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Abstract

Fibrosis is a chronic disease with heterogeneous clinical presentation, rate of progression,

and occurrence of comorbidities. Systemic sclerosis (scleroderma, SSc) is a rare rheumatic

autoimmune disease that encompasses several aspects of fibrosis, including highly variable

fibrotic manifestation and rate of progression. The development of effective treatments is

limited by these variabilities. The fibrotic response is characterized by both chronic inflam-

mation and extracellular remodeling. Therefore, there is a need for improved understanding

of which inflammation-related genes contribute to the ongoing turnover of extracellular

matrix that accompanies disease. We have developed a multi-tiered method using Naïve

Bayes modeling that is capable of predicting level of disease and clinical assessment of

patients based on expression of a curated 60-gene panel that profiles inflammation and

extracellular matrix production in the fibrotic disease state. Our novel modeling design,

incorporating global and parametric-based methods, was highly accurate in distinguishing

between severity groups, highlighting the importance of these genes in disease. We refined

this gene set to a 12-gene index that can accurately identify SSc patient disease state sub-

sets and informs knowledge of the central regulatory pathways in disease progression.

Introduction

Fibrosis results from continuous connective tissue remodeling during a reparative or reactive

process, leading to disrupted tissue function in affected organs. The high mortality rate from

fibrosing diseases is a multifaceted health issue in the developed world [1] that continues to

demand further exploitation. Progress in this area requires reverse translation of clinical find-

ings that inform preclinical studies, and re-validation and/or generation of existing or new ani-

mal models.
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Fundamental to the challenges in generating effective treatments for the majority of

patients is the heterogeneity of fibrosing diseases’ symptom patterns, progression, and severity.

Current research has focused on the causes of fibrosis, the discovery of fibrosis-associated bio-

markers, and the associations between fibrosis and disease [2–5]. Further inquiry is needed to

gain a deeper understanding of progression of the fibrosing state. Notably, addressing the het-

erogeneity of fibrosing diseases is essential in providing a clear link between the multifaceted

genomic and phenotypic changes of fibrosis.

Promisingly, new high-throughput ’omics’ technologies are gaining traction as enablers of

personalized medicine advance at a detailed molecular level, and as such could aid at combin-

ing data-driven inductive and symptom-based deductive approaches to accurately represent

clinical fibrosis course. An exemplar of heterogeneous fibrosing diseases that can benefit from

multivariate data analysis of high-dimensional multiset omics data, and the generation of valid

and predictive models for insightful interpretation, is systemic sclerosis (scleroderma, SSc).

SSc is a rare chronic disease, of still unknown cause, characterized by multi-organ diffuse

fibrosis and vascular abnormalities.

During the SSc fibrotic process, a complex combination of cytokines, chemokines, growth

factors, proteases, and extracellular matrix (ECM) constituents are secreted by dermal and res-

ident epithelial cells, all of which add to the inflammatory infiltrate. The linkage of uncon-

trolled accumulation of ECM, a hallmark of fibrosis, with alterations in inflammatory

mediators is concordant with a growing number of studies [6–8]. We and others have shown

that a specific chemokines-driven multiscale signaling network (1) promotes attraction of

inflammatory cells, (2) directs actions on various target cell types, (3) regulates angiogenesis,

and (4) orchestrates tissue remodeling. This polyfunctional heterogeneity of secretions of che-

mokines and their receptors [9–12] is further evidenced by a number of studies linking the

deregulation of chemokine receptor-specific levels to distinct organ and tissue fibrotic cues

[11, 13–22].

Clinically, SSc is divided into two subtypes: a more progressive diffuse (dSSc) form and a

limited (lSSc) form, depending on the extent of skin fibrosis. This heterogeneity has con-

strained current treatments that modestly benefit only a subset of patients and hindered pre-

dictive analytics of clinical outcomes [23].

The current “gold standard” for assessing severity of SSc in skin is a physical diagnostic test,

the modified Rodnan skin score (mRSS). Biologically, the levels of chemokines and their

receptors are often elevated in the serum of SSc patients, and fibroblasts (the master regulators

of ECM production) from patients show altered chemokine signaling [24–27]. Thus, it is plau-

sible that the variation in gene signatures coding for the extracellular matrix and inflammatory

pathways is a reflection of the inherent biology of a given fibrosing disease, representing the

pace of SSc instructive cues and hence clinical disease course as captured by mRSS skin score

for diagnosis of disease severity.

Using several publicly available datasets, we have applied a novel method, the unsupervised

efficiency analysis (UEA), to couple gene signatures to disease pathology and severity based on

the stratification of patient-specific indicators of disease progression and outcome. The UEA

compares differences in the percentage of overlapping of genes between two disease subsets.

Datasets were first analyzed using caGEDA tool [28], which measures microarrays differential

gene expression. Then we used the resulting differentially expressed genes to predict disease

severity or clinical subtype using a Naïve Bayes classifier and to investigate their associated

pathways. Further molecular stratification was used to develop score indices from genes

known to be associated with SSc, chronic inflammation, fibrosis, and related canonical path-

ways. This study provides a principled framework for causal effects estimation from complex

high-dimensional data using model informed by inflammation and extracellular matrix gene
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index related to organ and tissue-specific fibrotic cues. Using know key immuno-modulatory

and extracellular matrix genes involved in the progression of SSc we have established a panel

of 12-genes that could predict disease state with high accuracy to identify three-way relation-

ships between SSc phenotypes, genes and skin score.

Results

The objectives of our present study are to test the correlation between chemokines and ECM

genes in the samples from patient skin biopsies and identify the genes coding for chemokine

genes that govern fibrosis-related alterations in key ECM genes in these patients. To meet this

goal, we used a multi-tiered approach which included both unsupervised identification of dif-

ferentially expressed genes, as well as a second phase that interrogated genes known to be

involved in chemokine signaling and ECM production. In both phases, we compared between

healthy and dSSc, and between dSSc and lSSc. We first identified a suitable dataset, consisting

of gene profile information of skin biopsies using microarrays, which had been deposited to

the publicly accessible National Center for Biotechnology Information GEO Database (Acces-

sion No. GSE9285) [29]. The sample population includes healthy patients as well as patients

diagnosed with dSSc, lSSc, and morphea, with a wide range of mRSS varying across donor

demographics (S1 Table). This dataset captures several elements of patient level heterogeneity,

including patients with various combinations of gender, age, and racial background.

