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The SMOOTH-robot is a mobile robot that—due to its modularity—combines a relatively
low price with the possibility to be used for a large variety of tasks in a wide range of
domains. In this article, we demonstrate the potential of the SMOOTH-robot through three
use cases, two of which were performed in elderly care homes. The robot is designed so
that it can either make itself ready or be quickly changed by staff to perform different tasks.
We carefully considered important design parameters such as the appearance, intended
and unintended interactions with users, and the technical complexity, in order to achieve
high acceptability and a sufficient degree of utilization of the robot. Three demonstrated
use cases indicate that such a robot could contribute to an improved work environment,
having the potential to free resources of care staff which could be allocated to actual care-
giving tasks. Moreover, the SMOOTH-robot can be used in many other domains, as wewill
also exemplify in this article.
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1 INTRODUCTION

In this work, we introduce a novel service robot at a Technology Readiness Level (TRL) (HORIZON
2020, 2014) of 5–6 (see Figure 1A). The robot was originally designed to be applied in elderly care
homes, but it possesses properties that make it applicable in many other domains also. Besides its
design, basic functionality, and its application in elderly care homes and beyond, we will also describe
the technical and business case-related challenges connected to entering the market with such a kind
of robot and why our design choices could carve the path to success.

While the clear commercial success of care or social robots does not seem to have materialized yet
(USA Today, 2018; Human Robot Interaction, 2019), the situation in mobile logistic robotics is
different. Here, we see a market of significant size emerging, where companies such as MiR 1 and
Aethon 2 sell thousands of robots a year that are able to operate in the vicinity of humans. These
robots, however, in general, do not interact with humans but basically avoid them. Many logistic
tasks could be solved better when at least some interaction capabilities would be present, for example,
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during the initialization and finalization (hand-over) of the
transport of goods. Furthermore, even simple cues such as
gazing toward the humans in robots surrounding or greeting
them can significantly improve their degree of psychological
comfort around the moving robot. Moreover, a lot of
additional use cases could be tackled if fundamental HRI
competences would be available on logistic robots.

The SMOOTH-project 3 aimed to design an assistive social
robot that engages in (at least some basic) interaction with
humans, which also leads to convincing business cases for
end-users such that commercialization becomes feasible. The
robot should be able to detect humans, navigate in a socially
aware manner, understand human intentions using simple cues
such as gaze detection, and communicate with humans via
dialogue, gaze, and body orientation. Hence, it should interact
with humans to a degree that is technically feasible today.

For that, we addressed four important factors in different ways
than in the existing social robots:

Technical complexity: Although significant progress in
navigation, computer vision, and speech recognition has been
made over the last decade, there are still fundamental challenges,
especially in the domain of smooth human–robot interaction,
which not only requires the close-to-perfect functioning of all
perception modules but also some knowledge about the likely
reactions of humans to robot actions, that is, some kind of pro-
activity. It is clear that with today’s technology, this can only be
achieved for rather simple and repetitive tasks.

Degree of anthropomorphism: Anthropomorphism is a critical
feature in human–robot interaction. On the one hand, humanlike
features (such as gaze and gestures) allow a human to relate to a
robot in terms of the cues he or she is used to. On the other hand,
anthropomorphic features could lead to expectations that the robot
(because of today’s technical limitations, see above) cannot fulfill
(Chun and Knight, 2020). During the design phase of the
SMOOTH-robot, we carefully adjusted the degree of applied
anthropomorphism. Specifically, we use a robot gaze to initiate
andmodulate the interaction with the human partner, while due to
its shape, our robot is still clearly identifiable as a machine. Hence,
human expectations about the capabilities of the robot are adjusted
to what a robot can actually deliver.

Wide range of applicability: The SMOOTH-robot is supposed
to autonomously solve frequently occurring tasks that are usually
conducted by care-givers or other staff. This implies that the
robot needs to be able to transport, load, and offload items. In
contrast to that of Pepper and Jibo, our robot body has a
functional and not just a social purpose; in many use cases, it
needs to carry and/or offer items in some meaningful way to
humans (see Figure 2). The SMOOTH-robot can serve a large
variety of use cases by loading and offloading modules that serve
different purposes.

Affordability: During the design of the SMOOTH-robot, we
aimed at a sales price in the range of €30–40,000. In addition to
the rather affordable price, we reduced the running costs for
applying the robot by enabling the very same robot to serve
different purposes. The additional costs connected to a new use
case are then restricted to purchasing a new module that can be
produced much more cheaply than the robot itself. By that, idle
times of the robot can also be reduced, which potentially increases
the value generation for the end-users.

FIGURE 1 | SMOOTH-robot (A) and the three use cases as outlined at the beginning of the project (B); a) use case 1: garbage and laundry transport, b) use case 2:
guiding, and c) use case 3: offering beverages. (Figure on the left provided byMaud Lervik/Nordisk Ministerråd. Figures on the right provided by the Danish Technological
Institute.)

3SMOOTH (2017–2021): Seamless huMan-robot interactiOn fOr THe support of
elderly people, smooth-robot.dk
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During the design process of the SMOOTH-robot, we
carefully considered these four factors and arrived at an
affordable robot which can be applied and can create value in
a wide range of use cases. The SMOOTH-robot makes use of a
moderate degree of anthropomorphism to initiate and modulate
human–robot interaction. The tasks addressed are selected such
that they can be solved at a complexity level that is feasible by
today’s technology.

