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Abstract: Vibrio alginolyticus is a widely distributed marine bacterium that is a threat to the aquacul-
ture industry as well as human health. Evidence has revealed critical roles for small RNAs (sRNAs)
in bacterial physiology and cellular processes by modulating gene expression post-transcriptionally.
GcvB is one of the most conserved sRNAs that is regarded as the master regulator of amino acid
uptake and metabolism in a wide range of Gram-negative bacteria. However, little information
about GcvB-mediated regulation in V. alginolyticus is available. Here we first characterized GcvB
in V. alginolyticus ZJ-T and determined its regulon by integrated transcriptome and quantitative
proteome analysis. Transcriptome analysis revealed 40 genes differentially expressed (DEGs) between
wild-type ZJ-T and gcvB mutant ZJ-T-∆gcvB, while proteome analysis identified 50 differentially
expressed proteins (DEPs) between them, but only 4 of them displayed transcriptional differences,
indicating that most DEPs are the result of post-transcriptional regulation of gcvB. Among the differ-
ently expressed proteins, 21 are supposed to be involved in amino acid biosynthesis and transport,
and 11 are associated with type three secretion system (T3SS), suggesting that GcvB may play a role
in the virulence besides amino acid metabolism. RNA-EMSA showed that Hfq binds to GcvB, which
promotes its stability.

Keywords: Vibrio alginolyticus; GcvB; amino acid metabolism; T3SS; Hfq

1. Introduction

GcvB, originally identified in E. coli as part of the glycine cleavage system [1], is one
of the most conserved small RNA (sRNA) in a wide spectrum of Gram-negative bacte-
ria such as Enterobacteriaceae, Actinobacillus, Pasteurella, Photorhabdus, and Vibrio [2–5]. It
is considered as the master sRNA regulator of amino acid metabolism. Miyakoshi et al.
(2021) summarized that GcvB directly regulates more than 50 direct target genes in E. coli
and Salmonella, which includes amino acid metabolism, ABC transporter and permease,
antiporter, carbon metabolism, membrane integrity, RNA metabolism, and transcriptional
regulator [6]. In addition, GcvB modulates critical cellular processes such as growth abil-
ity [7], biofilm formation [8], two-component system [9], acid resistance [10], and oxidative
stress response [11], sensitivity to aminoglycoside antibiotics [12] in gamma-proteobacteria.

Previous studies revealed that GcvB utilizes three conserved seed sequences, namely
R1, R2, and R3 to regulate multiple target genes. The G/U-rich R1 region is capable of base-
pairing interactions with vast majority of previously known targets [2,13–17]. The R3 seed
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sequence regulates several mRNAs including phoP and lrp, which encode global transcrip-
tional regulators [9,18,19], as well as sRNA SroC [20]. Although the R2 sequence is highly
conserved, it may only be utilized to repress cycA mRNA in E. coli and Salmonella [16,21].
Upon technical developments, new methodologies such as RNA-seq [3,7,11], RIL-seq (RNA
interaction by ligation and sequencing) [22,23], CLASH (UV cross-linking, ligation, and
sequencing of hybrids) [24], and MAPS (MS2-affinity purification coupled with RNA se-
quencing) [19] were performed to explore GcvB regulon, leading to quick expansion of
GcvB sRNA–mRNA interactome data sets [6,19].

Vibrio alginolyticus is a common Gram-negative opportunistic pathogen widely dis-
tributed in the marine and estuarine environments where a variety of carbon and nitrogen
sources are supplied, and poses a potential threat to marine animals and human [25–33].
The RNA binding proteins, Hfq and CsrA that play central roles in sRNA functioning, have
been shown to be critical for the fast growth and highly effective metabolism of carbohy-
drates and amino acids of V. alginolyticus previously [34,35], indicating that sRNAs may be
the key elements in the regulation of metabolism in response to the changing environments.

GcvB function has primarily been evaluated in the family of Enterobacteriaceae, which
leaves a question of what role it may play in other bacteria that live in habitats different from
those of Enterobacteriaceae. Recently, a study on Pasteurella multocida has shown that GcvB
functions as an amino acid metabolism controller as in other bacteria, while its regulatory
targets are very different [3]. Previously, Silveira et al. [5] have reported that GcvB homolog
is widely distributed in species of the Vibrionacea family. However, its physiological role
and regulatory targets remain unknown. To address this issue, we characterized gcvB
and identified its regulon by integrating the high-resolution RNA-seq and DIA assays
in V. alginolyticus ZJ-T. It is the first report to reveal the regulatory role of GcvB in the
Vibrionacea family, which may also shed light on the functional and evolutionary diversity
of this conserved sRNA in different bacteria.

2. Results
2.1. Bioinformatic Analysis of GcvB Sequence of V. alginolyticus and Its Expression in LBS

In a previous study, trans-encoded regulatory sRNAs were identified in the genome
of Vibrio alginolyticus ZJ-T [36]. GcvB locates in the intergenic region of chromosome II,
between BAU10_02485 (encoding tRNA 4-thiouridine (8) synthase ThiI) and BAU10_02490
(encoding transcriptional regulator GcvA) (Figure 1A). In other bacteria, gcvB and gcvA
are always oriented together and transcribed divergently, but the downstream genes are
variable. The gcvB gene contains a non-coding sequence of 211 nucleotides, which shows
high similarity to the GcvB ortholog of the organisms from the families of Enterobacteriaceae,
Vibrionaceae, and Pasteurellaceae (Figure 1C). However, except R1 and R2 sequences that are
common to all GcvB sRNAs, the conserved R3 sequence in Enterobacteriaceae is not present
across those of Vibrionaceae (Figure 1D).

To determine how GcvB is expressed in V. alginolyticus, we analyzed the transcriptome
(RNA-seq) data generated from the RNA isolated from the cells at the early exponential
phase (OD600nm = 0.5). The average reads per kilobase per million mapped reads (RPKM)
is 7697, indicating a strong expression of gcvB. Quantitative RT-PCR showed that gcvB
expression increased with growth: at stationary phase (OD600nm = 5.0), the abundance of
gcvB transcripts increased by six-fold compared to early exponential phase (Figure 1B),
which is in contrary with the reports of other bacteria [2,13,19].

