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Galectin-1 (gal-1), an endogenous b-galactoside-binding protein, triggers T-cell death through several mechanisms including
the death receptor and the mitochondrial apoptotic pathway. In this study we first show that gal-1 initiates the activation of c-Jun
N-terminal kinase (JNK), mitogen-activated protein kinase kinase 4 (MKK4), and MKK7 as upstream JNK activators in Jurkat
T cells. Inhibition of JNK activation with sphingomyelinase inhibitors (20 lM desipramine, 20 lM imipramine), with the protein
kinase C-d (PKCd) inhibitor rottlerin (10 lM), and with the specific PKCh pseudosubstrate inhibitor (30 lM) indicates that
ceramide and phosphorylation by PKCd and PKCh mediate gal-1-induced JNK activation. Downstream of JNK, we observed
increased phosphorylation of c-Jun, enhanced activating protein-1 (AP-1) luciferase reporter, and AP-1/DNA-binding in response
to gal-1. The pivotal role of the JNK/c-Jun/AP-1 pathway for gal-1-induced apoptosis was documented by reduction of DNA
fragmentation after inhibition JNK by SP600125 (20 lM) or inhibition of AP-1 activation by curcumin (2 lM). Gal-1 failed to induce
AP-1 activation and DNA fragmentation in CD3-deficient Jurkat 31-13 cells. In Jurkat E6.1 cells gal-1 induced a proapoptotic
signal pattern as indicated by decreased antiapoptotic Bcl-2 expression, induction of proapoptotic Bad, and increased Bcl-2
phosphorylation. The results provide evidence that the JNK/c-Jun/AP-1 pathway plays a key role for T-cell death regulation in
response to gal-1 stimulation.
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Apoptosis in the immune system is a process that ensures the
proper removal of autoreactive T cells during thymic develop-
ment and T-cell homeostasis as well as the downregulation of
peripheral immune responses against antigens. Thus T-cell
apoptosis is essential for induction of central and peripheral
tolerance and for prevention of autoimmunity.1 Peripheral
autoreactive lymphocytes can be deleted by developmental
arrest (anergy) or by apoptosis through receptor-mediated
activation-induced cell death (AICD). Following an immune
response most of the activated T cells need to be deleted
by apoptosis, which requires a switch from an apoptosis-
resistant to an apoptosis-sensitive state. This can be
mediated by cytokines, death receptors, and proapoptotic
proteins.2 Apoptosis can be initiated by two different path-
ways: the receptor-mediated AICD and the intrinsic mitochon-
dria-dependent pathway.3,4 Both pathways ultimately activate

a cascade of cysteine proteases (caspases) and cells are
committed to death thereby terminating immune responses.

Galectin-1 (gal-1), a prototype member of the family
of endogenous b-galactoside-binding proteins, is widely
expressed in lymphoid and nonlymphoid tissues and confers
a variety of immunoregulatory functions. Functional gal-1 is a
homodimer of noncovalently associated 14 kDa subunits with
two carbohydrate recognition domains. This enables cell
adhesion and cross-linking of several glycoproteins preferen-
tially with branched or repeating Galb1-4GlcNAc sequences
on T cells including the signaling proteins CD2, CD3, CD7,
CD43, and CD45.5–9 Gal-1 induces apoptosis of immature
cortical thymocytes, activated T cells, and T-cell lines,7,9,10

but also sensitizes resting human T lymphocytes to Fas
Apo-1, CD95)-mediated cell death.11 Gal-1 is exported by an
endoplasmic reticulum/Golgi-independent pathway and is
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presented by cell-surface glycoconjugates.12 It has been
shown that gal-1 presented by extracellular matrix more
effectively induces apoptosis of susceptible T cells than the
soluble form.13 Gal-1 synthesis is strongly upregulated after
peptide antigen-induced activation of murine T cells and
inhibits antigen-induced proliferation of activated T cells.14

These data strongly suggest a potential autocrine suicide
mechanism to achieve homeostasis during termination of an
immune response. CD4þCD25þ regulatory T (Treg) cells
express gal-1 at high level and this expression is upregulated
upon T-cell receptor (TCR) activation.15 Surface-bound gal-1
was found to be a key effector of regulation mediated by Treg

cells, which is consistent with the non-antigen-specific nature
of suppression. The secretion of gal-1 by decidual natural
killer cells, its abundance in various cell types of human
placenta, and the involvement in apoptotic depletion of
alloreactive T cells contribute to the generation of an
immune-privileged environment at the maternal–fetal inter-
phase.16 Although cancer patients develop adaptive immune
responses, tumors evade an effective immunosurveillance by
induction of T-cell apoptosis.17 Increased gal-1 expression by
activated tumor endothelial cells may locally contribute to the
apoptotic elimination of infiltrating effector T cells and favor
tumor progression.18 Blockage of gal-1 expression stimulates
the generation of a tumor-specific T-cell-mediated response
and tumor rejection in a syngeneic model of murine
melanoma.19

It has been suggested that the gal-1 death pathway in
T cells is entirely different from that mediated by Fas/FasL or
glucocorticoids.7 However, recent data have shown that gal-1
cooperates with Fas-induced apoptosis in peripheral T cells11

and stimulates the death receptor pathway in human Jurkat
T lymphocytes.20 Caspase activation has been shown by
several authors as death effectors,21,22 although it has
been reported that gal-1 induces T-cell death in a caspase-
and cytochrome c-independent manner by translocation
of endonuclease G from mitochondria to the nucleus.23

Activation of the activating protein-1 (AP-1) transcription
factor and downregulation of Bcl-2 have also been shown
after exposure to gal-1.24 Gal-1-induced activation of the

TCRz/Lck/ZAP70 pathway was proved to be essential to
stimulate ceramide release and to trigger the mitochondrial
pathway of apoptosis.25

The stimulation of the mitochondrial apoptotic pathway by
gal-1 initiated ceramide release21 and the requirement of AP-1
for ceramide-induced apoptosis26 prompted us to investigate
the role of the JNK/c-Jun/AP-1 pathway for cell death.