Age and skin score association with disease type

Qualitative and quantitative analysis of clinical features of patients from which skin biopsies

for microarray gene expression analysis revealed an intricate interplay between the age of

donors and the disease type, as reflected by (Fig 1A–1C) the preponderance of the dSSc type in

the most geriatric donors and (Fig 1D, left panel) the typically high skin scores of the dSSc

type. In contrast, the biopsy origin appears to have no bearing on the interplay of skin score

and demographics (Fig 1B). However, in this study skin score dependence on gender and race,

is less conclusive due to gender and race underrepresentation (Fig 1D, middle and right

panels).

Bayesian Network was constructed to build a probability model by combining dataset fea-

tures used in Milano et al. study features and to establish the likelihood of occurrences by

using seemingly unlinked attributes. The model displays the interconnection of SSc disease

subtype and other factors, such as skin score, age, race, and the origin of biopsy (Fig 2).

Amongst those conditions, race demonstrated the lowest level of interdependency, while age

and skin score stood as the highest predictors (Fig 2A and S2 Table) of SSc subtype.

The linear projection model developed by Koren et al. [30] which integrates data coordi-

nates with pairwise similarities and/or differences to create a linear transformation displaying

the separation and infrastructure between data clusters. Following Koren et al. methods, visual

linear transformation of age dependency on SSc disease subtype, exposes definitive clustering

of higher skin scores in older dSSc patients (Fig 2B).

Genomic profiles of healthy vs. dSSc patients differ in their expression of

matrix and growth factor signaling genes while dSSc vs. lSSc have a wide

range of functions

We performed unsupervised analyses to compare the expression profiles from healthy and

dSSc patients using a total of 54 biopsy samples. Using the J5 statistical test at a threshold of

7.0, we identified 36 genes that were considered differentially expressed between the groups
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(Fig 3A and S1 Fig). Among the differentially expressed genes were several [31] that are sup-

ported by the literature including COMP [4], FGL2 [32], WIF1 [2]. It was also evident that

many matrix-related genes were differentially expressed between these two patient groups. We

next tested the 36-gene list as a classifier index in a Naïve Bayes model to evaluate its ability to

differentiate between genomic profiles of healthy patients from those with dSSc. Classification

based upon expression of these genes was highly accurate, with 90% of samples being correctly

categorized by the model, sensitivity of 0.871, and specificity of 1.0. We next compared the

gene expression profiles of patients with lSSc to those with dSSc. This analysis used a total of

60 samples and, using a J5 threshold of 6.0, identified 64 genes that were significantly differen-

tially expressed between the groups (Fig 3B and S2 Fig). As with the gene list that differentiated

between normal and dSSc patients, we tested whether this 64-gene list could be used to classify

patients with the two most common clinical subtypes of SSc: dSSc and lSSc. Classification

using this panel of genes was accurate for 89% of samples, with sensitivity of 0.871 and specific-

ity of 0.937. The overall theses analyses represent that there are gene expression patterns sepa-

rating disease subtypes gene expression pattern of this panel is fundamentally heterogeneous.

Although the average J5 score seems to be higher in lSSc vs dSSc as opposed to healthy vs dSSc,

the gap in the overall levels of gene expression between dSSc and lSSc is reduced as reflected by

the shift of both negative and positive J5 score towards the center in lSSc vs dSSc relative to

healthy vs dSSc.

Fig 1. Qualitative and quantitative analysis of demographic and clinical characteristics of donor biopsies from microarray gene expression

of patient skin biopsies. Shown are bubble charts reflecting the magnitude of the skin score given the race and age of the donors as function of

the (A) disease type and (B) biopsy origin as well as the (C) distribution of donor age and disease type or (D) and skin scores as a function of the

disease type, gender and race (A = Asian, AA = African American, H = Hispanic, W = White) respectively. Disease type, biopsy origin, race, and

sex are color-coordinated, and the size of the bubbles indicate the magnitude of the skin score.

https://doi.org/10.1371/journal.pone.0240986.g001
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Genomic profiles of healthy and dSSc patients differ in their expression of

matrix and growth factor signaling genes

To learn more about the pathways and functional networks associated with these genes differ-

entially expressed between healthy and dSSc patients, we performed pathway and impact anal-

ysis on the gene list. The pathways with the highest impact factors calculated by Pathway

Express are shown in Table 1. Based on impact analysis score, the top three pathways identified

were TGF-β signaling pathway, Wnt signaling pathway, and ECM-receptor interaction.

We then performed pathway and impact analysis on the gene list differentially expressed

between lSSc and dSSc patients. The top pathway associated with these differentially expressed

genes was PPAR signaling with an associated impact factor of 11.982 and was statistically

enriched by genes in our list (Table 2). Differentially expressed genes that were present in this

pathway were FABP4, LPL, MMP1, and PLIN.

Next we use subset of genes with positive silhouette scores to expand the insights into the

relationship between selected gene sets found to be differentially expressed between lSSc and

dSSc patient biopsy samples based on J5 analysis by Enrichment analysis using PANTHER.

This silhouette plot shows measure of how well a feature is clustered within a given cluster

and the degree of separation from other clusters. A silhouette analysis of healthy vs. dSSc and

lSSc vs. dSSc patients reveals distinct relationships between disease tight and differently

expressed genes identified by J5 analysis (Fig 4A). Interestingly the scatterplot contrasting the

positive silhouette scores healthy vs dSSc as opposed to lSSc shows a high degree of separation

(Fig 4B).

Fig 2. Conditional dependency between demographic and clinical characteristics of donor biopsies. (A) A simple Bayesian network model encoding the conditional

probability between disease type classification as the target variable on other characteristics as predictors, and the relative predictor importance. The node focuses on

Tree Augmented Naïve Bayes (TAN) and Markov Blanket networks that are primarily used for classification. (B) Linear projection methods using principal component

analysis of disease type-labeled data showing the skin score/age two-dimensional projection where instances of different classes are best separated.

https://doi.org/10.1371/journal.pone.0240986.g002
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An enrichment analysis using PANTHER (Fig 5) of the collective set of genes with positive

silhouette scores from the J5 analysis was used to analyze skin-specific protein-protein interac-

tion. These analysis immune and extracellular matrix response and organization.

Fig 3. Qualitative and quantitative analysis contrasting disease types and related-gene expression pattern. Shown

are (A) a bubble chart reflecting expression levels of statistically significant genes according to their J5-score and

ranking and differentiating healthy vs dSSc as opposed to lSSc vs dSSc and, (B) the distribution of J5 scores contrasting

healthy vs dSSc as opposed to lSSc vs dSSc.

https://doi.org/10.1371/journal.pone.0240986.g003

Table 1. Pathways associated with differentially expressed genes between healthy and dSSc patient biopsy samples.