2.2. Construction of the Mutant and Complementary Strains and Measurement of Their Growth
Ability under Different Conditions

In order to examine the role of GcvB in V. alginolyticus, we constructed an in-frame
deletion of gcvB in the ZJ-T, named ZJ-T-4gcvB, and accordingly a complementary strain
ZJ_T-4gcvB+ that harbored a pMMB207 plasmid carrying the fragment of gcvB driven by
the promoter of Ptet in the plasmid. The gcvB expression in the strains were examined by
qRT-PCR. The result confirmed the mutant totally lost its transcription, but the complemen-
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tary strain has only partially restored the expression of gcvB (50% compared to the wild
type) (Figure 2), which may be due to the difference in promoters.
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Figure 1. Bioinformatic analysis of gcvB sequence of V. alginolyticus and its expression in LBS.
(A) Schematic diagram of small RNA GcvB encoding locations. PgcvA and PgcvB indicate gene gcvA
and gcvB promoter, and arrows indicate transcription direction and coding direction; (B) phylogenetic
analysis of gcvB among various species using the Maximum likelihood-method with a bootstrap value
of 300; (C) conservation analysis of GcvB sequences among various species; (D) relative expression
of GcvB in different phase (Student ’s t-test, p value: *, <0.05, **, <0.01). The levels of gcvB were
normalized to the internal control 16S rRNA level. Error bars indicate standard deviations.
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Figure 2. The relative expression of gcvB in wildtype, gcvB mutant and complementary strains
(Student ’s t-test, p value: **, <0.01, ****, <0.0001). The levels of gcvB were normalized to the internal
control 16S rRNA level. Error bars indicate standard deviations.

The growth of ZJ-T, ZJ-T-∆gcvB, and ZJ-T-∆gcvB+ were measured under several con-
ditions. As shown in Figure 3, there is no significant difference among them when the
cells were grown in rich medium LBS (Figure 3A) and minimum media M63 supple-
mented with NH4

+((NH4)2SO4) plus D-glucose, indicating that deletion of gcvB did not
affect the uptake and metabolism of carbon and nitrogen sources, nor the amino acid
biosynthesis processes from de novo. To investigate the impact of GcvB on the uptake
and catabolism of specific amino acids, bacterial growth was measured in M63 supple-
mented with L-alanine, branched-chain amino acids (L-isoleucine, L-leucine and L-valine),
L-aspartic acid, L-arginine, L-threonine, and L-serine. As shown in Figure 3, all of the
three strains showed similar growth curves except that when they were grown in M63 plus
L-alanine or M63 plus L-alanine plus D-glucose, ZJ-T-∆gcvB had a much longer lag phase
(>8 h) compared to ZJ-T and ZJ-T-∆gcvB+ partially restored this phenotype. This suggests
that gcvB may be involved in alanine uptake and/or catabolism.

2.3. Integrative Transcriptome and Proteome Analysis of the Wild Type Strain and GcvB Mutant

To identify the regulon of gcvB of V. alginolyticus, whole-transcriptome RNA se-
quencing (RNA-seq) and DIA (data-independent acquisition) quantitative proteomics
were performed to analyze the transcriptome and proteome of ZJ-T and ZJ-T-4gcvB. The
RNA and protein samples were prepared from cells harvested at early exponential phase
(OD600 = 0.5).

According to the data of transcriptome, on average, 21.2 and 21.4 million high-quality
150 bp paired-end clean reads of ZJ-T and ZJ-T-∆gcvB group respectively were mapped
to the genome of V. alginolyticus ZJ-T. Quality analysis of the transcriptome showed an
average Q20 of 98.43% and 98.46% and Q30 of 95.03% and 95.10% for ZJ-T and ZJ-T-∆gcvB,
respectively. The average map rates were 95.99% for ZJ-T and 96.29% for ZJ-T-4gcvB,
respectively (Table S1). The differentially expressed genes (DEGs) were identified with
the absolute value of fold changes of ZJ-T/ZJ-T-∆gcvB |FC| ≥ 2 and a false discovery
rate-adjusted p (q value) < 0.05. Protein identification and quantification were done by
nano-HPLC-MS/MS. A total of 37,861 peptides that are matched with 3276 proteins were
detected, accounting for 72.8% of the entire encoded proteins in the genome of ZJ-T, of
which 606 proteins matched with less than three peptides. The differentially expressed
proteins (DEPs) were identified with FDR< 0.05 and |FC| ≥ 1.5.

A total of 40 DEGs (differentially expressed genes) were identified (Table S3). Com-
pared to the wild-type strain, ZJ-T-4gcvB showed 27 up-regulated and 13 down-regulated
genes, respectively (Figure 4A,B). However, qRT-PCR confirmed that only 18 of them
showed similar expression differences (Data not shown). The DEGs were enriched in
2 KEGG pathways, namely “histidine metabolism” and “arginine biosynthesis” with the Q
value < 0.05 (Figure 4C). For proteome analysis, 50 proteins displayed significant differences
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after inactivation of gcvB, 36 of which showed increased production and 14 of which were
down-regulated (Figure 5A,B). The DEPs were enriched in three primary KEGG pathways,
namely “sulfur metabolism”, “branched chain amino acid biosynthesis”, and “type three
secretion system” (Figure 5C).
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Figure 3. Growth curves of wildtype, gcvB knockout and complementary strains under different nutri-
ent conditions. Growth curves of the wild type, gcvB knockout and complementary strains grown in
LB + 2.5% NaCl rich medium(A), minimal medium M63 which D-glucose and (NH4)2SO4 were left out
and replaced by the amino acids: branched chain amino acids (20 mM isoleucine, 20 mM leucine and
20 mM valine), (B) 30 mM L-Aspartic acid, (C) 50 mM L-Arginine, (D) 50 mM L-threonine, (E) 50 mM
L-serine, (F) and 150 mM L-Alanine (G) as the sole carbon and nitrogen sources. Growth curves of
M63 containing (NH4)2SO4 and 150 mM L-Alanine, (H) M63 plus (NH4)2SO4 plus D-glucose (I). For
growth curves, three biological replicates are shown as points with their average values connected by
lines. Error bars indicate the standard deviations (SD).

