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Purpose. Lung cancer tissue includes tumor tissue, stromal cells, immune cells, and epithelial cells.&ese nontumor cells dilute the
tumor purity in lung cancer tissues. Tumor purity plays an essential role in the immune response to lung cancer. At present, the
biological processes related to the purity of lung cancer tumors remains unclear.Methods. We measured tumor purity in 486 lung
carcinoma tissues from TCGA-LUAD FPKM by using the “estimate” R package. Lung carcinoma tumor mutation burden was
calculated by analyzing TCGA single nucleotide polymorphism data. &e immune cell proportion was also evacuated via the
CIBERSORTmethod. Lung carcinoma samples with P< 0.05 were considered significant. Based on the tumor purity and lung
carcinoma gene matrix, we performed weighted gene coexpression network analysis (WGCNA), and the tumor purity-related
module was identified.&en, we analyzed the functions of the factors involved in the module. We screened the coexpressed factors
related to clinical outcome and immunophenotype. Finally, expression levels of these factors were measured at tissue and single-
cell levels. Results. A lung cancer tumor purity correlated coexpression network was determined. Five coexpressed genes (CD4,
CD53, EVI2B, PLEK, and SASH3) were identified as tumor purity coexpressed genes that negatively correlated with tumor purity.
Because the factors in the coexpression network often participate in similar biological processes, we found that CD4, CD53,
EVI2B, PLEK, and SASH3 were most related to positive regulation of cytokine production and interleukin−2 production through
functional enrichment. In a clinical phenotype analysis, we found that these five factors can be used as independent prognostic risk
factors. We found that these factors were significantly negatively correlated with tumor purity and positively correlated with the
immune score in the immunophenotyping analysis. Using GSEA analysis, we found that the antigen processing and presentation
pathway were related to the five tumor coexpressed genes mentioned above. SASH3 and CD53 were used to conduct a prognostic
model based on the interaction analysis of the Support Vector Machine and the Least Absolute Shrinkage and Selection Operator.
SASH3 was verified to be related to CD8A using a single-cell analysis.Conclusion. Tumor purity-related coexpression factors in the
tumor microenvironment have essential clinical, genomic, and biological significance in lung cancer. &ese coexpression factors
(SASH3 and CD53) can be used to classify tumor purity phenotypes and to predict clinical outcomes.

1. Introduction

&e structure of tumor tissue is complex. In addition to
tumor cells, there are also other components such as
stromal cells, inflammatory cells, vasculature, and the
extracellular matrix [1].

Tumor microenvironment possesses complexity because
of a mixture of growth-promoting and inhibiting growth
factors, nutrients, chemokines, and other noncancer types,
which interact with each other and associate with tumor
growth, disease progression, drug resistance, and especially,
infiltrating T lymphocytes and tumor growth [2].
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Approximately 1.8 to 8 million people are diagnosed with
lung cancer each year, and 1.6 to 6 million die from lung
cancer. &e 5-year survival rate of lung cancer is about
4–17% [3]. Although studies have revealed the mechanisms
involved in cancer malignant characteristics and identified
reasonable therapeutic targets [4], current clinical prediction
and treatment outcome of lung cancer are not satisfactory
[5]. We are now aware that lung cancer tissues are rich in
nontumor cells, of which stromal cells significantly regulate
tumor proliferation, invasion, and angiogenesis [6].

With the development of bioinformatics in recent years
and the acquisition of open lung cancer cohorts, it becomes
possible to evaluate tumor purity content in the samples
according to the estimated infiltration of stromal and im-
mune cells ESTIMATE algorithm [7]. In this study, we
constructed a tumor purity coexpression network based on
weighted gene coexpression network analysis (WGCNA)
[8]. We explored the coexpression factors most related to
tumor purity and related biological functions and demon-
strated the most relevant biological functions and mecha-
nism of action affecting tumor purity in the lung cancer
tumor microenvironment.