Rank Database

Name

Pathway Name Impact

Factor

No. Genes in

Pathway

No. Input

Genes in

Pathway

No. Pathway

Genes on Chip

% Pathway

Genes in Input

Corrected p-

value

Sum (PF) KEGG

Pathway ID

1 KEGG TGF-β signaling

pathway

9.104 87 1 71 1.149 0.112591573 6.919863899 1:04350

2 KEGG Wnt signaling

pathway

6.415 152 1 123 0.658 0.18712644 4.738727096 1:04310

3 KEGG ECM-receptor

interaction

4.477 84 1 72 1.19 0.114085731 2.306564066 1:04512

4 KEGG Primary

immunodeficiency

4.446 35 1 21 2.857 0.034674686 1.084276803 1:05340

5 KEGG Ribosome 3.255 101 1 71 0.99 0.112591573 1.071276617 1:03010

6 KEGG Focal adhesion 2.563 203 1 166 0.493 0.244127768 1.153324958 1:04510

No. Genes in Pathway: Number of genes annotated for pathway, No. Input Genes in Pathway: Number of genes in input list that occur in pathway, No. Pathway Genes

on Chip: Number of genes annotated for pathway for which there are probes on microarray chip, % Pathway Genes in Input: Percentage of genes that are annotated for

pathway and included in input set, Corrected p-value: FDR-corrected p-value, Sum (PF): Sum of absolute values of perturbation factors.

https://doi.org/10.1371/journal.pone.0240986.t001
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Genes that differentiate lSSc and dSSc patients have a wide range of

functions

In contrast, the subset of genes with positive silhouette scores will be employed to gain more

insights into the relationship between selected gene sets found to be differentially expressed

between lSSc and dSSc patient biopsy samples based on J5 analysis by enrichment analysis

using PANTHER [33] (Fig 6) shows a high degree of separation but the selected panel of

genes/biomarkers correlates significantly with lipid metabolism.

Mining and selection of genes to create predictive gene index (PDI)

Based on recent literature that shows a link between chemokine signaling and expression of

extracellular matrix molecules, we tested our hypothesis that a curated list of immuno-modu-

latory and extracellular matrix genes is sufficient to predict disease severity or clinical subtype.

We combined pathway- and literature-based methods to define our informed predictive gene

index (PDI). We first searched for genes that appeared in pathways related to inflammation (8

pathways) and extracellular matrix (4 pathways), as defined by the Kyoto Encyclopedia of

Genes and Genomes (KEGG) Database (www.kegg.jp) (Table 3). In addition, significant find-

ings from literature mining led us to include the following genes: TNC, DCN, FN1, COL1A2,

TGFB, CXCR3, and CXCR4. We chose a panel of 60 genes to use as our PDI, which served as

the basis for our predictive modeling approach (Table 4).

Table 2. Pathways associated with differentially expressed genes between lSSc and dSSc patient biopsy samples.

Database

Name

Pathway Name Impact

Factor

No. Genes in

Pathway

No. Input

Genes in

Pathway

No. Pathway

Genes on Chip

% Pathway

Genes in Input

Corrected p-

value

Sum

(PF)

KEGG

Pathway ID

1 KEGG PPAR signaling pathway 11.982 70 4 52 5.714 1.67E-05 9.85E-

01

1:03320

2 KEGG Axon guidance 7.301 129 1 96 0.775 2.47E-01 5.90E

+00

1:04360

3 KEGG MAPK signaling pathway 4.294 272 1 217 0.368 4.75E-01 3.55E

+00

1:04010

4 KEGG Primary

immunodeficiency

3.710 35 1 21 2.857 6.02E-02 8.99E-

01

1:05340

5 KEGG Homologous

recombinant

3.585 28 1 24 3.571 6.84E-02 9.03E-

01

1:03440

6 KEGG Bladder cancer 3.265 42 1 36 2.381 1.01E-01 9.72E-

01

1:05219

7 KEGG Ribosome 2.905 101 1 71 0.99 1.89E-01 1.24E

+00

1:03010

8 KEGG TGF-β signaling pathway 2.700 87 1 71 1.149 1.89E-01 1.04E

+00

1:04350

9 KEGG Hematopoietic cell

lineage

2.660 87 1 67 1.149 1.80E-01 9.43E-

01

1:04640

10 KEGG Alzheimer’s disease 2.061 178 1 135 0.562 3.30E-01 9.51E-

01

1:05010

11 KEGG Cytokine-cytokind

receptor interaction

1.857 263 1 173 0.38 4.01E-01 9.43E-

01

1:04060

12 KEGG Pathways in cancer 1.581 330 1 264 0.303 5.44E-01 9.72E-

01

1:05200

No. Genes in Pathway: Number of genes annotated for pathway, No. Input Genes in Pathway: Number of genes in input list that occur in pathway, No. Pathway Genes

on Chip: Number of genes annotated for pathway for which there are probes on microarray chip, % Pathway Genes in Input: Percentage of genes that are annotated for

pathway and included in input set, Corrected p-value: FDR-corrected p-value, Sum (PF): Sum of absolute values of perturbation factors.

https://doi.org/10.1371/journal.pone.0240986.t002
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Inflammation and ECM based Naïve Bayes classification algorithm

accurately distinguishes between patient gene expression profiles

We next assessed the ability of our 60-gene PDI to distinguish between gene profiles from

healthy and dSSc patient samples, based on gene profile data alone. Using a J5 threshold of 1.4,

18 of the genes from our PDI were identified as being differentially expressed between the

healthy and dSSc groups. Among the most significant genes were DCN and LUM (Table 5).

PACE analysis indicated that the Naïve Bayes model was significant at PACE 0.045 to J5 1.4

(S3 Fig). The model achieved sensitivity of 0.948 and specificity of 1.0. We also assessed

whether our model could accurately differentiate between patients with lSSc and dSSc. When

comparing between disease subtype, using J5 threshold of 1.4, 23 genes were differentially

expressed, with many being related to major histone compatibility complex (MHC) genes

(Table 6). For this comparison, the Naïve Bayes model was significant at PACE 0.05 to J5 1.1

(S4 Fig). The model achieved sensitivity of 0.665 and specificity of 0.814. Lastly, to streamline

the predictive gene index, we selected the genes that had the best predictive power to differen-

tiate between high or low severity and among disease subsets, resulting in a final 12-gene

index-based classifier that could accurately predict patient outcome based on gene expression

profiles from patient skin biopsies (Fig 8). The genes comprising the 12-gene index were

PDGFRA, BMP8A, IL15, CXCL5, STAT6, F13A1, CACNG3, ITGAL, COL6A2, HLA-DQA1,

HLA-DQB1, and HLA-DRB5.