In this study we could show that gal-1 induces the activation
of c-Jun N-terminal kinase (JNK), the phosphorylation of
c-Jun, enhanced AP-1 luciferase reporter, and AP-1/DNA-
binding activities as measured by immunoblot analyses,
kinase assays, reporter and gel shift assays, and by
enzyme-linked immunosorbent assay (ELISA). The results
provide evidence for a pivotal role of the JNK/c-Jun/AP-1
pathway for T-cell death regulation.

Results

Evidence for a role of the JNK/c-Jun/AP-1 pathway in
gal-1-induced cell death. Jurkat T lymphocytes exposed to
gal-1 for 6 h underwent apoptosis as indicated by DNA
fragmentation (Figure 1). To elucidate the role of JNK and
AP-1 for gal-1 induced death, we preincubated the cells with
the reversible ATP-competitive JNK inhibitor SP600125
(10mM, 20 mM) and with curcumin (2mM), an inhibitor of
AP-1 activation. Both inhibitors effectively blocked gal-1-
stimulated DNA fragmentation in Jurkat E6.1 cells (Figure 1).
DNA fragmentations and inhibition by SP600125 were also
recorded in gal-1-treated CCRF-CEM cells indicating that
this effect was not specific for Jurkat T cells (Figure 1).
Interestingly, gal-1 failed to generate DNA fragmentation in
CD3-deficient Jurkat J31-13T cells, which shows defects in
gal-1-induced TCR/CD3 signaling.8

Gal-1 induces JNK activation. Next we studied whether
gal-1 is able to activate JNK and its downstream pathways to
T-cell death. The inhibition of gal-1-induced DNA fragmen-
tation with the specific JNK inhibitor SP600125 indicated that
JNK is involved in the apoptotic pathway. Western blot analysis

Figure 1 Inhibition of Galectin-1 (gal-1)-induced apoptosis of Jurkat E6.1 and CCRF-CEM cells by the inhibitor of activating protein-1 (AP-1) activation curcumin and by the
ATP-competitive c-Jun N-terminal kinase (JNK) inhibitor SP600125. The cells were cultured with curcumin (2 mM) for 14 h and with SP600125 (10 and 20mM) for 30 min. Cells
were incubated at 371C in 24-well plates at a density of 2� 106 cells per well in RPMI 1640 medium in the presence or absence of gal-1 for the periods of time as indicated.
Extracted DNA was separated in 1.5% agarose gels. Molecular weight standards (100 bp DNA ladder) are indicated on the left. Shown is a representative image of three
independent experiments

Galectin-1 induced cell death via JNK/c-Jun/AP-1
B Brandt et al

2

Cell Death and Disease



revealed that the stimulation of Jurkat T cells with gal-1
effectively increased the dual phosphorylation of JNK1 and
JNK2 (Figure 2a). JNK phosphorylation in Jurkat T cells by gal-
1 (50mg/ml) could be blocked by the disaccharidic competitor
lactose (30 mM), the protein kinase C-d (PKCd) inhibitor
rottlerin (10mM), and the specific PKCy pseudosubstrate
inhibitor (30mM). JNK activation was additionally verified by
kinase assays as indicated by increased phosphorylation of
JNK substrates in a time-dependent manner (Figures 2b and
c). Exposure of the cells with the specific JNK inhibitor

SP600125 (10mM) or stimulation of the cells with gal-1
(50mg/ml) in the presence of asialofetuin (50mM) decreased
the phosphorylation of the JNK substrate to the level of control
cells (Figure 2b). Furthermore, treatment of the cells with the
sphingomyelinase inhibitors imipramine and desipramine
(20mM) before stimulation with gal-1 strongly reduced the
activation of JNK, whereas myricetin (10mM), an ATP-
competitive inhibitor of mitogen-activated protein kinase
kinase 4 (MKK4), showed only marginal inhibitory effects
(Figure 2c). The data suggest that PKCd, PKCy, and MKK4

Figure 2 Galectin-1 (Gal-1)-induced phosphorylation of c-Jun N-terminal kinase 1 (JNK1) and JNK2 (a) and JNK activation with c-Jun(1-169)-GST (b), and c-Jun(1-89)-
GST (c) as kinase substrates. Jurkat E6.1 cells (2� 106 per ml RPMI 1640 medium) were incubated with protein kinase C-y (PKCy) inhibitor and PKCd inhibitor rottlerin for
1 h, with the sphingomyelinase inhibitors desipramine and imipramine for 2 h, as well as with the ATP-competitive inhibitor for JNK SP600125 and for mitogen-activated protein
kinase kinase 4 (MKK4) myricetin for 30 min as indicated. Control cells were incubated in medium alone. Cells were then stimulated with gal-1 without and in the presence of
lactose or asialofetuin as indicated in panels a, b, and c. (a) For immunoblot analysis cell extract proteins were separated by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE). Blots were analyzed with a phospho-JNK (Thr183/Tyr185) monoclonal antibody (mAb). The bands were luminographically visualized on X-ray
films using ECL Plus reagents. Equal loading of gel lanes was verified by reprobing the blots for expression of b-actin. (b) After termination of the kinase reactions with 3�
SDS sample buffer, samples were electrophoretically separated and blotted on PVDF membranes. The [32P]-labeled substrate c-Jun(1-169)-GST was recorded by
autoradiography. To control loading, we separated 50 mg cell extract protein/lane and blotted it on PVDF membranes. Membranes were probed with a JNK1 polyclonal
antibody (pAb). (c) After termination of the kinase reactions, samples were separated and blotted on Hybond ECL membranes. Blots were analyzed for substrate
phosphorylation with a phospho-c-Jun (Ser63) pAb. The bands were luminographically visualized on X-ray films using ECL Plus reagents. Shown are representative blots from
three independent experiments
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as upstream kinases as well as ceramide contribute to JNK
phosphorylation and activation.