Integrative analysis of transcriptome and proteome data showed only four genes
are presented both in DEGs and DEPs (Figure 6A), namely mtlA (encoding PTS mannitol
transporter subunit II), mtlD (encoding mannitol-1-phosphate 5-dehydrogenase), HI_1246
(encoding LTA synthase family protein), and cysM (encoding cysteine synthase) (Table S3.).
All of them were up-regulated similarly in gcvB mutant at both mRNA and protein levels.
As many as 46 out of 50 DEPs (92%) showed no difference in transcription, indicating
the majority of different expression of DEPs is the consequence of post-transcriptional
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regulation by gcvB. However, there are 36 DEGs not presented in the DEPs dataset too.
Additionally, the 20 DEPs, with a reliable STRING score (>700), were shown to be involved
in a PPI network based on the STRING database (Figure 6B), indicating they interacted
with each other.
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Figure 4. Overview of RNA transcriptomic profiles of wildtype and gcvB mutant strains. (A) Vol-
canic map of differential genes in transcriptome (FDR < 0.05, |log2(fold change)| ≥ 1). The red
dot represents significantly up-regulated difference; the yellow dot represents significantly down-
regulated difference; the blue dot represents no difference; (B) Statistical column chart of differential
expressed genes. WT: wild-type strain Vibrio alginolyticus ZJ-T; gcvB: gcvB knockout strain ZJ-T-4gcvB;
(C) histogram of top 20 of KEGG pathway enrichment in transcriptomics after inactivation of gcvB.

2.4. Identification of GcvB Regulon and Its Possible Physiological Role in V. alginolyticus ZJ-T

Based on the primary KEGG pathways they are involved in, the DEGs and DEPs are
categorized, which may help to understand the physiological role of GcvB in V. alginolyticus.

2.4.1. Valine/Leucine/Isoleucine Biosynthetic Pathway

Like E. coli, the genome of V. alginolyticus ZJ-T contains a whole set of genes for BCAAs
biosynthesis from de novo, which consists of four operons, namely ilvGMEDA, ilvBN,
ilvIH, and leuABCD. They are located in different regions of the genome, where ilvGM,
ilvBN, and ilvIH encode three isozymes of acetolactate synthase (AHAS), a key enzyme for
branched-chain amino acid synthesis, respectively, but ilvGM plays a dominant role in most
conditions [37]. Proteomic analysis showed that GcvB inhibited the expression of ilvA, ilvG
and leuB, leuC, leuD, as well as brnQ that encodes BCAAs transporter. Although they did not
display significant difference in the transcriptome analysis, qRT-PCR showed about slight
but significant increases of ilvC, ilvE, and ilvD expression in ZJ-T-4gcvB compared to ZJ-T
(Figure 7A). To verify whether GcvB regulates these candidates at the post-transcriptional
level, translational fusion of ilvG to gfp gene was carried out and determined by Western
blot. As shown in the Figure 7B, it was not expressed in the early log phase of both wild-type
and gcvB mutant, but its expression increased with growth from the mid-log phase onward.
Compared with ZJ-T, IlvG showed a significant up-regulation during mid-log phase growth
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in ZJ-T-∆gcvB, but the expression was the same when the cells reached to the stationary
phase, indicating that the repression of ilvG by GcvB occurs during exponential growth.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 7 of 21 
 

 

 
Figure 5. Overview of proteomic profiles of wildtype and gcvB mutant strains. (A) Volcanic map of 
differential genes in proteomics (FDR < 0.05, |fold change| ≥ 1.5). The red dot represents signifi-
cantly up-regulated difference; the blue dot represents significantly down-regulated difference; the 
black dot represents no difference; (B) statistical column chart of differential expressed proteins. 
WT: wild-type strain Vibrio alginolyticus ZJ-T; gcvB: gcvB knockout strain ZJ-T-△gcvB; (C) histogram 
of top 20 of KEGG pathway enrichment in proteomics when gcvB was knockout. 

Integrative analysis of transcriptome and proteome data showed only four genes are 
presented both in DEGs and DEPs (Figure 6A), namely mtlA (encoding PTS mannitol 
transporter subunit II), mtlD (encoding mannitol-1-phosphate 5-dehydrogenase), HI_1246 
(encoding LTA synthase family protein), and cysM (encoding cysteine synthase) (Table 
S3.). All of them were up-regulated similarly in gcvB mutant at both mRNA and protein 
levels. As many as 46 out of 50 DEPs (92%) showed no difference in transcription, indicat-
ing the majority of different expression of DEPs is the consequence of post-transcriptional 
regulation by gcvB. However, there are 36 DEGs not presented in the DEPs dataset too. 
Additionally, the 20 DEPs, with a reliable STRING score (>700), were shown to be in-
volved in a PPI network based on the STRING database (Figure 6B), indicating they inter-
acted with each other. 

Figure 5. Overview of proteomic profiles of wildtype and gcvB mutant strains. (A) Volcanic map of
differential genes in proteomics (FDR < 0.05, |fold change|≥ 1.5). The red dot represents significantly
up-regulated difference; the blue dot represents significantly down-regulated difference; the black dot
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KEGG pathway enrichment in proteomics when gcvB was knockout.
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Figure 7. Effects of GcvB on valine/leucine/isoleucine biosynthetic pathway. (A) Relative expression
of genes (ilvC, ilvD, ilvE) involved in the valine/leucine/isoleucine biosynthetic pathway by qRT-PCR
(Student ’s t-test, p value: **, <0.01). The levels of gcvB were normalized to the internal control 16S
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was used as loading control.