Fig 4. Silhouette analysis of genes differentially expressed between healthy and dSSc patient biopsy samples. (A) The silhouette analysis scores range

from 1.0 to − 1.0, and a larger value for the average silhouette (AS) over all samples to be analyzed indicates a higher degree of cluster separation. Silhouette

coefficients near +1 indicate that the feature is far away from the neighboring clusters. A value of 0 indicates that the sample is on or very close to the decision

boundary between two neighboring clusters, and negative values indicate that those samples might have been assigned to the wrong cluster. (B) This

scatterplot contrasting the positive silhouette scores healthy vs dSSc as opposed to lSSc.

https://doi.org/10.1371/journal.pone.0240986.g004
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Discussion

Fibrotic diseases, including systemic sclerosis (scleroderma, SSc), remain debilitating, costly,

and painful conditions for thousands of patients. Current treatment strategies often fail in seg-

ments of the patient population [34]. These failures have largely been attributed to heterogene-

ity of disease presentation and progression. In addition, current animal models do not capture

the full spectrum of gene expression that underlies various subtypes of human disease [35].

In the absence of definitive biomarkers of SSc pathogenesis, mRSS scores may be con-

founded by the natural history of disease with age, making comparisons across age groups con-

voluted (Fig 1). Demographic data analysis has revealed age, but not race, gender and skin

origin (Fig 2) to be reliable predictors of SSc disease subtype through a Bayesian network and

max-min hill climbing (MMHC) structured learning algorithm (Fig 2A) [36]. Linear projec-

tion modeling revealed various ages amongst dSSc patients included in this study, but lSSc

patients were found to be older with a narrow range in skin scores (Fig 2B). A study of 67 SSc

patients by Perez-Bocanegra et al. also found a likelihood of the lSSc subtype in older patients

as well as increased occurrence and more rapid onset of cardiac and pulmonary symptons

with age [37]. More investigation into age and SSc subtype may stand as both a promising

diagnostic tool and insight into divergent disease subtype development.

Previous studies have used modeling approaches to identify important biomarker genes

and classify SSc patients in a more robust manner than with clinical measurements alone [3,

4]. More recently, investigators have focused on panels comprising a handful of biomarkers to

predict disease severity based on gene expression profiling [2, 5]. However, there have been no

investigations that focused on the correlation between levels of chemokine and inflammation

genes, which are known to be perturbed in disease [38, 39], and the expression levels of ECM

genes. Therefore, in the present study we sought to identify the inflammation and ECM genes

Fig 5. Enrichment analysis using PANTHER of genes differentially expressed between healthy and dSSc patient biopsy samples based on J5 analysis. (A)

Enrichment analysis using PANTHER of the collective set of genes with positive silhouette scores (Protein Analysis Through Evolutionary Relationships, http://pantherdb.

org). (B, D) Enrichment analysis of the collective set of genes with positive silhouette scores using PANTHER, based on the skin-specific protein-protein interactions,

derived from the DifferentialNet database. (C, E) Enrichment analysis of the collective set of genes with positive silhouette scores using PANTHER, based on the skin-

specific gene co-expression interactions, derived from the TCSBN database.

https://doi.org/10.1371/journal.pone.0240986.g005
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that were most important in predicting patient severity or disease subset, using SSc as a proto-

type of fibrotic disease.

To meet this goal, we used both unsupervised and literature-based methods to identify gene

signatures that could distinguish healthy controls from dSSc patients and dSSc patients from

Fig 6. Silhouette analysis of genes differentially expressed between dSSc and lSSc patient biopsy samples. (A) The silhouette analysis scores range from 1.0 to − 1.0,

and a larger value for the average silhouette (AS) over all samples to be analyzed indicates a higher degree of cluster separation. Silhouette coefficients near +1 indicate that

the feature is far away from the neighboring clusters. A value of 0 indicates that the sample is on or very close to the decision boundary between two neighboring clusters,

and negative values indicate that those samples might have been assigned to the wrong cluster. (B) This scatterplot contrasting the positive silhouette scores healthy vs dSSc

as opposed to lSSc.

https://doi.org/10.1371/journal.pone.0240986.g006

Table 3. KEGG pathways used for selection of genes for predictive gene index (PDI). All pathways are Homo

sapien.

Pathway ID Pathway Name

Inflammation hsa04064 NF-κB signaling pathway

hsa05321 Inflammatory bowel disease (IBD)

hsa05323 Rheumatoid arthritis

hsa04062 Chemokine signaling pathway

hsa04668 TNF signaling pathway

hsa04010 MAPK signaling pathway

hsa04610 Complement and coagulation cascades

hsa04066 HIF-1 signaling pathway

Extracellular Matrix hsa04510 Focal adhesion

hsa04350 TGF-β signaling pathway

hsa04512 ECM-receptor interaction

hsa05205 Proteoglycans in cancer

https://doi.org/10.1371/journal.pone.0240986.t003
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Table 4. 60 genes chosen for predictive gene index (PDI).

Gene

Symbol

Gene Name Associated Pathway [31]

TNC TNC Tenascin [KO:K05692] Focal adhesion, [KO:K06236] ECM-receptor interaction

DCN DCN Decorin [KO:K05692] Proteoglycans in cancer, [KO:K16622] TGF-β signaling pathway

FN1 FN1 Fibronectin 1 [KO:K05692] Focal adhesion, [KO:K05692] Proteoglycans in cancer, [KO:K06236] ECM-

receptor interaction

COL1A2 COL1A2 Collagen type 1 alpha 2 [KO:K05692] Focal adhesion, [KO:K06236] ECM-receptor interaction

TGFB TGFB1 Transforming Growth Factor, Beta 1 [KO:K04858] MAPK signaling pathway, [KO:K16622] TGF-β signaling pathway, [KO:

K05692] Proteoglycans in cancer, [KO:K06752] Inflammatory bowel disease (IBD), [KO:

K14624] Rheumatoid arthritis

CXCR3 CXCR3 C-X-C Chemokine Receptor Type 3 [KO:K05726] Chemokine signaling pathway

CXCR4 CXCR4 C-X-C Chemokine Receptor Type 4 [KO:K05726] Chemokine signaling pathway