2. Methods

2.1. Data Sources. &e Cancer Genome Atlas- (TCGA-)
LUAD FPKM data containing 486 cancer tissue samples
were obtained (http://cancergenome.nih.gov/) [9].
GSE99254 [10] is a single-cell sequencing cohort with 14
samples and 12346 non-small-cell lung cancer cells and was
obtained from the GEO (http://www.ncbi.nlm.nih.gov/geo/)
database with the GPL16791 platform and GPL20301
platform. Meanwhile, GSE42127 [11] was also downloaded
to verify the conclusion.

2.2. TumorPurity Evaluation. Expression data (ESTIMATE)
[7] were used to evaluate stromal and immune cells in
malignant tumor tissues in this study and estimate the
proportion of stromal and immune cells in the tumor mi-
croenvironment based on the gene matrix. &rough ESTI-
MATE algorithm, tumor purity of each lung cancer sample
in TCGA-LUAD was obtained. CIBERSORT algorithm
[12, 13] is a method in order to evaluate the cell content in
bulk tissue gene expression matrices. Immune cell infiltra-
tion levels were calculated based on the LM22 matrix and
CIBERSORT algorithm, and samples with P< 0.05 were
considered significant and taken into this study.

2.3. Tumor Purity-Related Coexpression Factors. Weighted
Gene Coexpression Network Analysis (WGCNA) was
demonstrated to determine tumor purity coexpressed genes
in lung cancer. &is method converted tumor purity
coexpression correlations into weight values which deter-
mined the coexpression factors. As we know, the expression
levels of genes were approximately the same as those pos-
sessing similar biological functions [14]. In this research, we
set the soft threshold as 5, R square� 0.98, and the factors in
the minimum module as 30. We uploaded tumor purity

scores and immune cell proportions as phenotype files. In
this manner, a cluster of tumor purity coexpression genes
with similar biological function was determined via
WGCNA [15].

2.4. Protein-Protein Network and Function Analysis. &e
encoding genes of tumor purity coexpression proteins were
identified by the Pearson correlation coefficient >0.4. &e
coexpression modules of tumor purity were conducted by
Cytoscape software. Meanwhile, the tumor purity coex-
pressed genes were enriched to explore their biological
processes in the tumor microenvironment. &e Database for
Annotation, Visualization, and Integrated Discovery (DA-
VID, v6.8) is an online database which provides functional
annotation analysis [16, 17]. &e Kyoto Encyclopedia of
Genes and Genomes (KEGG) [18] (https://www.genome.jp/
kegg/) and Gene Ontology (GO) [19] (http://geneontology.
org/) analysis were used to identify the biological function
and related regulation pathways in each coexpression
module.

2.5. Prognosis Model Based on LASSO and Support Vector
Machine Methods. Univariate Cox regression analysis was
performed for tumor purity coexpression genes, and the
genes with P< 0.05 were taken into the feature selection.
Subsequently, we screened the characteristic variables and
constructed the prognostic model by observing LASSO
regression analysis [20–22] and support vector machine
(SVM-RFE algorithms).

2.6. Gene Set Enrichment Analysis (GSEA). GSEA calculates
the significance and consistency differences of a predefined
dataset between two biological states [23]. &e gene matrix
in TCGA was divided into high- and low-expression groups,
following the median expression level of lung cancer tumor
purity-related genes. &rough GSEA analysis, we obtained
the related pathways of genes which were correlated with
tumor purity and prognosis. &ese pathways are considered
related to the immune microenvironment as well as clinical
phenotypes.

2.7. Immune Correlation in Other Types of Cancer. &e
TIMER database (https://cistrome.shinyapps.io/timer/)
[24, 25] was applied to show the correlations between
SASH3 and immune cell proportion in 33 types of cancers. A
Pearson correlation coefficient higher than 0.4 was
considered significant.

2.8. Single-Cell Cohort Analysis. We found that the factor
with the strongest negative correlation with tumor purity
was CD8+ T lymphocytes. &erefore, we aimed to verify this
relationship at the single-cell sequencing level. We obtained
the GSE99254 single-cell cohort from the GEO database.&e
Seurat package was then used to filter and standardize the
data [26]. Various cell subpopulations were obtained by the
TSNE dimensionality reduction clustering method [27].
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Finally, the SingleR package was used to annotate the cell
types of these subpopulations [28]. We demonstrated the
relationship between SASH3 and CD8+ T lymphocyte in-
filtration by labeling the relationship between SASH3 and
CD8+ T lymphocyte infiltration.

