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Abstract

Future phenolic research findings using a multidisciplinary approach will ensure

profitability and sustainability of specialty crop industries, while also improving

the nutritional and economic choices available to increasingly health- and envi-

ronmentally conscious consumers. Recent examples of phenolics used in com-

mercial and research scenarios, and new phenolic research discoveries are

discussed. Despite being a heavily researched topic, there remains a need to

identify, develop, and define analyses targeted for specific quality-related plant

metabolites.

Introduction

Improved consumer awareness about healthy food choices

has resulted in an increase in market demand and con-

sumption of small fruits, herbs, tree nuts, and vegetables.

Although a number of market segments are undergoing

revitalized product diversity, the majority of the cases

cited in this review are either fruit or fruit products

(except one example). For example, the edible desirability

of fruits stems from their primary and secondary metabo-

lites that contribute toward fruit quality. Phenolics make

up a small portion of the compounds present in a fruit

or its final product, but they are crucial for their contri-

bution to appearance (color, haze), taste (bitterness and

astringency), storability, and potential health benefits

(Cheynier 2005; Lee et al. 2012; Tomas-Barberan and An-

dres-Lacueva 2012). Plant phenolics are a diverse group

of plant secondary metabolites with over 6000 identified

(Maeda and Dudareva 2012). Phenolics remain a heavily

researched topic due to their roles within plants, and

importance to consumers. These compounds are impli-

cated in having several specific plant functions, including

ultraviolet (UV) radiation protection, pigmentation, anti-

fungal/antimicrobial properties, hormonal signaling,

attraction/repulsion of pollinators and seed dispersers,

and nodule production (Agati et al. 2012).

Many variables (Fig. 1) affect the ultimate phenolic

content of fruit and fruit products, including horticul-

tural, genetic, environmental, and processing factors (Lee

et al. 2002, 2004a,b, 2008b, 2012; Lee and Wrolstad 2004;
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Lee and Finn 2007; Tarara et al. 2008; Lee and Martin

2009; Lee 2010a; Lee and Skinkis 2013; Lee and Steenw-

erth 2013; Mosse et al. 2013; Schreiner et al. 2013; Thorn-

ton et al. 2013). The study of phenolics is very complex

as other compounds (e.g., free amino acids, carbohy-

drates, organic acids) involved in plant metabolite biosyn-

thesis also contribute to quality appearance and flavor

parameters, and affect fermentation and processing

behavior. Significant additional research is needed to fully

understand the role of phenolics in potential human

health benefits (Tomas-Barberan and Andres-Lacueva

2012), but that area is not within the scope of this

review.

Phenolics can be divided into two groups based on

their structure: nonflavonoids (phenolic acids, stilbenes,

and ellagitannins) and flavonoids (anthocyanins, flavonol-

glycosides, flavanol monomers, and proanthocyanidins),

and both have been well reviewed regarding its distribu-

tion in plant, resulting food, and structural elucidation

(Cheynier 2005; Arapitas 2012; Lee et al. 2012). Recent

incidents of product adulteration or mislabeling, when

genuine phenolic-containing fruit juices and concentrates

command a high price premium, highlight their con-

sumer regard and need for specific testing (Penman et al.

2006; Lee 2013; Primetta et al. 2013). A 2008 import wine

scandal, where wine labeled and sold as French “Pinot

noir” in the United States was actually a blend of “Mer-

lot” and “Syrah” wine (final settlement approved in

2012), emphasizes the importance of widening our

phenolic profile databases (e.g., Neveu et al. 2010; www.

phenol-explorer.eu) for fruit phenolic authentication.

More accurate fruit phenolic identification requires reli-

able and effective analytical methods. The objective of this

review was to provide a brief overview of the importance,

measurements, and applications of phenolics by providing

actual examples and recent research findings.