Gal-1 activated MKKs in Jurkat E6.1 cells. The stimu-
lating effects of gal-1 on JNK phosphorylation and inhibition
of JNK substrate phosphorylation by myricetin prompted
us to investigate whether cell stimulation also induces
the phosphorylation and activation of MKK4, MKK7, and
MKK3/6. MKK7 is a specific upstream JNK activator, MKK4
phosphorylates JNK and p38 MAP kinase groups whereas
MKK3/6 are specific for p38 MAP kinase.28 Full activation of
JNK requires the synergistic action of MKK4 and MKK7
phosphorylating different sites of JNK. Stimulation of Jurkat
E6.1 cells with gal-1 resulted in a strong phosphory-
lation of MKK4 in comparison to nonstimulated controls
(Figure 3). The kinetics clearly showed an increased
phosphorylation after 10 min with slight progression up to
1 h (Figure 3). Gal-1 also effectively induced the phosphory-
lation of MKK7 (Figure 3). MKK7 phosphorylation was
detectable 10 min after stimulation and then gradually
increased with exposure time. Weaker phosphorylation
reactions were recorded for MKK3 and MKK6 (Figure 3).
The activation of MKK4 and MKK7 as well as inhibition of gal-
1-induced JNK substrate phosphorylation with the MKK4
inhibitor myricetin (Figure 2c) provides evidence that both
MKKs function as upstream JNK kinases.

Gal-1 stimulated the phosphorylation of c-Jun. JNK
activates the transcription factor c-Jun by phosphorylation
of serine 63 and 73. JNK also activates other Jun-family
proteins that are involved in the AP-1 transcription factor
complex.29 Western blot analysis showed that gal-1 (50mg/
ml) strongly increased the phosphorylation of c-Jun in a

time-dependent manner (Figure 4A, panel a). Exposure of
the cells with the JNK inhibitor SP600125 (10 mM) or the
PKCy pseudosubstrate inhibitor (30mM) before stimulation
and stimulation of the cells with gal-1 in the presence of
50 mM lactose blocked the phosphorylation of c-Jun.
Specificity of c-Jun phosphorylation was verified by inhibition
in the presence of phospho-c-Jun (Ser63) and phospho-c-Jun
(Ser73) blocking peptides (Figure 4A, panel b). Gal-1-
induced phosphorylation of c-Jun was also effectively
inhibited when Jurkat E6.1 cells were preincubated with the
sphingomyelinase inhibitors desipramine and imipramine at
20 mM as well as 10 mM of the MKK4 inhibitor myricetin
(Figure 4B).

Gal-1 induces AP-1 reporter activity and increased AP-1
DNA-binding activity. The construct pAP1(PMA)-TA-Luc
comprises six tandem copies of the AP-1 enhancer.
Stimulation of transiently transfected E6.1 and CCRF-CEM
cells with 5, 10, 15, and 20 mg/ml gal-1 increased the

Figure 3 Kinetics of galectin-1 (gal-1)-induced phosphorylation of mitogen-
activated protein kinase kinase 4 (MKK4), MKK7, and MKK3/6 in Jurkat E6.1 cells.
Cells (2� 106 per ml) were incubated in medium alone or stimulated with gal-1 as
indicated. Separated cell extract proteins were analyzed by immunoblotting using
phospho-MKK4 (Ser257/Thr261) polyclonal antibody (pAb), phospho-MKK7
(Ser271/Thr275) pAb, and a phospho-MKK3/6 (Ser189/Thr207) monoclonal
antibody (mAb). The bands were luminographically visualized on X-ray films using
ECL Advance reagents. Equal loading of gel lanes was verified by reprobing the
blots for expression of b-actin. Shown are blots from three independent experiments