A2M A2M alpha-2-macroglobulin [KO:K03910] Complement and coagulation cascades

ACTB ACTB actin, beta [KO:K05692] Focal adhesion, [KO:K05692] Proteoglycans in cancer

ATP6V1B2 ATP6V1B2 ATPase, H+ transporting, lysosomal 56/58kDa,

V1 subunit B2

[KO:K02147] [EC:3.6.3.14] Rheumatoid arthritis

BCAR1 BCAR1 breast cancer anti-estrogen resistance 1 [KO:K05726] Chemokine signaling pathway, [KO:K05726] Focal adhesion

BCL3 BCL3 B-cell CLL/lymphoma 3 [KO:K09258] TNF signaling pathway

BMP8A BMP8A bone morphogenetic protein 8a [KO:K16622] TGF-β signaling pathway

CACNA2D1 CACNA2D1 calcium channel, voltage-dependent, alpha 2/

delta subunit 1

[KO:K04858] MAPK signaling pathway

CACNG6 CACNG6 calcium channel, voltage-dependent, gamma

subunit 6

[KO:K04871] MAPK signaling pathway

CAV2 CAV2 caveolin 2 [KO:K12958] Focal adhesion, [KO:K12958] Proteoglycans in cancer

CCL2 CCL2 C-C motif chemokine ligand 2 [KO:K14624] TNF signaling pathway, [KO:K14624] Rheumatoid arthritis, [KO:K14624]

Chemokine signaling

CCL4 CCL4 C-C motif chemokine ligand 4 [KO:K12964] NF-κB signaling, [KO:K12964] Chemokine signaling pathway

CCR5 CCR5 C-C motif chemokine receptor 5 (gene/pseudogene) [KO:K04180] Chemokine signaling pathway

CD86 CD86 CD86 molecule [KO:K05413] Rheumatoid arthritis

COL1A2 COL1A2 collagen, type I, alpha 2 [KO:K06236] Focal adhesion, [KO:K06236] ECM-receptor interaction

COL6A2 COL6A2 collagen, type VI, alpha 2 [KO:K06238] Focal adhesion, [KO:K06238] ECM-receptor interaction

COL6A3 COL6A3 collagen, type VI, alpha 3 [KO:K06238] Focal adhesion, [KO:K06238] ECM-receptor interaction

CREB3L3 CREB3L3 cAMP responsive element binding protein 3-like

3

[KO:K09048] TNF signaling pathway

CXCL5 CXCL5 chemokine (C-X-C motif) ligand 5 [KO:K05506] Rheumatoid arthritis, [KO:K05506] Chemokine signaling, [KO:K05506]

TNF signaling pathway

DDX58 DDX58 DEAD (Asp-Glu-Ala-Asp) box polypeptide 58 [KO:K12646] [EC:3.6.3.14] NF-κB B signaling pathway

EIF4B EIF4B eukaryotic translation initiation factor 4B [KO:K03258] Proteoglycans in cancer

F13A1 F13A1 coagulation factor XIII, A1 polypeptide [KO:K03917] [EC:2.3.2.13] Complement and coagulation cascades

F7 F7 coagulation factor VII (serum prothrombin conversion

accelerator)

[KO:K01320] [EC:3.4.21.21] Complement and coagulation cascades

FGF19 FGF19 fibroblast growth factor 19 [KO:K04358] MAPK signaling pathway, [KO:K04358] Proteoglycans in cancer

FGF5 FGF5 fibroblast growth factor 5 [KO:K04358] MAPK signaling pathway, [KO:K04358] Proteoglycans in cancer

HCLS1 HCLS1 hematopoietic cell-specific Lyn substrate 1 [KO:K06106]Proteoglycans in cancer

HLA-DMA HLA-DMA major histocompatibility complex, class II, DM

alpha

[KO:K06752]Inflammatory bowel disease (IBD), [KO:K06752] Rheumatoid arthritis

HLA-DOA HLA-DOA major histocompatibility complex, class II, DO

alpha

[KO:K06752]Inflammatory bowel disease (IBD), alpha [KO:K06752] Rheumatoid arthritis

HLA-DPA1 HLA-DPA1 major histocompatibility complex, class II, DP

alpha 1 [

KO:K06752] Inflammatory bowel disease (IBD), [KO:K06752] Rheumatoid arthritis

HLA-DPB1 HLA-DPB1 major histocompatibility complex, class II, DP

beta 1

[KO:K06752] Inflammatory bowel disease (IBD), [KO:K06752] Rheumatoid arthritis

(Continued)
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lSSc patients. Our unsupervised, J5-based method revealed several genes that were differen-

tially expressed between healthy and dSSc patients (Fig 3, S1 Fig). In several cases, our method-

ology confirmed associations that had previously been noted. We found Wnt signaling, TGF-β
signaling, and ECM associated genes to be upregulated (Table 1), which has been confirmed at

the mRNA and miRNA level in SSc fibroblasts [40]. The Wnt/β -catenin signaling pathway is

over activated in SSc patients and expression of WIF1, a Wnt pathway antagonist, is decreased

in SSc patients [41], likely through a reactive oxygen species-dependent transcriptional repres-

sion mechanism [42]. WIF1 has been posed as part of a biomarker panel for the prediction of

skin involvement in dSSc [2]. Therefore, we were not surprised to find that our J5 analysis

showed WIF1 was differentially expressed between expression profiles of healthy and dSSc

Table 4. (Continued)

Gene

Symbol

Gene Name Associated Pathway [31]

HLA-DQA1 HLA-DQA1 major histocompatibility complex, class II, DQ

alpha 1

[KO:K06752] Inflammatory bowel disease (IBD), [KO:K06752] Rheumatoid arthritis

HLA-DQA2 HLA-DQA2 major histocompatibility complex, class II, DQ

alpha 2

[KO:K06752] Inflammatory bowel disease (IBD), [KO:K06752] Rheumatoid arthritis

HLA-DQB1 HLA-DQB1 major histocompatibility complex, class II, DQ

beta 1

[KO:K06752] Inflammatory bowel disease (IBD), [KO:K06752] Rheumatoid arthritis

HLA-DRB5 HLA-DRB5 major histocompatibility complex, class II, DR

beta 5

[KO:K06752] Inflammatory bowel disease (IBD), [KO:K06752] Rheumatoid arthritis

HRAS HRAS Harvey rat sarcoma viral oncogene homolog [KO:K02833] Chemokine signaling pathway, [KO:K02833] MAPK signaling