2.9. Statistical Analysis. R 3.6.3 (https://www.r-project.org/)
was carried out for statistical analysis. Student’s t-tests are
applied to show purity differences in various subgroups in
the TCGA cohort. Coexpression coefficients of tumor purity
protein encoding genes were evaluated based on the Pearson
correlation.

3. Results

3.1. Tumor Purity Coexpression Network. We obtained tu-
mor purity and immune cell content of each person in
TCGA-LUAD which is uploaded into Supplementary Ta-
ble 1. &e corresponding immune cell content in each
sample is shown in Figure 1(a). &e results demonstrated
that CD8+ T lymphocytes and CD4+ cells had the highest
content. Next, a dimension-reducing cluster was conducted
(Figure 1(b)) for the samples of TCGA-LUAD using omics
clustering. We obtained 23 coexpression networks
(Figure 1(c)) through WGCNA, where each color repre-
sented one coexpression network. Furthermore, we exam-
ined the correlation between coexpression networks and
tumor purity to identify the most relevant ones. &e results
elucidated that the yellow and green modules had the
strongest correlation with tumor purity (Figure 1(d)).
WGCNA results have been uploaded in Supplementary
Table 2.

3.2. Protein-Protein Network and Function Enrichment.
We plotted a scatter plot of the correlation between tumor
purity and coexpression modules in the yellow and green
modules (Figure 2(a)). &e results showed that the corre-
lation between tumor purity and gene coexpression module
in the yellow module was the most significant (COR� 0.96;
P � e − 200), whereas the correlation in the green module
was lower (COR� 0.73; P � 3.5e − 35). Furthermore, GO
enrichment analysis of genes in the yellow module suggested
that positive regulation of chemokines and the generation of
interleukin-2 were the most significant enriched pathways
(Figure 2(b)), while genes in the green coexpression module
are associated with the extracellular matrix. &ereby, the
protein encoding genes in the yellow coexpression module
were selected for subsequent analyses.

3.3. Clinical Phenotype and Immune Phenotype. &e survival
analysis for factors in the yellow module that can be used as
independent prognostic evaluation for overall survival is
shown in Figure 3. We then performed clinical and
immunophenotypic assessments of these factors (Figure 4).
&e results suggested that CD4, CD53, EVI2b, PLEK, and
SASH3 correlated with tumor purity, immune score, CD8+
Tcells, and clinical phenotypes (Figure 4(a)). Low expression

level of these genes led to high tumor purity, low immune
score, low CD8+ T lymphocyte content, and shorter 5-year
survival. &e scatter plots of correlations between CD4,
CD53, EVI2b, PLEK, SASH3, and tumor environment score
are shown in Figures 4(b)–4(e). Results shown in Figure 5(a)
indicated negative correlations between the clinical stages
and the expression of these five genes (Figure 5(a)).

3.4. GSEA Analysis. GSEA analysis elucidated that chemo-
kine-chemokine receptor interaction and the T-cell receptor
signaling pathway were enriched in the high expression
group of factors in the prognosis model (Figure 5(b)). &ese
pathways enhanced the immune response and showed an-
titumor immune response. &ese factors might reduce tu-
mor purity of lung cancer by elevating lymphocyte
proportion.

3.5. LASSO Regression and SVM. We incorporated the
protein encoding genes in the yellow coexpression module
into the LASSO regression model and identified five sig-
nificant prognostic survival genes (SASH3, PLEK, EVI2B,
CD53, and CD4). Simultaneously, the support vector ma-
chine method was used to screen the features of the
abovementioned factors, and four feature variables (SASH3,
MNDH, CD53, and CD16) were determined. We finally
identified SASH3 and CD53 as tumor purity-related prog-
nostic factors (Figure 5(c)). Risk score� −0.004∗CD53 –
0.014∗ SASH3. We later found a significant survival dif-
ference in lung cancer patients in the TCGA-LUAD cohort
between the two risk scores (HR� 1.9; P< 0.001).