Figure 4 Galectin-1 (Gal-1)-induced phosphorylation kinetics of c-Jun and
inhibition of c-Jun Ser63/73 phosphorylation with SP600125, protein kinase C-y
(PKCy) inhibitor, and lactose (A) and with desipramine, imipramine, and myricetin
(B). Jurkat E6.1 cells (2� 106 per ml RPMI 1640 medium) were incubated with
PKCy inhibitor for 1 h, with the sphingomyelinase inhibitors desipramine and
imipramine for 2 h, and with the ATP-competitive inhibitor for c-Jun N-terminal
kinase (JNK) SP600125 and for mitogen-activated protein kinase kinase 4 (MKK4)
with myricetin for 30 min as indicated. Control cells were incubated in medium alone.
Non- and inhibitor-treated cells were then stimulated with gal-1 without and in the
presence of lactose. Cell extract proteins were analyzed on blots with a phospho-
c-Jun (Ser63) polyclonal antibody (pAb) and a phospho-c-Jun (Ser73) pAb without
(A, panel a; B) and in the presence of c-Jun (Ser63) and c-Jun (Ser73) blocking
peptides at 4mg/ml (A, panel b). The bands were luminographically visualized on
X-ray films using ECL Plus reagents. Equal loading of gel lanes was verified by
reprobing the blots for expression of b-actin. Shown are representative blots from
three independent experiments
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expression of the reporter in a concentration-dependent
manner (Figure 5). The luciferase reporter activity increased
135.4-fold when transfected E6.1 cells were stimulated
with 15 mg/ml gal-1 for 3 h relative to transfected but non-
stimulated cells (control). The basal luciferase activity was
about 10-fold lower than the control in cell lysates from
E6.1 cells transfected with the pTA-Luc construct lacking
the AP-1 enhancer element (negative control). Gal-1 did not
induce the reporter activity of this construct (data not shown).
The gal-1-mediated induction of the AP-1 reporter was
completely inhibited in the presence of 30 mM lactose,
as well as by 30 mM asialofetuin (Figure 5). Cellobiose
at 30 mM did not show any inhibitory effects (data not
shown). The JNK inhibitor SP600125 at 10 and 20 mM
resulted in a 93.7 and 97.6% decrease of gal-1-induced
reporter activity. Furthermore, inhibition of ceramide synthesis
by desipramine and imipramine (20 mM) reduced the gal-1-
stimulated luciferase reporter activity by 32.1 and 66.4%.
Stimulation of transiently transfected CCRF-CEM cells
with 20 mg/ml gal-1 resulted in a 38.0-fold increase of the
luciferase reporter activity (Figure 5). However, gal-1 failed to
induce the AP-1 reporter construct in CD3-deficient Jurkat
J31-13 cells (Figure 5).

In addition to AP-1 reporter gene assays, electrophoretic
mobility shift assays (EMSAs) were performed to verify if
treatment with gal-1 has stimulating effects on the binding of
nuclear extracts to an AP-1 consensus oligonucleotide. Gal-1
increased the binding of nuclear extracts to AP-1 consensus
oligonucleotides when compared with nonstimulated cell
cultures (Figure 6a). Specificity of DNA–protein complex
formation was confirmed by competition experiments with
100-fold molar excess of unlabeled AP-1 consensus and
mutant oligonucleotide (Figure 6a).

We next analyzed the assembly of AP-1 protein com-
plexes with an immobilized oligonucleotide containing a
12-O-tetradecanoylphorbol-13-acetate (TPA)-response element
(TRE) using ELISA (Figure 6b). Stimulation of Jurkat E6.1
cells with gal-1 increased the binding of phospho-c-Jun
(Ser73), phospho-JunD (Ser100), c-Fos, Jun B, and Fos B
to the immobilized AP-1 consensus oligonucleotide relative to
nonstimulated control cells (lane c). Specificity of DNA–
protein complex formation was verified by competition
experiments with unlabeled mutant and consensus oligonu-
cleotides at 20 pM per well. DNA–protein complex formation
was blocked by excess of the AP-1 consensus oligonucleo-
tide, whereas complex formation in the presence of the mutant
form was comparable to that in its absence.

Effects of gal-1 on pro- and antiapoptotic proteins. Different
AP-1 dimer combinations may recognize different sequence
elements in the promoter and enhancer regions of target
genes.30 Therefore, it is conceivable that AP-1 differentially
regulates pro- and antiapoptotic genes in response to
extracellular stimuli. Gal-1 moderately decreased Bcl-2 protein
expression in agreement with previous studies21,24 (Figure 7).
However, we recorded a significant upregulation of proapoptotic
Bad expression by gal-1 before the onset of DNA fragmentation.
Inhibition of JNK with SP600125 and of AP-1 activation with
curcumin26 blocked the upregulation of Bad (Figure 7). Western
blot analysis and densitometric quantification of the immuno-
reactive protein bands revealed that gal-1 triggered the dual
phosphorylation of Bcl-2 on serine 70 and threonine 56
(Figure 7) that suppresses its antiapoptotic function.31,32

Inhibition of JNK with SP600125 blocked the phosphorylation
at both sites indicating that JNK functions as a Bcl-2 kinase
(Figure 7).

Gal-1-induced processing of procaspase-9 and procaspase-3
required the JNK/c-Jun/AP-1 pathway. Downregulation and
phosphorylation of Bcl-2 as well as upregulation of Bad may
induce depolarization of mitochondria and subsequent trans-
location of cytochrome c into the cytosol. Because cytochrome c
is essentially required for procaspase-9 activation, we investi-
gated the effects of gal-1 on initiator procaspase-9 and
downstream effector procaspase-3 fragmentation. Processing
of procaspase-9 and procaspase-3 was detectable 4 h after
stimulation of Jurkat E6.1 cells with gal-1 and cleavage
products further increased with exposure time (Figure 8).
Blocking of the JNK/c-Jun/AP-1 pathway by SP600125
impeded the subsequent activation of both procaspases
(Figure 8).