Phenolic measurements and challenges

While the need for better identification of phenolic mono-

mers is widely recognized, the predominant fruit phenolics

are phenolic polymers (i.e., proanthocyanidin-condensed

tannins and ellagitannin-hydrolyzable tannins), for which

there is very little literature. This is a much-needed area of

research that will aid investigations in many fields. Among

them are the roles phenolic polymers play in plant devel-

opment (Salminen and Karonen 2011), and phenolic

analyses of ellagitannin evolution in wine (introduced by

wood; Versari et al. 2013). Polymers present a complex

puzzle to decipher as they are extremely challenging to iso-

late, purify, and analyze (Lee et al. 2008b, 2012; Koerner

et al. 2009; Lee 2010a, 2013; Lee and Rennaker 2011;

Arapitas 2012). Despite extreme care, even routine han-

dling of samples prior to analysis (e.g., freezing, gentle

extraction, or purification steps) can alter native polymer

structures and degrade or break down the compounds

under observation (Hakkinen et al. 2000; Hager et al.

2008; Gasperotti et al. 2010; Salminen and Karonen 2011).

Because their structural heterogeneity has made them

frequently overlooked, few methods or standard reference

materials are available (Vrhovsek et al. 2006, 2008; Gasp-

erotti et al. 2010; Salminen and Karonen 2011; Arapitas

2012; Lee et al. 2012). The gaps in quantitative hydrolysis

and analysis of the phenolic polymers data need to be

filled, while method performance characteristics have to be

defined for researchers unfamiliar with phenolic analyses.

There are numerous phenolic extraction and analysis

techniques reported in the literature (Wrolstad et al. 2005;

Lee et al. 2012) but very few properly validated methods

are available. Validated methods are important as they

allow comparison among laboratories (Lee et al. 2005b;

Brooks et al. 2013). The values obtained by using validated

methods have known reproducibility, repeatability, and

defensibility (Lee et al. 2005b; Brooks et al. 2013); the

techniques have clearly evaluated and defined performance

characteristics (Lee et al. 2005b, 2012; Brooks et al. 2013).

Despite the difficulty and cost in validating methods, the

importance of well-defined approaches has been high-

lighted during recent controversies regarding condensed

tannin analyses (Brooks et al. 2008), anthocyanin analyses

(Brooks et al. 2013), and in vitro antioxidant analyses

(Gilsenan 2011; Agati et al. 2012; Berger et al. 2012;

Tomas-Barberan and Andres-Lacueva 2012; Chiva-Blanch

and Visioli 2013). Recent problems with tannin analyses

Figure 1. A list of biotic and abiotic factors that can influence fruit

phenolics prior to harvest, processing, sample preparation, and

analysis.
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(Harbertson et al. 2003) stemmed from a lack of reproduc-

ibility and repeatability, as an independent interlaboratory

review demonstrated (Brooks et al. 2008). Many U.S. win-

eries were utilizing this nonvalidated tannin method as

part of their winemaking decisions (e.g., duration of skin

and seed contact time), only to later realize numerous

method restrictions existed (Brooks et al. 2008; Jensen

et al. 2008) and that interlaboratory study-obtained values

varied widely (Brooks et al. 2008). Some corporations pro-

vide grower bonuses based on harvested fruit color content

(Lee 2013). The importance of fully developed and vali-

dated methods, in the case of phenolics, can be directly

linked to profit (Lee 2013), from value-grading produce to

marketing claims for consumer attention (Mercurio et al.

2010; Lalor et al. 2011; Caceres et al. 2012; Lawless et al.

2012). However, some commercial product manufacturers

make claims that are not true. For example, although they

allege high phenolic levels, cranberry supplements per dose

contained less proanthocyanidins than a serving of cran-

berry juice cocktail (Lee 2013).

Increased availability and accessibility of mass spec-

trometry (MS) has led some researchers (Wu and Prior

2005; Seeram et al. 2006; Wu et al. 2006; Prior et al.

2009; Cuevas-Rodriguez et al. 2010; Kellogg et al. 2010)

in misidentifying and simply missing main peaks for phe-

nolic identification by not utilizing co-chromatography of

well-established plant materials, peak UV–visible (UV–
Vis) spectra comparison, retention time, etc. The current

plant phenolic analysis trend is untargeted and targeted

metabolomic analyses (Wishart 2008; Patti 2011; Vrhov-

sek et al. 2012). Progress is hampered by the high cost of

acquiring, operating, and maintaining the instrumentation

needed for those techniques (i.e., high-resolution mass

spectrometers or nuclear magnetic resonance spectrome-

ters), and by the lack of well-established or standard

procedures and compound identifications (Scalbert et al.