Pathway, [KO:K02833] Focal adhesion, [KO:K02833] Proteoglycans in cancer

IKBKG IKBKG inhibitor of kappa light polypeptide gene enhancer

in B-cells, kinase gamma

[KO:K07210] MAPK signaling pathway, [KO:K07210] NF-κB signaling pathway, [KO:

K07210] Chemokine signaling pathway, [KO:K07210] TNF signaling pathway

IL15 IL15 interleukin 15 [KO:K05433] TNF signaling pathway, [KO:K05433] Rheumatoid arthritis

IL23A IL23A interleukin 23, alpha subunit p19 [KO:K05426] Inflammatory bowel disease (IBD), [KO:K05426] Rheumatoid arthritis

ITGAL ITGAL integrin, alpha L (antigen CD11A (p180),

lymphocyte function-associated antigen 1

[KO:K05718] Rheumatoid arthritis

ITGB1 ITGB1 integrin, beta 1 (fibronectin receptor, beta

polypeptide, antigen CD29 includes MDF2, MSK12)

[KO:K05719] ECM-receptor interaction, [KO:K05719] Focal adhesion, [KO:K05719]

Proteoglycans in cancer

ITGB2 ITGB2 integrin, beta 2 (complement component 3 receptor

3 and 4 subunit)

[KO:K06464] Rheumatoid arthritis

LAMB1 LAMB1 laminin, beta 1 [KO:K05636] Focal adhesion, [KO:K05636] ECM-receptor interaction

LUM LUM lumican [KO:K08122] Proteoglycans in cancer

MSN MSN moesin [KO:K05763] Proteoglycans in canceR

PDGFC PDGFC platelet derived growth factor C [KO:K05450] Focal adhesion

PDGFRA PDGFRA platelet-derived growth factor receptor, alpha

polypeptide

[KO:K04363] [EC:2.7.10.1] MAPK signaling pathway, [KO:K04363] [EC:2.7.10.1] Focal

adhesion

PLAUR PLAU plasminogen activator, urokinase [KO:K01348] [EC:3.4.21.73] Proteoglycans in cancer, [KO:K01348] [EC:3.4.21.73] NF-κB

signaling pathway, [KO:K01348] [EC:3.4.21.73] Complement and coagulation cascades

RAC2 RAC2 ras-related C3 botulinum toxin substrate 2 (rho

family, small GTP binding protein Rac2)

[KO:K07860] Focal adhesion, [KO:K07860] Chemokine signaling pathway, [KO:K07860]

MAPK signaling pathway

SMAD1 SMAD1 SMAD family member 1 [KO:K04676] TGF-β signaling pathway

SP1 SP1 Sp1 transcription factor [KO:K04684] TGF-β signaling pathway

STAT6 STAT6 signal transducer and activator of transcription 6,

interleukin-4 induced

[KO:K11225] Inflammatory bowel disease (IBD)

TGFBR2 TGFBR2 transforming growth factor, beta receptor II (70/

80kDa)

[KO:K04388] [EC:2.7.11.30] TGF-β signaling pathway, [KO:K04388] [EC:2.7.11.30]

MAPK signaling pathway

TIMP1 TIMP1 TIMP metallopeptidase inhibitor 1 [KO:K16451] HIF-1 signaling pathway

VAV1 VAV1 vav 1 guanine nucleotide exchange factor [KO:K05730] Chemokine signaling pathway, [KO:K05730] Focal adhesion

https://doi.org/10.1371/journal.pone.0240986.t004
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Table 5. Genes from predictive gene index that were differentially expressed between healthy control and dSSc

patient biopsy samples.

J5 Rank Gene ID J5 Score

1 DCN 3.552

2 LUM -2.729

3 HLA-DQA1 2.198

4 ITGAL 2.067

5 HLA-DQA2 1.907

6 LAMB1 -1.814

7 CCL4 -1.766

8 COL6A2 1.738

9 BCL3 -1.725

10 IKBKG -1.723

11 F13A1 1.635

12 TIMP1 -1.621

13 PDGFRA 1.599

14 COL6A3 -1.496

15 VAV1 -1.487

16 DDX58 -1.467

17 HCLS1 -1.447

18 CACNG6 -1.405

https://doi.org/10.1371/journal.pone.0240986.t005

Table 6. Genes from predictive gene index that were differentially expressed between lSSc and dSSc patient biopsy

samples.

J5 Rank Gene ID J5 Score

1 HLA-DQA1 3.11

2 F13A1 3.014

3 HLA-DRB5 2.812

4 STAT6 2.679

5 HLA-DQA2 2.296

6 ITGAL 2.236

7 DCN 1.94

8 COL6A2 1.93

9 ATP6V1B2 1.729

10 BMP8A 1.622

11 IL23A -1.572

12 FGF5 -1.561

13 CACNG6 -1.522

14 CREB3L3 -1.441

15 HRAS 1.426

16 IKBKG -1.397

17 LUM -1.372

18 CACNA2D1 1.37

69 IL15 1.345

20 HLA-DQB1 1.336

21 CCL4 -1.307

22 PDGFRA 1.245

23 HLA-DPB1 1.109

https://doi.org/10.1371/journal.pone.0240986.t006
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Fig 8. Gene expression grid showing expression of genes in 12-gene panel capable of predicting disease features. Color of boxes indicates

directionality of expression differences with red indicating high expression and green indicating low expression. Patient samples highlighted in

red were all from dSSc patients and were higher severity (mean mRSS 35.6); samples highlighted in blue were all from lSSc patients and were

lower severity (mean mRSS 7.73).

https://doi.org/10.1371/journal.pone.0240986.g008

Fig 7. Enrichment analysis using PANTHER of genes differentially expressed between lSSc and dSSc patient biopsy samples based on J5 analysis. (A) Enrichment

analysis using PANTHER of the collective set of genes with positive silhouette scores (Protein Analysis Through Evolutionary Relationships, http://pantherdb.org). (B, D)

Enrichment analysis of the collective set of genes with positive silhouette scores using PANTHER, based on the skin-specific protein-protein interactions, derived from the

DifferentialNet database. (C, E) Enrichment analysis of the collective set of genes with positive silhouette scores using PANTHER, based on the skin-specific gene co-

expression interactions, derived from the TCSBN database.

https://doi.org/10.1371/journal.pone.0240986.g007
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patients. Our analysis also highlighted ECM protein cartilage oligomeric matrix protein

(COMP) (Fig 4, S1 Fig), a gene that is overexpressed in skin of SSc patients [43]. Serum con-

centration of COMP is associated with mortality risk in SSc patients and it is one gene in a four

gene biomarker panel proposed by Farina et al. for assessing the severity of dSSc [4, 5]. We

also found that expression of fibrinogen-like protein 2 (FGL2), a glycoprotein that is increased

in serum of SSc patients [32], was different between healthy and dSSc patients (Fig 4, S1 Fig).