Discussion

There is cumulative evidence that JNK has an essential role in
apoptosis induced by UV radiation, growth factor withdrawal,
chemotherapeutic drugs, and ceramide.33,34 In this study we
could show that JNK activation is also required for apoptosis
of human lymphoblastoid Jurkat T cells induced by gal-1. JNK
activation occurred rapidly within 10 min after gal-1 exposure,
as shown by kinase assays and increasing levels of phospho-
JNK1 and phospho-JNK2 isoforms. Apoptotic cell death is
significantly promoted in cells expressing JNK, but effectively

Figure 5 Activating protein-1 (AP-1) reporter gene assay. Jurkat E6.1, CCRF-
CEM, and J31-13 cells were transiently transfected with pAP1(PMA)-TA-Luc. The
cells were incubated at 5� 106 per 4 ml RPMI 1640 medium with the ATP-
competitive inhibitor for c-Jun N-terminal kinase (JNK) SP600125 and for mitogen-
activated protein kinase kinase 4 (MKK4) with myricetin for 30 min and with the
sphingomyelinase inhibitors imipramine and desipramine for 2 h as indicated. Then
the cells were stimulated with galectin-1 (gal-1) without and in the presence of
lactose and asialofetuin for 3 h. A representative of three independent experiments
carried out in triplicates is shown. Error bars indicate the S.D. of three
determinations
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suppressed in cells expressing a dominant-negative JNK1
mutant or JBD, a JNK inhibitor protein.34 In agreement with
these data we also found that JNK activation is efficiently
prevented by the reversible ATP-competitive inhibitor of JNK
SP600125 and this perturbation of JNK activation resulted in
prevention of DNA fragmentation.

In a recent report we verified that gal-1-induced DNA
laddering corresponds to phosphatidylserine exposure and
DNA-strand breaks as analyzed by TUNEL assay.20 How-
ever, in some T-cell lines gal-1-induced phosphatidylserine
translocation was not associated with apoptotic progres-
sion.35 Therefore, we studied the inhibitory effects of
SP600125 and curcumin on gal-1-induced apoptosis in Jurkat
E6.1 and CCRF-CEM cells by DNA fragmentation as a
reliable apoptotic marker.

JNK activity is differentially regulated by various different
upstream kinases including MKK4, MKK7, PKCd, ASK1, and
mixed lineage kinases.27,28,34,36 Thus, the blockade of JNK

activation by inhibitors of PKCy, PKCd, and MKK4 is
consistent with these data. Interestingly, JNK, MKK4, and
MKK7 activities increased in parallel after gal-1 stimulation
indicating that these kinases are linked. Lactose and
asialofetuin completely inhibited JNK activation providing
evidence that gal-1 prefers glycoproteins with biantennary
and triantennary N-linked glycan chains presenting terminal
Galb1-4GlcNAc sequences for recognition available on
asialofetuin.36 Therefore, the differential glycosylation state
of cell-surface glycoproteins during immune cell activation
and differentiation can selectively regulate cellular signaling.
This may explain the unequal susceptibility of effector T-cell
subsets to gal-1-induced cell death.37

There is experimental evidence that gal-1 induces partial
TCRz-chain phosphorylation generating inhibitory pp21z,
limits receptor clustering at the TCR contact site,38 and
promotes apoptosis. Deficiency in p56lck and ZAP70 tyrosine
kinases abolishes gal-1-induced T-cell death, and reexpres-

Figure 6 Kinetics of galectin-1 (gal-1)-induced activating protein-1 (AP-1)/DNA binding activity as detected by electrophoretic mobility shift assay (EMSA) (a) and analysis
of immobilized AP-1-consensus oligonucleotide complexes for phospho-c-Jun (Ser 73), phospho-JunD (Ser100), c-Fos, Jun B, and Fos B by enzyme-linked immunosorbent
assay (ELISA) (b). Jurkat E6.1 cells (2� 106 per ml RPMI 1640 medium) were cultured with gal-1 as indicated. (a) The preparation of nuclear extracts and the binding to the
32P-labelled consensus oligonucleotide were performed in the absence of a competitor or in the presence of 100-fold excess of the unlabeled AP-1 consensus or the mutant
AP-1 oligonucleotide. Bands were visualized by autoradiography. (a) Nuclear extracts (5 mg per well) were incubated in 96-well plates coated with an immobilized
oligonucleotide containing the TRE sequence for AP-1 binding. For assay specificity, binding reactions were also performed in the presence of consensus and mutant
oligonucleotide at 20 pM per well. Complexes were analyzed with specific antibodies for the AP-1 proteins by ELISA as indicated. A representative of three independent
experiments carried out in triplicates is shown. Error bars indicate the S.D. of three determinations

Galectin-1 induced cell death via JNK/c-Jun/AP-1
B Brandt et al

6

Cell Death and Disease



sion restores apoptosis.25 The results of our study support
these data, as gal-1 failed to induce DNA fragmentation of
CD3-deficient J31-13 cells. Gal-1 also initiates the sphingo-
myelinase-mediated release of ceramide of activated periph-
eral and leukemic T cells. Further downstream events such as
the decrease of antiapoptotic Bcl-2, depolarization of mito-
chondria, and activation of caspase-9 and caspase-3 depend
on increased ceramide levels. Ceramide production and
all the downstream events require the presence of the
protein tyrosine kinases p56lck and ZAP70.21 We show here
that blocking of ceramide production by desipramine and
imipramine abrogated the induction of JNK activity by gal-1.
To exert its proapoptotic effects, it seems that ceramide
transduces the intracellular signals by activating JNK.33

Furthermore, our study result shows that Bcl-2 undergoes
increased phosphorylation by JNK in Jurkat E6.1 cells as JNK
inhibition by SP600125 effectively decreased the phosphory-
lation of Bcl-2. The inhibition of Bcl-2 phosphorylation by
SP600125 below the basal level in absence of gal-1
emphasizes the role of JNK as Bcl-2 kinase (Figure 7). The
phosphorylation of Bcl-2 decreases its ability to heterodimer-
ize with proapoptotic Bax.31,32 Thus, JNK-mediated phos-
phorylation of Bcl-2 suppresses its antiapoptotic function in
mitochondria-related cell death mechanisms.