2009; Arapitas 2012; Lee et al. 2012). While there are

analytical uses for untargeted and targeted plant meta-

bolomics, the technologies have limitations (well reviewed

by Wishart 2008; Scalbert et al. 2009), and traditional

phenolic research techniques of grouped-by-similar-struc-

tural classes remain valuable. There is a need for well-

defined, specifically targeted analytical methods for analy-

ses for phenolics in small fruits; similar to methods that

have been developed in the past (Lee and Harnly 2005;

Lee et al. 2005a,b, 2008a,b, 2009; Lee and Finn 2007; Ko-

erner et al. 2009; Lee and Scagel 2009, 2010; Lee 2010a,

2013; Lee and Schreiner 2010; Lee and Rennaker 2011).

Systematic phenolic identification procedures that only

require customary tools, alongside modern contemporary

methods, should be considered part of any phenolic

research strategy to improve the accuracy and reliability

of metabolite identification.

Examples demonstrating phenolic research
application and opportunities

Although there is a large body of research on phenolics,

there are still opportunities to make new discoveries and

solve disparities among results, four examples are pro-

vided from our research efforts:

(1) The second major basil (Ocimum basilicum L.) leaf

phenolic was recently identified as chicoric acid that

has similar UV–Vis spectra and a mass fragmentation

pattern to grapes’ main phenolic acid, caftaric acid

(Lee and Scagel 2009, 2010; Lee 2010b; Scagel and

Lee 2012). Chicoric acid easily and rapidly degrades

during customary extraction procedures and process-

ing (Stuart and Wills 2003; Lee and Scagel 2009; Lee

2010b), and we suspect this was one reason the iden-

tification was overlooked for so long. The importance

of the sample extraction step for high-phenolic reten-

tion was demonstrated by introducing a straightfor-

ward blanching step (Lee and Scagel 2009). This line

of investigation can also directly improve commercial

processing as well (Lee 2010b), as we found that even

basil prepared by freeze-drying (gentler drying than

the ordinary open air process) contained 78% less

phenolics than it had at peak concentration (Lee

2010b). Sample preparation is often neglected in

quality analysis research, although it is the critical

first chemical analysis step that can affect results

(Kim and Verpoorte 2010; Lee and Schreiner 2010;

Lee and Rennaker 2011; Lee et al. 2012). Continued

refinements of sample handling, preparation, hydroly-

sis, and purification steps that optimize phenolic

retention will advance research evaluations and pro-

duction processes.

(2) Identity of the major black raspberry (Rubus occiden-

talis L.) anthocyanin was clarified (Dossett et al. 2008,

2010, 2011; Lee et al. 2012). Others (Wu and Prior

2005; Seeram et al. 2006; Wu et al. 2006; Prior et al.

2009) had previously relied on MS results and incor-

rectly identified cyanidin-3-xylosylrutinoside as cyani-

din-3-sambubioside-5-rhamnoside. Adding to the

confusion, these incorrectly identified black raspberry

anthocyanins were unintentionally then used for in vi-

tro and in vivo studies in the hope of better under-

standing their pharmacokinetic mechanisms (Seeram

et al. 2006; Wu et al. 2006; Prior et al. 2009). How-

ever, without correct identifications, phenolic con-

sumption-tracking findings become questionable.

Researchers conducting animal and human studies on

the benefits of phenolics, which inadvertently rely on

inaccurate work, could be tracing unintended com-

pound metabolic pathways. This emphasizes the

importance of correct identification of the starting
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material for the benefit of other scientific studies

downstream.

