geographical region was used. This 
has been seen in Asia, for example, where EGFR mutation 
frequency has been shown to range from 22% in those of 
Vietnamese ethnicity to 64% in those of Indian ethnicity  
[51]. Another potential limitation is that the patient popula-
tions in each of the studies included in the analysis may have 
been more likely to be selected for EGFR mutation testing 

Fig. 2  Final model estimates for 
the All EGFR mutation analysis 
with percent male covariate. 
Blue symbols indicate observed 
data. CI confidence interval, 
EGFR epidermal growth factor 
receptor
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Table 2  Effect of study percentage of male patients on All EGFR 
mutation estimates

EGFR epidermal growth factor receptor

Continent term All EGFR mutation rate (%)

30% Male 50% Male 70% Male

Europe (intercept) 22.4 14.0 8.4
Asia 65.4 51.6 37.6
Central America 26.2 16.7 10.2
North America 49.1 35.2 23.5
Oceania 32.9 21.7 13.5
Global 21.0 13.0 7.8



14 B. Melosky et al.

based on demographic and/or clinical characteristics, avail-
ability of specimens for testing, or they may be from areas 
where testing is more common [111, 112]. Nevertheless, our 
model was a good fit for the data for the overall EGFR muta-
tion analysis as evidenced by the minimal difference between 
observed values and predicted estimates, so that the different 
proportions of patients positive for EGFR mutations among 
the various regions should be upheld even if exact rates are 
indefinite. Linear mixed-effects logistic regression was uti-
lized because it is an established meta-analysis methodology, 
which uses the totality of the data in a unified framework 
for more precise mean estimates and easier estimation of 

covariate effects. This approach allowed for continent and 
covariate effects for each EGFR mutation endpoint to be 
analyzed simultaneously.

Our analysis focused on exon 19 deletions and exon 21 
L858R substitutions. We did not examine other submutations 
(e.g., exon 20) because of a lack of available data. Addi-
tionally, because the most common mutations are in-frame 
deletions of exon 19 and L858R substitutions in exon 21, we 
thought that these would be the most clinically relevant [8, 
11]. Less common EGFR mutations and complex mutations 
represent a heterogeneous subgroup of patients, and differ-
ences in testing methods used for different studies may also 

Fig. 3  Final model estimates 
for the exon 19 deletion EGFR 
submutation  analysisa. Blue 
symbols indicate observed data. 
aRelative to the overall EGFR 
mutation population. CI confi-
dence interval, EGFR epidermal 
growth factor receptor
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Blue symbols indicate observed 
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introduce a bias, such as a false-negative result, when analyz-
ing rarer mutations [12]. Although our analysis was based on 
NSCLC overall, generally most of the patients in the included 
studies had adenocarcinoma histology. Because of infrequent 
reporting of actionable mutations in other histologies, current 
guidelines focus mainly on testing patients with adenocar-
cinoma and advise that molecular testing is appropriate in 
NSCLC with nonadenocarcinoma histology when clinical 
features are atypical or there is an increased likelihood of a 
targetable mutation [12]. The prevalence of EGFR mutations 
and submutations may therefore differ between histological 
subtypes and data availability may be affected by differences 
in testing patterns and clinical features.

Understanding EGFR mutation prevalence in different 
geographic regions is important for physicians who need 
to make informed decisions for their patients that are based 
on sound medical evidence of benefit. This information is 
also critical so that policy and guidelines can be optimally 
developed to account for the EGFR genetic profile of local 
populations, which is not only important in resource-limited 
settings, but also around the globe where there is an increas-
ing emphasis on personalized yet cost-effective practice of 
care [113–115]. This meta-analysis provided a robust and 
comprehensive overview of EGFR mutation and submu-
tation prevalence, and identified an important covariate 
(percentage male) that influenced EGFR mutation status in 
patients with advanced NSCLC worldwide. These data show 
that despite differences among geographic regions, there 
is a considerable percentage of patients with either of the 
main types of actionable mutations (exon 19 deletions and  
exon 21 L858R substitutions) who could potentially benefit 
from targeted therapies. Thus, these data support the adop-
tion of widespread routine testing in the advanced setting to 
improve therapeutic outcomes for these patients.
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