Our study results further show a gal-1-induced signaling
pathway that connects the activation of JNK, the selective
phosphorylation of c-Jun, and the activation of the AP-1
transcription factor complex.30,39 Blocking of JNK activation
by SP600125 or inhibition of ceramide generation with
imipramine and desipramine effectively decreased gal-1-
induced phosphorylation of c-Jun and the AP-1 luciferase
reporter activity of Jurkat E6.1 cells. Gal-1 induced the AP-1
reporter construct to a lesser extent in CCRF-CEM cells,
however, failed to activate the construct in CD3-deficient J31-
13 cells. This indicates that TCR/CD3 signaling is required for
initiation of apoptosis.40 Gel shift assays and analysis of
immobilized AP-1/oligonucleotide complexes by ELISA re-
vealed that gal-1 rapidly enhanced the binding of the AP-1
complex to the TRE and induced differential increases of the
AP-1 proteins phospho-c-Jun, phospho-JunD, c-Fos, Jun B,
and Fos B. This suggests that gal-1 promotes the assembly of
various dimer combinations with cell- and stimulus-specific
transcriptional activities.30,41 Inhibition of c-Jun/AP-1 binding
to its TRE site by curcumin may be responsible for the
subsequent inhibitory effects on c-Jun/AP-1-mediated gene
expression.42 Gal-1-stimulated phosphorylation of c-Jun and
the increased levels of phosphorylated c-Jun and JunD of
AP-1 oligonucleotide complexes may also contribute to AP-1
activation.30 Blocking of DNA fragmentation by exposure of
Jurkat E6.1 cells to curcumin and to the JNK inhibitor
SP600125 before gal-1 stimulation suggests a pivotal role of
the JNK/c-Jun/AP-1 pathway for apoptosis. In gal-1-induced
cells, the upregulation of Bad in conjunction with low levels
of antiapoptotic Bcl-2 and its increased phosphorylation
generate a proapoptotic cascade leading to cytochrome
c-mediated initiator procaspase-9 and downstream effector
procaspase-3 activation.22 In line with our previous study that
showed a gal-1-induced coincidence of cytochrome c release
and caspase-9 activation, the present data can be interpreted
as a clear sign for involvement of the mitochondrial compart-
ment in gal-1-induced apoptosis.22

The data presented in this study provide the first experi-
mental evidence indicating the pivotal role of JNK as well as of
c-Jun/AP-1, Bcl-2, and Bad as targets of the signal transduc-
tion pathway triggered in gal-1-induced apoptosis. A profound
knowledge about the immunoregulatory mechanisms of gal-1
on T cells opens the perspective to use this endogenous lectin
for immunomodulatory strategies in autoimmune diseases,
infection, and cancer.

Materials and Methods
Materials. Asialofetuin, curcumin, desipramine, dithiothreitol (DTT), ethylene-
diaminetetraacetic acid (EDTA), b-lactose, anti-rabbit IgG–HRP, imipramine,
myricetin, NP-40, N-2-hydroxyethyl-piperazine-N-2-ethanesulfonic acid (HEPES),

Figure 7 Effects of galectin-1 (gal-1) on Bcl-2 and Bad protein levels and on
Bcl-2 phosphorylation. Jurkat E6.1 cells were cultured with curcumin for 14 h and
with SP600125 for 30 min. Non- and inhibitor-treated cells (2� 106 cells per well)
were stimulated with gal-1 for the periods of time as indicated. Control cells were
incubated in medium alone. Cell extract proteins were analyzed on the blots with a
Bcl-2 polyclonal antibody (pAb), Bad pAb, phospho-Bcl-2 (Ser70) monoclonal
antibody (mAb), and with a phospho-Bcl-2 (Thr56) pAb. The bands were
luminographically visualized on X-ray films by enhanced chemiluminescence (ECL).
Equal loading of gel lanes was verified by the expression of b-actin. Phospho-Bcl-2
bands were analyzed by densitometry using the Odyssey application software
(version 3.0.16) from LICOR (Bad Homburg, Germany). Data are expressed as x-
fold relative to the control after normalization to the corresponding b-actin bands
(loading). Shown are representative blots from three independent experiments
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ribonuclease A, SDS, SP600125 (anthra(1,9-cd)pyrazol-6(2H)-one), Tris, and Triton
X-100 were from Sigma (Deisenhofen, Germany). Aprotinin, DNA molecular weight
marker 100 bp ladder, leupeptin, pepstatin, pefabloc, poly[dI-dC], proteinase K, and
T4 polynucleotide kinase were purchased from Roche Molecular Biochemicals
(Mannheim, Germany) and JNK1 polyclonal antibody (pAb), c-Jun(1-169)-GST
were from Biomol (Hamburg, Germany). Fetal calf serum (FCS), kanamycin, RPMI
1640 medium were from Gibco BRL (Eggenstein, Germany), enhanced
chemiluminescence (ECL) detection reagents, Hybond ECL nitrocellulose
membranes, protein G agarose, PVDF membranes, and [g-32P]ATP were from
GE Healthcare Europe (Freiburg, Germany). Rottlerin and the PKCy pseudo-
substrate inhibitor (Myr-LHQRRGAIKQAKVHHVKC-NH2) were from Merck-
Biosciences (Schwalbach, Germany). The reporter gene constructs, pAP1(PMA)-
TA-Luc and pTA-Luc, were from Clontech (Heidelberg, Germany) and actin (1-19)
pAb, double-stranded AP-1 consensus (sc-2501), and the mutant (sc-2514)
oligonucleotide were from Santa Cruz Biotechnology (Heidelberg, Germany). Bad
pAb, Bcl-2 pAb, phospho-Bcl-2 (Ser70) monoclonal antibody (mAb), phospho-Bcl-2
(Thr56) pAb, cleaved caspase-9 (Asp315) pAb, cleaved caspase-3 (Asp175) rabbit
mAb, phospho-c-Jun (Ser63) pAb, phospho-c-Jun (Ser63) blocking peptide,
phospho-c-Jun (Ser73) pAb, phospho-c-Jun (Ser73) blocking peptide, phospho-
MKK3/6 (Ser189/Thr207) mAb, phospho-MKK7 (Ser271/Thr275) pAb, phospho-
JNK (Thr183/Tyr185) mAb, phospho-MKK4 (Ser257/Thr261) pAb, and the
JNK assay kit were from New England Biolabs (Frankfurt, Germany). The Trans-
AM AP-1 transcription factor assay kit was from Active Motif North America
(Carlsbad, CA, USA).