(3) A wild black raspberry genotype bearing fruit with a

unique anthocyanin profile was discovered (Dossett

et al. 2011). The plant was part of a wild-germplasm

collection that was grown in a research plot as part of

investigations on genetic diversity for breeding

improved black raspberry cultivars. Fruit of this geno-

type lacked anthocyanins containing rutinosides. Their

distinctive profile provides an opportunity to study

the genetic control over that portion of the anthocya-

nin biosynthetic pathway. Even in the widely studied

Rubus fruit, opportunities remain for discovering new

anthocyanin profiles. Continued work to develop and

deploy analytical methods in characterizing unique

plant phenolic profiles for improving fruit quality that

can be used in guiding breeding programs, and identi-

fying adulteration in food investigations is needed.

4) The confusion surrounding the identity of Korean

black raspberry (bokbunja; Rubus coreanus Miq.)

plant, fruit, and anthocyanin profile was clarified (Lee

et al. 2013; see Fig. 2). Most Korean black raspberry

growers are unknowingly growing R. occidentalis L.

(not bokbunja), as demonstrated by Lee et al. (2013)

that the pigment fingerprint is unique for each of the

two species. This allows its use as a taxonomy crite-

rion for food authenticity/adulteration work (see

Fig. 2). Bokbunja fruit contained the following antho-

cyanins: cyanidin-3-glucoside, cyanidin-3-rutinoside,

and pelargonidin-3-glucoside, with pelargonidin-3-glu-

coside not detected in all bokbunja samples (Lee et al.

2013). Rubus occidentalis L. fruit contained additional

cyanidin-3-sambubioside, cyanidin-3-xylosylrutinoside,

pelargonidin-3-rutinoside, and peonidin-3-rutinoside

besides the three anthocyanins found in bokbunja

fruit, and pelargonidin-3-rutinoside and peonidin-

3-rutinoside are not detected in all R. occidentalis L.

fruit (Dossett et al. 2010; Lee et al. 2012). Due to

identity mix-ups of bokbunja, research claiming to be

conducted on bokbunja fruit (see Table 1) requires

confirmation that the fruit was sourced from a cor-

rectly identified plant. A list of recent research con-

ducted on correctly and incorrectly identified R.

coreanus fruit are listed in Table 1. Consumers and

producers who value true bokbunja for its traditional

cultural significance will benefit from this work.

(A)

(B)

(C)

Figure 2. Anthocyanin profiles of Rubus occidentalis “Munger” fruit (A), Rubus coreanus fruit (B; also referred to as bokbunja), and commercial

juice sample labeled as bokbunja (C) monitored at 520 nm. Additional information to aid distinguishing these two species can be found in Lee

et al. (2013). Peaks: 1, cyanidin-3-sambubioside; 2, cyanidin-3-xylosylrutinoside; 3, cyanidin-3-glucoside; 4, cyanidin-3-rutinoside; 5, pelargonidin-

3-glucoside; 6, pelargonidin-3-rutinoside; 7, peonidin-3-rutinoside. Clearly, R. coreanus fruit (B) lacks peaks 1, 2, 6, and 7. The unique

anthocyanin profile can be used for food authenticity work. A sample of commercially available bokbunja juice (C) labeled as containing 7%

bokbunja from concentrate; however, based on its anthocyanin profile it unmistakably contained juice from R. occidentalis fruit, not R. coreanus

fruit. Juice sample was prepared and analyzed as described in Lee and Finn (2007) and Lee (2013).
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Concluding Remarks

Long before fruit or fruit products enter the laboratory for

phytochemical extraction and analysis, their phenolic pro-

files and concentrations are dependent upon numerous

variables. Solar radiation, temperature, virus status, and

other biotic and abiotic stresses affect phenolic content

(Lee et al. 2008a; Tarara et al. 2008; Lee and Martin 2009;

Lee and Schreiner 2010; Remberg et al. 2010; Lee and

Skinkis 2013). Increasing our comprehension of the roles

phenolics play in plants involves a multidisciplinary

research approach and well-defined relationships of links

among fruit metabolites, agricultural factors, and desired

fruit attributes. Continued effort to decipher those links

that increase phenolic retention in products reaching

consumers is needed, and these links may lead to further

investigation opportunities.
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