2.4.2. Sulfur and Cysteine Biosynthesis Metabolism

Sulfur is an essential element for life and the metabolism of organic sulfur compounds
plays an important role in the global sulfur cycle. The Vibrio family can efficiently uptake
sulfate from seawater and convert it into cysteine and methionine, a process catalyzed
by proteins encoded by 19 genes on the genome [38]. Proteomic data showed an over-
representing of genes (cysI, cysJ, cysH, cysN, cysD, and cysK) in sulfur metabolism and
cysteine synthesis pathway (p = 0.00019). They are located on three different operons,
namely cysGDN, cysZK, and cysJIH. In the gcvB mutant, the quantity of their proteins was
reduced by 2–5-fold compared to the wild type, but the abundance of their transcripts
quantified by RNA-seq and qRT-PCR did not differ (Figure 8A, Table S3), indicating a
positive regulation of their expression by GcvB from post-transcription, contrary to the
common pattern of regulation of GcvB reported so far. To verify this regulation, we
constructed the translational fusion of cysK and cysN to gfp, and measured their expression
in LBS along the growth. As shown in the Figure 8, both of them are not expressed in the
early log phase, but are strongly expressed from the mid-log phase and remain high in
the stationary phase. Compared to ZJ-T, cysN is not expressed in ZJ-T-∆gcvB during the
growth and cysK is significantly down-regulated.

However, in the transcriptome data of ZJ-T-∆gcvB, cysM encoding cysteine synthase
was up-regulated by 5.56-fold compared to that of ZJ-T, which was verified by qRT-PCR
(Figure 8A). Meanwhile, its protein was increased approximately five-fold, despite an FDR
value of more than 0.05. It suggests that gcvB may indirectly regulate the expression of cysM
by repressing an unknown transcriptional factor that is required for cysM transcription
(Figure 8B). These data refer that GcvB is likely to be involved in the regulation of sulfur
metabolism and cysteine biosynthesis pathway by at least two different mechanisms in
V. alginolyticus.
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expression of genes involved in the sulfur and cysteine biosynthesis metabolism pathway by qRT-PCR
(Student ’s t-test, p value: ns, >0.05, **, <0.01). The levels of gcvB were normalized to the internal
control 16S rRNA level. Error bars indicate standard deviations; (B) Western blot detection of CysN
and CysK translational fusion. For Western blotting, samples were harvested at OD600 of 0.3~0.4
(early-log), 1.0~1.5 (mid-log) and 3.0~4.0 (stationary) from LBS plus 5 µg/mL Cm (chloramphenicol).
Polyclonal anti-Dnak was used as loading control.

In addition, transcriptomic data showed that the hutI, hutG, and hutU genes encoding
proteins that catalyze the conversion of histidine to glutamate were more than two-fold
upregulated in the gcvB mutant (Figure 9).
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2.4.3. ABC Transporters

Previous work in E. coli and Salmonella revealed that GcvB represses multiple target
mRNAs, most of which encode amino acid uptake systems relevant for the utilization
of external nitrogen sources. In this study, the artP (encoding arginine ABC transporter
ATP-binding protein) was upregulated by 5.52-fold in mRNA level while aapJ (encoding
amino acid ABC transporter, periplasmic amino acid-binding protein) and metN (encoding
methionine ABC transporter ATP-binding protein) were upregulated by 2.69 and 1.57-fold
respectively in their protein levels. It is noteworthy of the general L-amino acid permease
(Aap) that is encoded by an operon containing four genes aapJQMP. AapJ is a periplasmic
binding protein that has a broad ligand specificity which is required for transport of all
solutes [39,40]. It indicated that GcvB negatively regulates the uptake of amino acids in
V. alginolyticus.

2.4.4. Bacterial Secretion Systems

Bacterial secretion systems are widespread in bacteria allowing them to infect eu-
karyotic cells or compete with non-akin bacteria [41]. Many Gram-negative pathogens
employ T3SS to translocate effector proteins into eukaryotic host cells, which is important
for bacterial survival and virulence [42,43] while T6SS is important for bacterial competition
through contact-dependent killing of competitors [44–46].

In this study, the proteomic data showed T3SS-associated genes including yscB (en-
coding T3SS chaperone), BAU10_07880 (encoding T3SS chaperone), yscP (encoding T3SS
needle length determinant), yscF (encoding T3SS export protein), exsE2(encoding T3SS
regulator), yscV (encoding T3SS protein V) were up-regulated by approximately two-fold
in gcvB mutant compared to the wild type, although no difference in their transcripts.
However, T6SS-associated genes including tssC (type VI secretion system contractile sheath
large subunit), tssB (type VI secretion system contractile sheath small subunit), tagH (type
VI secretion system-associated FHA domain protein) showed significant down-regulated
expression in their mRNA abundance, but no significant difference in their proteins. There-
fore, it may suggest that gcvB represses T3SS but activates T6SS of V. alginolyticus.