Further analysis showed that the genes characterizing healthy or dSSc profiles were ranked as

having high impact on pathways that are critical to the pathogenesis of fibrosis, including

TGF-β signaling, Wnt signaling, ECM-receptor interaction, and immunodeficiency [44–46].

Along with these genes, our analysis allowed us to identify several genes that warrant further

investigation, including genes related to immune response (IGH, ALOX15B), growth factor

signaling (PDGFRL), and extracellular matrix adhesion (LMNB1) (Fig 4, S1 Fig).

Limited (lSSc) and diffuse (dSSc) scleroderma are clinically defined subtypes that differ in

both clinical presentation and in terms of which organs are most commonly affected by dis-

ease. Patients with dSSc have severe skin involvement, which often rapidly spreads across the

body and frequently have cardiac and renal involvement and interstitial lung disease [47, 48].

While skin involvement in lSSc patients is usually confined to the hands and face, these

patients are more likely to develop pulmonary arterial hypertension than dSSc patients [49]. In

the context of gene expression, previous studies have shown subset-level differences in DNA

methylation patterns [50], TGF-β signaling [51], and immune response genes [52] between

dSSc and lSSc patients, particularly in fibroblastic gene signatures, the cell type primarily

responsible for matrix production [53]. Our J5 analysis identified several genes that were dif-

ferentially expressed between these disease subtypes (Fig 3, S2 Fig). Matrix metalloproteinases

(MMPs) are known to play a central role in fibrosis through their ability break down ECM

constituents. Recent studies have also suggested a role for MMP upregulation in sustained

inflammation through the immune cells chemoattraction and proliferation [54, 55], particu-

larly in older individuals [56], suggesting a role of MMP’s in the highly interdependent age

and skin score correlations revealed through our Bayesian network projections (Fig 2). Along

with several other MMPs and their inhibitors, levels of MMP-1 show close association with

SSc, and we found that gene expression differed between dSSc and lSSc patient profiles (Fig 6).

Serum levels of MMPs are increased in a subset of patients [57], polymorphisms are associated

with various clinical features of disease [58], and anti-MMP1 antibodies are elevated in lSSc

patients [59]. To our knowledge, this is the first study indicating that transcript levels of

MMP1 may differ between lSSc and dSSc patients. Interestingly, an earlier study showed that

serum levels of MMP9 were significantly higher in dSSc than lSSc patients [60]. Hence, further

investigation may show MMPs to be a diagnostic marker of SSc disease subtype beyond that of

SSc at large.

We also found that lipoprotein lipase (LPL) was differentially expressed between disease

subtypes (Fig 6, S2 Fig). A 2005 study found that antibodies against LPL were present in

about a third of SSc patients and were associated with organ involvement. Interestingly, the

authors found no difference in levels of anti-LPL between dSSc and lSSc patients [61]. Based

on the evidence presented within the literature [62], our selected panel of genes/biomarkers

differentiating lSSc and dSSc patients correlates significantly with lipid metabolism (Fig 7)

which could lead to a minimally invasive means for early detection and monitoring of disease

[63, 64].

Similar to the analysis of healthy controls and dSSc patients, our comparison of gene pro-

files between patients with dSSc and lSSc revealed several novel, potential biomarkers that

might be of interest for future study. Our pathway analysis showed PPAR signaling (Table 1)

as a top pathway associated with genes expressed between disease subsets. Recent work shows
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that levels of PPAR-γ, which can antagonize TGF-β signaling, are low and dysregulated in

patients with SSc [65, 66].

Classification models built using these differentially expressed genes were highly accurate

in discerning between severity of disease or disease subtype, indicating that our methods iden-

tified panels of genes that were highly correlated with clinical features of interest. However,

these gene lists were not rooted in known associations with disease that link to mechanisms of

inflammation and extracellular matrix production. Instead of relying on a completely non-

parametric approach, we aimed to develop a gene signature that would meaningfully relate to

what is known about the development of fibrotic diseases. Based on the pathways identified in

the first analyses, we used the available literature to hone in on categories central to the patho-

genesis of SSc, extracellular matrix production and inflammation, and mined the literature

and known pathways to develop our predictive gene index (PDI). We included specific chemo-

kines and receptors that have been tied to fibrotic diseases, including CXCL3, CXCL4, CCL2,

and CCR5 and extracellular matrix molecules that are known to relate to disease such as

COL1A2 and LUM [67–70]. Together, our study underscores the importance of the 60 genes

(and associated pathways) that we chose in differentiating between healthy and disease, and

disease subsets. While it is known that modulation of the ECM and inflammation are key to

the development of fibrosis, it was unclear which genes were most closely associated with pro-

gression of disease or which defined disease subtypes. The subset of our 60 genes that were dif-

ferentially expressed between groups were highly accurate in discerning between different

conditions when applied to a Naïve Bayes model, indicating that the regulation of these inflam-

matory and ECM genes may be closely tied to disease pathology. Thus, the ability of our model

to faithfully predict severity based on these genes highlights their importance in disease patho-

genesis and sheds light on this important aspect of SSc research. Our 12-gene panel represents

the genes that might be of the highest relevance to distinguishing between disease states (Fig

8), when considered together.

Furthermore, genes from the predictive gene index identified herein may represent those

that should be investigated to develop more clinically representative animal models for thera-

peutic testing. Recent work has highlighted the fact that murine models commonly used to

study SSc do not capture the heterogeneity of human disease [35]. Single gene mutations and

knockouts are not sufficient to recapitulate the unique, complex nature of SSc, which leads to

poor understanding of disease and therapeutic efficacy. We propose that identification of a

gene signature associated with SSc can be considered when developing small animal models

with multiple mutations.

The utility of this PDI could be increased if it would be used to predict changes in severity.

A longitudinal study would inform whether this model could be used as a prognostic indicator.

Furthermore, some lSSc patients progress into dSSc with time. This parallels our findings that

the overall discrepancies in gene expression level between dSSc and lSSc skin biopsies is

reduced as reflected by the shift of both negative and positive J5 score towards the center in

lSSc vs dSSc relative to healthy vs dSSc (Fig 3). A longitudinal study could also be used to eval-

uate whether any of the “incorrect” prediction classifications from our model that distin-

guishes lSSc patients from dSSc patients would actually be correct over time and provide

insight into those mechanisms of disease progression that currently go undetected.