3.6. SASH3 Related to CD8+ T Cell and
Immunohistochemistry. In the abovementioned study, we
found that SASH3 was significantly negatively correlated
with tumor purity but positively correlated with CD8+
T lymphocytes. To further verify this positive correlation, we
verified this conclusion in 33 TCGA-type cancers. &e re-
sults showed that SASH3 was positively correlated with the
content of CD8+ T lymphocytes in lung cancer, glioma, liver
cancer, and other cancers (Figure 6(a)). At the same time, we
found that the staining strength of the SASH3 antibody in
lung cancer tissues of China Medical University was higher
in paracancerous tissues but relatively lower in tumor tissues
(Figure 6(b)). Finally, we found that the distribution of
SASH3 in the single-cell cohort was like that of the CD8+
T lymphocyte biomarker CD8A (Figure 6(c)). Finally, we
added external queue validation to prove the correlation
between SASH3 and CD8A in GSE42127 (Supplementary
Figure 1).

4. Discussion

In this study, we first calculated the tumor purity of lung
cancer tissue. &en, we established a coexpression network
related to tumor purity of lung cancer, thereby obtaining the
two modules with the highest correlation to tumor purity. A
PPI network was established for critical genes in the module,
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Figure 1: Continued.
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five coexpressed genes were identified, and the enriched
pathways were calculated. &en, two machine learning
methods (LASSO regression and SVM) were used to es-
tablish the model. &e intersection was taken to screen out
that SASH3 and CD53 were tumor purity-related prognostic
genes of lung cancer. Clinical phenotype and immune
phenotype assessments of the coexpressed genes showed
that SASH3 negatively correlated with tumor purity and
positively correlated with CD8+ T lymphocytes. &is result
was verified by single-cell cohort sequencing, pan-cancer
analysis, and immunohistochemistry.

T cells were dominant in lung cancer. CD4+ T cells
(26%) were the most abundant T cell population, followed
by CD8+ T cells (22%) [29]. CD4 encodes the CD4
membrane glycoprotein of T lymphocytes. &e CD4 an-
tigen and the T-cell receptor on the T lymphocyte work
together to complete the antigen presentation and recog-
nition [30]. Many scientists are interested in the role of
CD4 immunity in the efficacy of PD-L1/PD-1 blocking
therapy. Kagamu et al. found that immune monitoring of
CD4+ T cells in peripheral blood predicted anti-PD-1
treatment responses in lung cancer patients [31].

Preclinical studies in patients and mouse models have
demonstrated the importance of CD4 immunity for im-
munotherapy [32]. Patients who responded to treatment
showed a high proportion of CD4+ Tcells before treatment.
&ese CD4+ T cells demonstrated proliferation at baseline
and responded to PD-1 blockade [33]. &ese findings
support the idea of using vaccination to enhance CD4+
neoantigen-specific T cells in antitumor immunity [34].