2.5. Effects of Hfq on GcvB

Hfq is an RNA chaperone that assists interactions between sRNA and its targets and
or enhances stabilities of many sRNAs [47]. To investigate the involvement of Hfq in GcvB
regulation, qRT-PCR was used to quantify its expression in LBS medium between the wild
type ZJ-T and an hfq mutant ZJ-T-∆hfq. As shown in Figure 10A. GcvB was down-regulated
in early exponential and stationary phase in ZJ-T-∆hfq but no significant difference in mid-
exponential period compared to the wildtype was observed, indicating that Hfq positively
regulates the expression of GcvB. The stability of GcvB RNA was determined by measuring
its half-life (Figure 10B). The result showed that it was beyond 15 min in the wild-type
strain but less than 4 min in the hfq deletion strain, indicating that Hfq promotes GcvB RNA
stability. To examine if Hfq binds directly to GcvB, we performed an RNA electrophoretic
mobility shift assay (REMSA) with purified Hfq protein and a biotinylated GcvB RNA
oligonucleotide that contains 211 nucleotides of the entire transcript. The result showed
Hfq binds to GcvB from 0.15 µg (Hfq = 1.40318 × 10−11 mol; GcvB = 2.9567 × 10−13 mol)
to 1.05 µg and there was no change in the mobility of Hfq at a concentration over 1.05 µg
(Hfq = 9.82226 × 10−11 mol; GcvB = 2.9567 × 10−13 mol) (Figure 10C), indicating that the
concentration at which Hfq protein binds to GcvB reaches saturation at 1.05 µg. To verify
that Hfq binds to GcvB specifically, after the non-biotinylated GcvB probes were added to
the last three groups (groups 12, 13, 14), the labeled GcvB was competitively eluted and the
band reappeared below, indicating the binding of GcvB is specific.
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Figure 10. Effects of Hfq on GcvB. (A) Relative expression of GcvB at different periods of wildtype
and hfq deletion strains. (B) Stability measurements of GcvB in hfq mutant strains. The half-life of
GcvB is about 15 min in wild strain ZJ-T, but it is shortened to no more than 4 min in hfq deletion
strain. (C) The Hfq protein binds specifically to GcvB. The picture shows the binding of GcvB to
protein Hfq detected by RNA-EMSA. The Hfq protein was continuously added from 0 µg (group 1)
to 1.5 µg (group 11). When the concentration of Hfq protein reached 1.05 µg (group 8), the binding of
GcvB had reached saturation. After the addition of the non-biotinylated GcvB probe (groups 12, 13,
14), the biotinylated GcvB* was competitively eluted.

3. Discussion

In this study, we characterized the physiological role of GcvB of V. alginolyticus ZJ-T,
and identified its regulon. Deletion of gcvB has been reported to reduce generation time
of Yersinia pestis [4], but no effect was seen on the growth rate of E. coli [1]. The gcvB
gene encodes a small untranslated RNA, involved in the expression of dipeptide and
oligopeptide transport systems in Escherichia coli. In V. alginolyticus, deletion of gcvB
resulted in no difference in growth rate with the wild type when the cells grew either in rich
medium (LBS) or defined media, except when alanine was used as the sole carbon/nitrogen
source. It suggests that GcvB is likely to affect the uptake and/or the initiation degradation
of alanine, but which target genes are affected and their mechanisms need to be determined
by further experiments.

By comparing the transcriptome and proteome data between the gcvB knockout strain
and its wild-type parental strain that grows at early exponential phase, we found that
GcvB affects the expression of <1% (0.86%) of the V. alginolyticus transcriptome and 1.52%
proteome. The regulatory roles of GcvB identified in this analysis are summarized in
Figure 11. Transcriptomics-based studies in Enterobacteriaceae, such as E. coli and Salmonella,
have shown that GcvB directly or indirectly regulates the expression of about 1–2% of total
genes, or about 50–100 genes [20] of the genome. The number of experimentally confirmed
target genes has exceeded 50. Among them, more than 30 genes encode proteins for amino
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acid transport and metabolism. In this study, of the genes that showed either increased (36)
or decreased (14) protein levels in the GcvB-deficient strains compared to the wild type, 18
were predicted to be involved in amino acid biosynthesis and transport, suggesting that
GcvB acts primarily to repress the biosynthesis and transport of amino acids during the
early growth stages in V. alginolyticus, likely as a means to conserve energy when nutrients
are abundant [3]. In E. coli and S. Typhimurium, the majority of GcvB regulon is associated
with amino acid transporters (>60% of GcvB targets) [16]. But in V. alginolyticus, only 3 out
of 50 genes are responsible for amino acid transport, while 30% of the regulon is involved
in the biosynthesis of amino acids. Interestingly, only three DEPs in V. alginolyticus are also
presented in the gcvB regulon of E. coli and S. Typhimurium. Gulliver et al. recently identified
the GcvB regulon in Pasteurella multocida by quantitative proteome analysis, showing that
most part of the regulon is not shared with those in Enterobacteriaceae, although its major role
is similar [3]. It may suggest that the function of gcvB is conserved across families to most
extend, but its targets are diverse, which may result from the co-evolution consequences
required for different bacteria surviving strategies.
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Sulfur is an element essential for microbial life [48]. Seawater contains 27.7 mM of
sulfate, which can be assimilated by various marine microorganisms, of which Vibrio is
typical [49,50]. It was reported that CysB, an LysR family transcriptional regulator, is
required for the transcription initiation of the multiple cys operons, but little was known
about the regulatory mechanisms of sulfur metabolism in Vibrio. In this study, the amount
of proteins such as CsyI, CsyJ, CsyN, CsyK, CsyH, and CsyD was decreased in gcvB mutant,
while the abundances of their transcripts are not altered, referring that GcvB positively
regulates their expression post-transcriptionally. This is in contrast to the most cases except
that GcvB was reported to positively regulate RNase BN/Z by stabilizing its mRNA [51].
How gcvB positively regulates the expression of cys genes remains to be elucidated.

In addition to metabolism, we here first found that GcvB may be also involved in
the virulence of V. alginolyticus by modulating a large part of T3SS gene expression post-
transcriptionally. T3SS is an important virulence factor of V. alginolyticus, which induces
apoptosis and autophagy of the host cells, so the virulence is greatly reduced in the
absence of T3SS [52,53]. In Pseudomonas aeruginosa, sRNA 179 was reported to negatively
regulate T3SS by repressing the Gac/Rsm signal transduction system that is required for the
expression of T3SS regulon [54], but so far no study hints the link between GcvB and T3SS.

This study first identified and characterized the GcvB regulon in V. alginolyticus strain
ZJ-T. Compared to previous studies in other bacteria, the sequences and primary roles of
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GcvB are well conserved, but its targets are different among the bacteria. Furthermore, we
first found it may be also involved in cysteine biosynthesis and virulence, but the targets
and mechanism need to be further revealed.