Cell lines. The human leukemic T-cell line Jurkat (clone E6.1; European
Collection of Cell Cultures, Salisbury, UK) and the CD3-deficient Jurkat 31-13 cell
clone, kindly provided by A. Alcover (Institut Pasteur, Paris, France), were
maintained at 371C and 5% CO2 in RPMI 1640 medium supplemented with 10%
FCS and 10mg/ml kanamycin. Human CCRF-CEM lymphoblastic leukemia T cells
(DSMZ – Search for Human and Animal Cell Lines, Braunschweig, Germany) were
cultured in RPMI 1640 medium containing 10% FCS, penicillin (100 mU/ml), and
streptomycin (50 mg/ml).

Preparation of recombinant human gal-1. The preparation of gal-1
cDNA, ligation into the isopropyl-b-D-thiogalactopyranoside-inducible expression
vector pET22b(þ ), and expression in E. coli were performed as previously
described.20 After cell lysis in EDTA-MEPBS (20 mM Na2HPO4 (pH 7.2), 150 mM
NaCl, 4 mM 2-mercaptoethanol, 2 mM EDTA) by sonication on ice, gal-1 was
purified by affinity chromatography on lactosyl agarose.43 The gal-1 protein was
verified as a 14 kDa band in silver-stained sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) gels.

AP-1 reporter gene assay. The pAP1(PMA)-TA-Luc cis-reporter vector and
the pTA-Luc vector as a negative control are designed for monitoring the induction
of AP-1-mediated signaling events by assaying the luciferase activity. The cells
(1� 107 per 0.8 ml RPMI 1640 medium) mixed with 25 mg of the reporter constructs
were electroporated in 0.4 cm cuvettes with a gene pulser from Bio-Rad (Munich,
Germany) at 350 V and 900mF. Then the cells were cultured at 5� 106 per 4 ml
RPMI 1640 medium for 30 min at 371C without or with SP600125 followed by
stimulation with gal-1 without or in the presence of lactose or asialofetuin for 3 h as
indicated in the figure legend. Cell lysis and the measurement of reporter luciferase
activity were performed by applying the luciferase assay system (Promega,
Mannheim, Germany).

Preparation of nuclear protein extracts. Jurkat E6.1 cells (2� 106 per
ml RPMI 1640 medium) were stimulated with gal-1 (20 mg/ml) at 371C and washed
once with ice-cold phosphate-buffered saline (PBS). The cells were pelleted and
solubilized with 0.1 ml 20 mM HEPES (pH 7.9; 10 mM KCl, 1 mM EDTA, 1 mM
pefabloc, 0.1 mM Na3VO4, 0.2% Triton X-100, 10% glycerol, and 1mg/ml each of
aprotinin, pepstatin, and leupeptin) for 15 min on ice.44 After centrifugation at
16 000� g for 2 min, the pellets were extracted for 20 min on ice with 50 ml 10 mM
HEPES (pH 7.9; 350 mM NaCl, 10 mM KCl, 1 mM EDTA, 1 mM DTT, 1 mM
pefabloc, 0.1 mM Na3VO4, 20% glycerol, and 1 mg/ml each of aprotinin, pepstatin,
and leupeptin). The extracts were centrifuged at 16 000� g for 5 min and stored at
�801C.

Electrophoretic mobility shift assay. The double-stranded AP-1
consensus oligonucleotide (sc-2501) was 32P-labelled with [g-32P]ATP using T4
polynucleotide kinase. Nuclear extract (4ml) was mixed with 20ml of binding buffer
(10 mM Tris-HCL (pH 7.5), 50 mM NaCl, 1 mM EDTA, 1 mM DDT, 0.1%Triton
X-100, 5% glycerol, 1 mg/ml bovine serum albumin (BSA), and 2 mg/ml poly[dI-dC]
containing 65 000 c.p.m. of end-labeled probe. For competition studies, the binding
reactions were performed in the presence of 100-fold excess of unlabeled AP-1
consensus or mutant oligonucleotides. After 30 min on ice, the complexes were
separated on a native 6% polyacrylamide gel. Dried gels were exposed to X-ray
films (HT1.000G Plus; Agfa-Gevaert, Mortsel, Belgium) at �701C with intensifying
screens.