Antitumor immunity is determined by the presence of
different immune cells in the tumor microenvironment
(TME). Environmental signals transmitted through the
plasma membrane determine whether immune cells are
activated or suppressed. Tetrantin proteins are a significant
component of the plasma membrane because they aggregate
immune receptors, enzymes, and signaling molecules into
the tetrantin reticulum [35]. CD53 is a four-transmembrane
protein, mainly expressed in the myeloid lymphoid system
[36]. Yunta and Lazo found that CD53 antigen stimulation
may have a protective effect on programmed cell death.
CD53 antigen interaction protects against the apoptotic
response caused by serum deprivation and contributes to cell
survival in the poorly vascularized region of the tumor mass
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Figure 1: (a) &e proportion of 22 kinds of immune cells in the tumor microenvironment of lung adenocarcinoma. (b) &e hierarchical
clustering tree was obtained by the dynamicmixing cuttingmethod. (c) A total of 23 coexpressionmodules were obtained, in which each leaf
represented a gene and each branch represented a coexpression module. (d) Correlation of different modules and various phenotypes. &e
yellow module had a strong positive correlation with the stromal score (Cor� 0.72; P � 2e − 26), immune score (Cor� 0.88; P � 8e − 138),
and ESTIMATE score (Cor� 0.88; P � 6e − 132). &e negative correlation between the yellow module and tumor purity was strong
(Cor� −0.89; P � 6e − 145). &e green module had a strong positive correlation with the stromal score (Cor� 0.75; P � 1e − 74) and
ESTIMATE score (Cor� 0.52; P � 3e − 30). &e negative correlation between the green module and tumor purity was strong (Cor� −0.54;
P � 5e − 32).
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Figure 2: Continued.
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Figure 3: Survival analysis of CD4 (P � 0.023; HR� 0.66), SELPLG (P� 0.035; HR� 0.7), FERMT3 (P � 0.027; HR� 0.7), GIMAP4
(P � 0.022; HR� 0.68), MNDA (P � 0.001; HR� 0.53), SASH3 (P � 0.001; HR� 0.53), PLEK (P � 0.011; HR� 0.65), PLEKHO2 (P � 0.016;
HR� 0.65), AIF2 (P � 0.02; HR� 0.66), EVI2B (P � 0.037; HR� 0.71), CD53 (P � 0.045; HR� 0.72), and PTPRC (P � 0.006; HR� 0.64). All
of the results were statistically significant.
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[37]. CD53 is also essential for B-cell function because CD53
promotes BCR-dependent protein kinase C signaling,
allowing it to phosphorylate its substrate [38].

SAM and SH3 domain containing 3 (SASH3) encoded
proteins act as signal transduction proteins in lymphocytes
[39]. Pleckstrin (PLEK) is a protein found in platelets and
white blood cells that acts as a substrate for protein kinase C
[40]. &e ecotropic viral integration site 2B (EVI2B) gene
was in the intron of the neurofibromatosis type 1 (NF1) gene

and transcribed in the opposite direction to the NF1 gene
[41]. Like the NF1 gene, EVI2B is involved in the differ-
entiation of melanocytes and keratinocytes [42]. &ere is
currently a lack of research on the relationship between
EVI2B, SASH3, and PLEK with lung cancer. However,
Huang et al. analyzed the genes of colorectal cancer patients
with membrane array and direct sequencing and found that
EVI2B may be a potential prognostic marker in CRC pa-
tients [43]. Other scholars found that there are mutations in
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Figure 4: (a) Difference analysis of five essential genes in tumor purity, immune score, CD8+ T cell, and survival status. (b) Correlation
analysis of five essential genes with tumor purity, (c) immune score, (d) stromal score, and (e) ESTIMATE score.
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EV2B in the mutation spectrum of breast cancer cell line
NZBR under conditions of physiological oxygen concen-
trations [44].

Although this study integrated relatively multiple bio-
informatics analysis and improved immunohistochemical
experimental verification, there are some limitations. More
large samples are needed to validate our results. In vitro and

in vivo experiments should be conducted, and a feasibility
study for clinical practice should be contemplated.

In conclusion, two coexpression factors (SASH3 and
CD53) help classify tumor purity phenotypes and predict
clinical phenotype in lung cancer with the chemokine sig-
naling pathway. &e mechanism might provide concepts to
modify the curative effect in patients with high tumor purity.
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Figure 5: (a) Five essential genes can distinguish the different clinical stages of lung adenocarcinoma. (b) GSEA analysis of the five essential
genes. &e antigen processing and presentation pathway, chemokine signaling pathway, cytokine receptor interaction pathway, and T-cell
receptor signaling pathway were related to the five tumor purity coexpression genes. (c) Combined with LASSO regression and support
vector machine algorithm, SASH3 and CD53 were finally screened as prognostic genes of lung adenocarcinoma.
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Figure 6: (a) In the pan-cancer spectrum, SASH3 is strongly correlated with CD8+ T cells. Red color means positive correlation, while
purple means negative correlation. (b) Immunohistochemical expression of SASH3 and CD53 in lung adenocarcinoma and paracancerous
tissues. (c) In single-cell sequencing cohort validation, clusters with high expression of SASH3 were similar to those with high expression of
CD8+ T cells.
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