4. Materials and Methods
4.1. Bacterial Strains, Plasmids, and Media

All bacterial strains and plasmids used in this study are listed in Table 1. All strains
were maintained at −80 ◦C in tryptic soy broth (TSB) (BD, New Jersey, USA) plus 25%
glycerol. V. alginolyticus and derivatives were routinely cultured in TSB or lysogeny broth
(LB) (VWR International, Radnor, PA, USA) plus 2.5% NaCl at 30 ◦C. Escherichia coli strains
were cultured in LB medium supplemented with appropriate antibiotics at 37 ◦C. For
the selection of transconjugants, TCBS medium (HuanKai, Guangzhou, China) was used
with 5 µg/mL chloramphenicol (Cm) and 0.2% D-glucose. To select transconjugants that
had undergone plasmid excision and allelic exchange, TCBS medium plus 0.2% arabinose
plus 5 µg/mL chloramphenicol (Cm) or TCBS medium plus 0.2% arabinose alone was
used to induce the ccdB gene and to select bacteria that had lost the inserted plasmid.
Antibiotics were used at the following concentrations: chloramphenicol (Cm) at 5 µg/mL
for V. alginolyticus and 20 µg/mL for E. coli; ampicillin (Amp) at 100 mg/mL for E. coli. When
necessary, diaminopimelate (DAP) was added to the growth media at a final concentration
of 0.3 mM.

Table 1. Strains and plasmids used in this study.

Strains or Plasmids Relevant Characteristics Source

Vibrio alginolyticus

ZJ-T Apr, translucent/smooth variant of wild strain ZJ51; isolated from
diseased Epinephelus coioides off the Southern China coast [55]

ZJ-T-∆gcvB Apr; ZJ-T carrying a deletion of gcvB This study
ZJ-T-4gcvB+ Cmr; ZJ-T carrying a GcvB complementation plasmid pMMB207-gcvB This study

ZJ-T-∆hfq Apr; ZJ-T carrying a deletion of hfq [34]

ZJ-T/pSCT32-gfp-ilvG-TL Cmr; ZJ-T carrying a cysK translational fusion plasmid
pSCT32-gfp-ilvG-TL This study

ZJ-T-4gcvB/pSCT32-gfp-ilvG-TL Cmr; ZJ-T-4gcvB carrying a cysK translational fusion plasmid
pSCT32-gfp-ilvG-TL This study

ZJ-T/pSCT32-gfp-cysK-TL Cmr; ZJ-T carrying a cysK translational fusion plasmid
pSCT32-gfp-cysK-TL This study

ZJ-T-4gcvB/pSCT32-gfp-cysK-TL Cmr; ZJ-T-4gcvB carrying a cysK translational fusion plasmid
pSCT32-gfp-cysK-TL This study

ZJ-T/pSCT32-gfp-cysN -TL Cmr; ZJ-T carrying a cysN translational fusion plasmid
pSCT32-gfp-cysD-TL This study

ZJ-T-4gcvB/SCT32-gfp-cysN-TL Cmr; ZJ-T-4gcvB carrying a cysN translational fusion plasmid
pSCT32-gfp-cysD-TL This study

E. coli

GEB883 WT; E. coli K12 ∆dapA::ermpir RP4-2 ∆recA gyrA462, zei298::Tn10;
donor strain for conjugation [56]

pET28b-Hfq/BL21(DE3) Kanr; E. coli BL21(DE3) carrying the fusion expression plasmid
pET28b-Hfq::His tag This study

Plasmids

pSW7848 Cmr; suicide vector with an R6K origin, requiring the Pir protein for
its replication, and the ccdB toxin gene [57]

pSW7848-∆gcvB Cmr; pSW7848 containing the mutant allele of ∆gcvB This study
pMMB207 Cmr; RSF1010 derivative, IncQ lacIq Ptac oriT [58]

pMMB207-gcvB Cmr; pMMB207 containing the wild-type allele of gcvB This study

pSCT32 Cmr; expression plasmid with a pBR322 and a f1 origin at the same
time and a tac promoter [59]

pSCT32-gfp Cmr; pSCT32 containing reporter gene gfp coding green
fluorescent protein This study
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Table 1. Cont.

Strains or Plasmids Relevant Characteristics Source

pSCT32-gfp-ilvG-TL Cmr; ilvG sequences (including its promotor and start codon) are
translationally fused to pSCT32-gfp This study

pSCT32-gfp-cysK-TL Cmr; cysK sequences (including its promotor and start codon) are
translationally fused to pSCT32-gfp This study

pSCT32-gfp-cysN-TL Cmr; cysN sequences (including its promotor and start codon) are
translationally fused to pSCT32-gfp This study

pET28b Kanr; expression plasmid with a pBR322 origin, T7 promoter and
6×histag. Xiaoxue Wang

Note: Cmr and Apr indicate chloramphenicol and ampicillin resistance, respectively.

4.2. Phylogenetic Tree and Sequence Analysis

The sequences were obtained from GenBank. The phylogenetic tree and sequence
analysis were constructed based on the DNA difference with the ML (maximum likelihood)
method with 300 bootstrap replicates using MEGA X (downloaded from http://www.
megasoftware.net/, accessed on 6 April 2022). The tree was visualized via iTOL (iTOL:
Interactive Tree of Life (https://itol.embl.de/), accessed on 6 April 2022)

4.3. Mutant and Complementary Strains Construction

The gcvB gene was deleted from V. alginolyticus ZJ-T as previously described [35] with
slight modifications. In brief, upstream and downstream of the target gene gcvB were PCR-
amplified with the primer pairs annotated gcvB-UP-F/R and gcvB-DOWN-F/R (Table S2),
and the vector fragment pSW7848 was PCR-amplified with the primer pair pSW7848-F/R
(Table S2). The recombinant suicide plasmid pSW7848-∆gcvB was obtained by isothermal
assembly and transformed into GEB883 cells (Table 1), which was then confirmed using the
primers annotated Del-check-pSW7848-F/R. Conjugations and selection of mutants were
carried out as previously described [35]. PCR and sequencing were used to check for the
presence or absence of the target genes with the primer pair ∆gcvB-check-F/R.

The pMMB207 vector fragment and intact gcvB fragment were PCR-amplified with
the primer pair pMMB207-F/R and gcvB-F/R (Table S2), respectively, connected, and trans-
formed into E. coli GEB883 cells. PCR and sequencing were used on colonies to check for the
presence or absence of the target genes with the primer pair annotated com-pMMB207-F/R.
The recombinant plasmid pMMB207-gcvB was transformed into V. alginolyticus mutant
ZJ-T-∆gcvB cells, resulting in the ZJ-T-4gcvB+ strain (Table 1). All amplified DNA samples
were sequenced to ensure no errors had occurred during amplification.