ELISA-based detection and quantification of AP-1 transcription
factor activation. The DNA-binding activity of AP-1 was quantified by ELISA
using the Trans-AM AP-1 transcription factor assay. Nuclear extracts (5 mg per well)
were incubated in 96-well plates coated with an immobilized oligonucleotide
containing a TRE with the 50-TGA(C/G)TCA-30 sequence that primarily binds AP-1
dimers. For assay specificity, binding reactions were performed in the presence of
consensus and mutated oligonucleotides at 20 pM per well. AP-1 binding to the
immobilized probe was detected by incubation with primary antibodies specific
for c-Fos, c-Jun, Fos B, and Jun B. The c-Jun antibody detects phosphorylated
c-Jun (Ser73) and JunD (Ser100). The addition of a secondary horseradish
peroxidase (HRP)-conjugated antibody and developing solution provided a
colorimetric readout that was spectrophotometrically quantified at 450 nm.
Background binding was subtracted from the value obtained for binding to the
consensus DNA sequence.

DNA extraction and analysis by agarose gel electrophoresis. Degraded
low-molecular-weight DNA from apoptotic cells was selectively extracted with phosphate-
citrate (PC) buffer.45 The cells were collected by centrifugation, fixed in 70% ethanol,
and were stored at�251C for 16 h. Then the cells were pelleted at 800� g for 5 min. Cell
pellets (2� 106 cells) were suspended in 40ml of PC buffer (0.2 M Na2HPO4 adjusted with
0.1 M citric acid to pH 7.8) at room temperature for 30 min. After centrifugation at 1000� g
for 5 min, supernatants were evaporated in a vacuum concentrator 5301 (Eppendorf,
Hamburg, Germany) for 15 min. Then 3ml 0.25% NP-40 was added to the cell
extract followed by 3ml of a solution of RNase A (1 mg/ml). After 30 min incubation
at 371C, 3ml of a solution of proteinase K (1 mg/ml) was added and the extract was
incubated for additional 30 min at 371C. Then the extracts were mixed with 12ml
loading buffer (0.25% bromophenol blue, 0.25% xylene cyanol FF, 30% glycerol)
and subjected to 1.5% agarose gel electrophoresis. DNA ladders were visualized by
ethidium bromide staining under UV light.

JNK immune complex kinase assay. Jurkat E6.1 cells (2� 106 per ml
RPMI 1640 medium) were incubated for 30 min at 371C with 10mM of the JNK
inhibitor SP600125. Then the cells were stimulated with 30 mg/ml gal-1. Cell pellets

Figure 8 Effects of galectin-1 (gal-1) on initiator procaspase-9 and effector
procaspase-3 processing and inhibition by the ATP-competitive inhibitor of c-Jun N-
terminal kinase (JNK) SP600125. Jurkat E6.1 cells (2� 106 per ml RPMI 1640
medium) were incubated with SP600125 for 30 min at 371C. Non- and inhibitor-
treated cells were stimulated with gal-1 as indicated. Control cells were incubated in
medium alone. Cell extract proteins were analyzed on the blots with a cleaved
caspase-9 (Asp315) polyclonal antibody (pAb) and with a cleaved caspase-3
(Asp175) rabbit monoclonal antibody (mAb). The bands were luminographically
visualized on X-ray films by enhanced chemiluminescence (ECL). Equal loading of
gel lanes was verified by reprobing the blots for expression of b-actin. Shown are
representative blots from three independent experiments
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were treated with 350ml lysis buffer (20 mM HEPES (pH 7.6), 10 mM
p-nitrophenyl phosphate, 0.1 mM Na3VO4, 2 mM DTT, 0.1 mM pefabloc, 1%
Triton X-100) on ice for 30 min,46 followed by centrifugation at 16 000� g for 10 min at
41C. From the supernatants (450mg extract protein) JNK1 was immunoprecipitated
with 15mg JNK1 pAb for 1 h at 41C followed by incubation with 50ml protein G
agarose for 1 h. Then the beads were washed three times with 300ml lysis buffer
and twice with kinase buffer (20 mM HEPES (pH 7.6), 20 mM MgCl2, 20 mM
b-glycerophosphate, 20 mM p-nitrophenyl phosphate, 0.1 mM Na3VO4, 2 mM DTT).
The beads were suspended in 20ml kinase buffer supplemented with 5 mg c-Jun(1-
169)-GST as a substrate and 5mCi [g-32P]ATP and incubated for 20 min at 301C.
Kinase reactions were terminated by addition of 15 ml 3� SDS sample buffer
and treated for 5 min at 1001C. Samples were electrophoretically separated and
blotted on PVDF membranes. The phosphorylated substrate at 41 kDa was
visualized by autoradiography. To control loading, we electrophoretically separated
50mg lysate protein/lane and blotted it on PVDF membranes. After blocking with 5%
BSA in PBS (pH 7.4), membranes were probed with a JNK1 pAb followed by
incubation with an IgG–HRP conjugate. Detection of JNK1 at 46 kDa was performed
by ECL.

JNK assay (nonradioactive). JNK activity was measured by the JNK assay
kit (New England Biolabs). The preparation of the cell lysates, pulldown of the JNK
enzyme from cell extracts (200 mg protein) with c-Jun(1-89)-GST fusion protein
beads (20ml), and the kinase assay were performed according the manufacturer’s
protocol. After termination of the kinase reaction with 3� SDS electrophoresis
sample buffer, probes were electrophoretically separated and blotted on Hybond
ECL nitrocellulose membranes. JNK-induced substrate phosphorylation was
recorded with a phospho-c-Jun (Ser63) pAb and an IgG–HRP conjugate by ECL.
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