Another extension of this model is to include other clinical features to stratify patients by

characteristics such as organ involvement, autoantibody profile, or to evaluate efficacy of treat-

ments. Future research should investigate the biological mechanisms by which these chemo-

kines and receptors function to modulate production and/or turnover of ECM constituents in

disease.
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Methods

Data retrieval

Whole-genome DNA microarrays were performed on skin biopsies taken from 34 individuals:

27 from distinct SSc subsets, and 6 healthy controls were used. Sixty-one skin biopsies (multi-

ple biopsies per patient in some cases) and 14 technical replicates were analyzed, resulting in a

total of 75 microarray hybridizations. All 75 microarray experiments were included. Skin biop-

sies were taken from the forearm or lower back. All data are publicly available at the National

Center for Biotechnology Information GEO database (http://www.ncbi.nlm.nih.gov/geo;

Accession Number: GSE9285) and were originally reported by Milano et al. [29].

Efficiency analysis

Median, raw-intensity, expression values were formatted and annotated by the GPCL-Bioin-

formatic Analysis Core. Methods for normalization and identification of differentially

expressed genes were evaluated using the objective function of maximum internal consistency

using efficiency analysis (measured as the consistency in finding the method, including nor-

malization, test and threshold, with the most reproducible set of retained genes during split

dataset perturbations). The optimal cut off was selected as the maximum peak of internal con-

sistency at overlap (0 <N3 < N max). The optimized methods for the two comparisons were

then applied to the entire data set for each comparison using caGEDA [28]. False discovery

rate estimation was conducted using a two-step method [71]. Differentially expressed genes

were identified by efficiency analysis (EA), which finds the optimal combination of normaliza-

tion, transformation, and feature selection techniques to find the most internally consistent set

of differentially expressed genes, using AutoEA software [72].

Tests for differential expression

Data transformation and normalization were optimized using efficiency analysis among and

between groups. In all comparisons, differentially expressed genes were identified using the J5

test, which is a gene-specific ratio that compares the mean difference in expression intensity

between two groups that are being compared to the average mean group difference of all genes

in the array. The J5 score was calculated by dividing the mean difference between comparative

by the average absolute mean difference of all genes in the data set. Its sign indicates the direc-

tionality.

J5i ¼
�Ai �

�Bi
1

m

Pm
j¼1
j�Aj �

�Bjj

This test is especially useful in cases where there are no accurate estimates of variance,

when T-tests are likely to produce high false discovery rates. Analyses were performed using

the caGEDA software [28].

Computational prediction

A stringent method was used to explore genes that correlate with the mRSS. Various types of

cross-validation, and optimized prediction modeling were undertaken; feature selection (iden-

tifying differentially expressed genes) was appropriately nested within the cross-validation

loop. Multiple splits between training and test sets were used to minimize stochastic perfor-

mance due to particular splits. Alternative methods for transformation and normalization

were explored using the caGEDA software [28]. Specific classes of prediction modeling
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algorithms included Naïve Bayes, logistic regression, random forests, and a genetic-algorithm

k of m model in which the model is optimized toward a weighted, achieved classification

error. Results were validated using Permutation Achieved Classification Error (PACE) analysis

[73], a technique which uses permutations of the dataset to assess the statistical significance of

each prediction models’ achieved classification errors at given levels. PACE performance sta-

tistic of the classifier on true data samples and validates the consistent behavior of the classifier

on the same data with randomly reassigned class labels. PACE analysis was use to assess signif-

icance of classification results we achieved from published data sets.

Summary scores were generated for each patient based on expression of the genes in our

60-gene predictive gene index. The sum of squared differences for the gene panel was used to

rank all samples from high to low. Cut points for classifying new samples in groups along the

index were derived based on the accuracy of the resulting classification rules and was evaluated

using internal cross-validation. The final reduced set of 12 genes was evaluated as an index-

based classifier.

Functional analysis

Probe identifications and fold-change values for differentially expressed genes were then sub-

mitted to Pathway Express (Onto-Tools, Detroit, MI) for impact analysis [74] and further

investigation of known genes, molecular networks, biological pathways, and functions. Impact

analysis uses a hypergeometric test to identify canonical pathways that are significantly over-

represented in the list of differentially expressed genes compared to their expected representa-

tiveness, given the complement of genes on the original microarray, using KEGG pathways as

a reference [75]. The iPLEX (San Diego, CA) genotype data analysis was conducted to find an

association with the outcome using the Fisher exact test. Further analysis of the differentially

expressed genes was conducted with open-access online bioinformatics tools (e.g., DAVID,

Frederick, MD) [76] and programs licensed by the University of Pittsburgh Health Sciences

Library (e.g., GeneSpring, Agilent technologies, Santa Clara, CA) for cross-referencing and

data mining purposes. The pathways and networks identified in Ingenuity Pathway Analysis

(IPA) (Qiagen) were used to guide interpretation of the potential function of the differentially

expressed genes in relation to the biology of the microarray analyses.

All visualizations were made using R (cran.r-project.org) or Python (www.python.org) pro-

gramming languages.

Supporting information

S1 Table. Descriptive statistics of skin donor biopsy score as function of the donor demo-

graphics.

(DOCX)

S2 Table. Bayesian network model conditional probabilities of disease type.

(DOCX)

S1 Fig. Gene expression grid showing expression of genes identified by J5 analysis as differ-

entially expressed between genomic profiles of healthy controls and dSSc patient biopsy

samples. Color of boxes indicates directionality of expression differences with red indicating

high expression and green indicating low expression.

(TIF)

S2 Fig. Gene expression grid showing expression of genes identified by J5 analysis as differ-

entially expressed between genomic profiles of dSSc and lSSc patient biopsy samples. Color

of boxes indicates directionality of expression differences with red indicating high expression
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and green indicating low expression.

(TIF)

S3 Fig. PACE analysis of Naïve Bayes model for classification of genomic profiles from

healthy control compared to dSSc patient biopsy samples. The model was significant at

PACE 0.045 up to J5 1.4.

(TIF)

S4 Fig. PACE analysis of Naïve Bayes model for classification of genomic profiles from

lSSc compared to dSSc patient biopsy samples. The model was significant at PACE 0.05 up

to J5 1.1.

(TIF)
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