4.4. Growth Measurement

Growth measurements in rich medium LBS and different modified minimal medium
M63 were carried out as previously described [35] with slight modification. To investigate
the effect of amino acid(s) on growth, D-glucose and (NH4)2SO4 in M63 were left out and
replaced by the amino acids L-alanine (150 mM), ILV (L-isoleucine, L-leucine and L-valine,
20 mM respectively), L-aspartic acid (50 mM), L-arginine (50 mM), L-threonine (50 mM),
and L-serine (50 mM) as carbon and nitrogen sources. M63 medium plus 0.4% (w/v) D-
glucose plus L-alanine (150 mM) was also used to investigate whether GcvB was involved in
alanine metabolism. Minimal medium assays were carried out as previously described [35].
More than three replicates in each case and three repetitions of the experiment were carried
out in these measurements.

4.5. RNA Extraction and Whole-Genome RNA-Sequencing

The experimental design comprised two groups: the wildtype strain ZJ-T and mu-
tant syrain ZJ-T-∆gcvB (n = 3 per group). LBS cultures from single colonies were grown
overnight and then diluted 1:1000 in LBS medium and grown to the mid-log phase
(OD600nm ≈ 0.6), and 100 mL LBS cultures were collected. Total RNA was extracted by
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TRIzol-based method (Life Technologies, California, USA). RNA quality control was as-
sessed on an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, California, USA)
and checked using RNase free agarose gel electrophoresis. The purified RNA was sent to
Genedenovo Biotechnology Co., Ltd. (Guangzhou, China), where the RNA sample was
assembled into a single ended RNA-Seq library and sequenced by Illumina Novaseq 6000
platform with pair-end 150 base reads. Raw data were filtered by the following standards
and quality trimmed reads were mapped to the reference genome using Bowtie2 [60] (ver-
sion 2.2.8) allowing no mismatches, and reads mapped to ribosome RNA were removed.
Retained reads were aligned with the reference genome using Bowtie2 to identify known
genes and calculated gene expression by RSEM [61].

The gene expression level was further normalized by using the fragments per kilobase
of transcript per million (FPKM) mapped reads method to eliminate the influence of
different gene lengths and amount of sequencing data on the calculation of gene expression.
The edge R package (http://www.r-project.org/, accessed on 26 July 2021) was used to
identify differentially expressed genes (DEGs) across samples with fold changes ≥2 and a
false discovery rate-adjusted p (q value) < 0.05. DEGs were then subjected to an enrichment
analysis of GO function and KEGG pathways, and q values < 0.05 were using as threshold.

4.6. Protein Extraction and Protein Digestion

Samples were collected as done in RNA-seq method, then were transferred into lysis
buffer (2% SDS, 7 M urea, 1 mg/mL protease inhibitor cocktail), and homogenized for 5 min
in ice using an ultrasonic homogenizer. The homogenate was centrifuged at 15,000 rpm
for 15 min at 4 ◦C, and the supernatant was collected. BCA Protein Assay Kit was used to
determine the protein concentration of the supernatant. About 50 µg proteins extracted
from cells were suspended in 50 µL solution, reduced by adding 1 µL 1 M dithiothreitol
at 55 ◦C for 1 h, alkylated by adding 5 µL 20 mM iodoacetamide in the dark at 37 ◦C for
1 h. Then the sample was precipitated using 300 µL prechilled acetone at −20 ◦C overnight.
The precipitate was washed twice with cold acetone and then resuspended in 50 mM
ammonium bicarbonate. Finally, the proteins were digested with sequence-grade modified
trypsin (Promega, Madison, Wisconsin, USA) at a substrate/enzyme ratio of 50:1 (w/w) at
37 ◦C for 16 h.

4.7. High PH Reverse Phase Separation and DIA(Nano-HPLC-MS/MS Analysis)

The peptide mixture was re-dissolved in buffer A (buffer A: 20 mM ammonium format
in water, pH10.0, adjusted with ammonium hydroxide), and then fractionated by high pH
separation using Ultimate 3000 system (Thermo Fisher scientific, MA, USA) connected to a
reverse phase column (XBridge C18 column, 4.6 mm × 250 mm, 5µm, (Waters Corporation,
MA, USA). High pH separation was performed using a linear gradient, starting from 5%
B to 45% B in 40 min (B: 20 mM ammonium format in 80% ACN, pH 10.0, adjusted with
ammonium hydroxide). Ten fractions were collected; each fraction was dried in a vacuum
concentrator for the next step.

The peptides were re-dissolved in 30 µL solvent A (A: 0.1% formic acid in water)
and analyzed by on-line nanospray LC-MS/MS on an Orbitrap Fusion Lumos coupled to
EASY-nLC 1200 system (Thermo Fisher Scientific, MA, USA). About 3 µL peptide sample
was loaded onto the analytical column (Acclaim PepMap C18, 75 µm × 25 cm) with a
120-min gradient, from 5% to 35% B (B: 0.1% formic acid in ACN). The mass spectrometer
was run under data independent acquisition mode, and automatically switched between
MS and MS/MS mode. DIA was performed with variable Isolation window, and each
window overlapped 1 m/z, and the window number was 60.

4.8. Protein Functional Annotation, Enrichment Analysis, and PPI Network Construction
and Analysis

Raw data of DIA were processed and analyzed by Spectronaut X (Biognosys AG,
Schlieren, Switzerland) with default parameters. Retention time prediction type was set to
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dynamic iRT. Data extraction was determined by Spectronaut X based on the extensive mass
calibration. Spectronaut Pulsar X determined the ideal extraction window dynamically
depending on iRT calibration and gradient stability. Qvalue (FDR) cutoff on precursor
and protein level was applied 1%. Decoy generation was set to mutated, which was
similar to scrambled but only applies a random number of AA position swamps (min = 2,
max = length/2). All selected precursors passing the filters were used for quantification.
The average top three filtered peptides which passed the 1% Qvalue cutoff were used to
calculate the major group quantities. After Student’s t-Test, different expressed proteins
were filtered if their Qvalue was 0.58.

Proteins were annotated against GO, KEGG, and COG/KOG database to obtain their
functions. Significant GO functions and pathways were examined within differentially
expressed proteins with q value≤ 0.05. For PPI network construction and analysis, STRING
(https://string-db.org/, accessed on 26 July 2021) database was utilized to create the PPI
networks [62]. Further information on the possible function of differentially expressed
proteins was predicted on potential PPIs using Cytoscape software [63] to identify and
visualize potential PPIs.

4.9. Quantitative Reverse Transcription PCR (qRT-PCR) Analysis

qRT-PCR analysis were carried out to verified gene expression as previously de-
scribed [35]. The relative expression of genes was detected by qPCR using gene-specific
primers (Table S3), and 16s rDNA was used as an internal reference. Relative levels were
calculated using the threshold cycle (∆∆CT) method [64] and normalized to the wild type
ZJ-T value. Measurements were done in triplicate. Statistical significance was determined
by the Student’s t-Test (ns p > 0.05, * p < 0.05, ** p < 0.01).

4.10. Translational Fusion

To create the translational fusion of target genes, PCR fragment containing the target
genes and their flanking regions (including its native promoter and start codon) was
amplified using the primers listed in Table S1. The relaxed plasmid pSCT32-gfp (containing
reporter gene gfp coding green fluorescent protein) was amplified with linearized primer
pairs pSCT32-gfp-TL_F and pSCT32-gfp-TL_R (Table S3), and the fragments were then
inserted into plasmid pSCT32-gfp using a ClonExpress® II One Step Cloning Kit (Vazyme
Biotech Co., Ltd., Nanjing, China) to obtain a recombinant plasmid, which was transformed
into GEB883-competent cells. The recombinant plasmids pSCT32-gfp with target regions
were transferred into V. alginolyticus ZJ-T and ZJ-T-4gcvB by conjugation. The resulting
strains were confirmed by PCR analysis and sequencing.

After fusions have been engineered on plasmids, Western-blotting was used for the
quantification of these target protein fusions. For Western blotting, samples were harvested
at OD600 of 0.3~0.4, 1.0~1.5, and 3.0~4.0 from LBS plus 5 µg/mL Cm (Chlorampheni-
col). Cells from three biological replicates were mixed together, then were centrifuged
and resuspended in 100µL/OD600 of 2 × SDS loading buffer (Sangon Biotech, Shanghai,
China), followed by incubation at 100 ◦C for 10 min. The proteins were separated by SDS-
PAGE, and transferred to 0.2 µm polyvinylidene difluoride (PVDF) membranes (Millipore,
MA, USA). The fused protein was detected using monoclonal anti-GFP (Sangon Biotech,
Shanghai, China) with Dnak detected by polyclonal anti-Dnak (Abcam, Cambridge, UK)
as loading control. SuperSignal™ West Pico PLUS (Thermo Fisher scientific, MA, USA)
was used for visualization. The data presented are the most representative results of the
three technical repetitions.

4.11. Hfq Recombinant Protein Construction and Purification

The full-length encoding sequence of hfq gene were amplified by PCR with the primer
sets hfq-ORF_F / hfq-ORF_R (Table S3). The plasmid pET28b was amplified with linearized
primer pairs pET28b_F/R, and the fragments were then inserted into plasmid pET28b with
a ClonExpress® II One Step Cloning Kit (Vazyme Biotech Co., Ltd., Nanjing, China) to
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obtain a recombinant plasmid, which was transformed into E. coli BL21 (DE3)-competent
cells. Strain pET28b-Hfq/BL21 (DE3) was grown to an OD600 of approximately 0.6 at
37 ◦C with shaking. Hfq production induction and purification were carried out according
to reference [65]. Purified Hfq was concentrated using an Amicon Ultra centrifuge tube
(Millipore, MA, USA) and stored in PBS buffer.

4.12. RNA Electrophoretic Mobility Shift Assays (RNA-EMSA)

The RNA oligonucleotides for T7 in vitro transcription template, listed in Table S3,
were produced by Sangon Biotech (Shanghai, China). RiboTM RNAmax-T7 Biotinylated
Transcription Kit (Guangzhou, China) was used for T7 in vitro transcription which was
designed to have a single biotin molecule at the 5′ end. T7 high yield RNA transcription kit
(Vazyme Biotech Co., Ltd., Nanjing, China) was used for T7 in vitro transcription which
was designed to have a non-biotinylated molecule at the 5′ end. The Hfq-GcvB RNA
EMSA samples were prepared using an RNA-EMSA kit (BersinBio, Guangzhou, China)
according to the instructions of the manufacturer. Hfq-RNA complexes were resolved
by electrophoresis through a 6.5% nondenaturing polyacrylamide gel, transferred to a
positively charged nylon membrane (Beyotime, Shanghai, China), and subjected to UV
cross-linking (150 mJ). The chemiluminescent RNA-EMSA kit was used to visualize the
biotinylated RNA.

4.13. RNA Stability

RNA stability measurement of gcvB gene was performed in V. alginolyticus wild-type
strain ZJ-T, hfq knockout strain ZJ-T-∆hfq, as previously described [35]. Overnight cultures
from a single colony were diluted 1:1000 into LB medium plus 2.5%NaCl (LBS). Cultures
were grown to early log phase (OD600 = 0.5~0.6), and 200 µg/mL of rifampin was added
to the culture to stop transcription. Cells were harvested immediately (t = 0) and at 4, 8, 16,
and 64 min following the rifampin addition and RNA was then purified from the samples
as described above and used to generate cDNA. The gcvB gene, along with control 16S
rRNA, were detected by qRT-PCR. The percentage of each of the RNAs remaining at each
time point was calculated relative to t = 0 (100%).
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