This article is structured as follows: after giving an overview of
the state of the art in the field in Section 2, we present the design
process of the SMOOTH-robot in Section 3. In Section 4, we
describe the technical modules that are required to navigate the
robot and allow for reasonable interactions with humans. Our
experience with three applications of the SMOOTH-robot, two of
which were tested in elderly care facilities, are presented in
Section 5. A short summary of our work and consequences
for future work are outlined in Section 6.

2 STATE OF THE ART

In the following overview of the state of the art, we first discuss
social robots today (Section 2.1) and then the technologies that
are required to realize human–robot interaction on mobile robots
(Section 2.2). We also explain what technologies have been used
and/or modified to be applicable on the SMOOTH-robot and in
what respect we were able to go beyond the state of the art.

2.1 Social Robots
There are already a wide range of care robots in various shapes
and functionalities on the market (see Bodenhagen et al. (2019)
for a detailed review). To name just a few, the PARO-robot 4 has a
seal-like appearance and is used, for example, to provide comfort
to people suffering from dementia (Hung et al., 2019). It costs
around €5,000. In Denmark, many municipalities bought PARO-
robots, but the response has been very mixed and even slightly
disappointing; many of these expensive PARO-robots are now

lying unused on shelves, mainly because its application in elderly
care homes has turned out to be too complex. As stated in the
study by (Hung et al., 2019), “Most interventions conducted have
been primarily researcher-focused. Future research should pay
more attention to the clinical needs of the patient population.”

The Pepper robot is another example of a service-robot. It is an
affordable small-scaled humanoid robot. It is made available in a
leasing model of $360 a month, which accumulates to more than
€10,000 over 3 years (The Robot report, 2016). Pepper has been
applied in elderly care [see, for example (Tanioka, 2019)]; however,
it is open to debate as to whether its use can be considered a success
(Bloomberg, 2020). One main problem has been that the robot’s
body is fixed and cannot be used to transport items, whichmight be
decisive in addressing commercially relevant use cases.

A more expensive assistive robot is the Care-O-bot 4
developed by Fraunhofer IPA5, which comes in different
shapes. A basic version without arms costs around €100,000,
while a version with two arms costs more than €200,000. Care-O-
bot 4 is manufactured by Mojin Robotics 6, a spinoff company
from Fraunhofer IPA. The commercial version (without arms)
has been used for guidance applications in retail stores and other
application environments. The research version (with arms and
object detection abilities) has been used for fetch-and-carry tasks
and, lately, in the RoPHa project 7 to support users at the meal
table, for example, by cutting food, sprinkling it, or offering single
pieces in front of the user’s mouth. The robot’s high price makes it
extra difficult to create an appealing return of investment.

The social robot Jibo 8—which has not been explicitly designed
for elderly care—is one of a number of similar and rather simple
nonmobile robots that were meant to be used in households. Jibo,
which costs around €700, has been able to communicate via voice,
rotate its body, attend to the person it is talking to, support its
verbal expressions by gestures, and take pictures from a certain
view point. Jibo Inc. needed to close down in 2018, and more than

FIGURE 2 | (A) Dijkstra planner wants the robot to turn on the spot in a tight corridor; (B) SBPL planner drives the robot to a location with enough space to turn
around.

4www.parorobots.com

5www.care-o-bot.de
6www.mojin-robotics.de
7www.ropha-projekt.de
8www.jibo.com
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FIGURE 3 | (A) Head pose and gaze estimate using OpenFace; (B) people’s head pose and gaze detected while interacting with SMOOTH; (C) SMOOTH’s head
displaying its own gaze on the front screen; (D) SMOOTH blinking.

FIGURE 4 | (A) SMOOTH with a tray for holding beverage cups; (B) tray sensor; (C) scenario 1 of beverage delivery use case—robot detects people (yellow
arrows), identifies groups among them, adds costmaps around detected people and groups (pink color), and plans approach points for serving beverages (red arrows);
(D) robot approaching groups of people in a sparse reception scenario.
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€50,000,000 (The Robot report, 2018) of investment was lost. As
reasons for this failure, a couple of major problems have been
discussed (The Robot report, 2018): 1) the high price compared to
those of Amazon’s Alexa and Google Home, mainly due to the
motors integrated in the embodiment, 2) technological issues that
led to delays of deliveries and restriction of sales in the U.S. and
Canada, and 3) similar competitive products designed and
produced in other countries (e.g., in China). In the context of
the last point, the necessity of being open about the product at an
early stage, which is typical for crowd financing, turned out to be
harmful.

2.2 Technologies for Human–Robot
Interaction
Despite many research projects on human–robot interaction
and significant progress in disciplines such as navigation,
computer vision, speech processing, and dialogue design,
mobile service robots that deeply interact with humans have
not reached the market yet (Bodenhagen et al., 2019). Today’s
mobile robots that are applied in industry and institutions such
as hospitals generally avoid humans, that is, they do not engage
with them. Robots that are able to interact with humans would
improve the applications of robots in use already (e.g., by
understanding human gestures to avoid potential collisions
with the robot). It would also allow for a large variety of new

applications (e.g., in use cases that require some information
transfer to initialize or finalize the logistic operation, as, for
example, in the beverage-serving use case).

This points to a general problem (Bodenhagen et al., 2019);
while logistic and task-specific mobile robots such as cleaning
robots are slowly entering the market, there still exist limits on
technical feasibility and challenges that need to be overcome in
areas where interaction with humans is required. In particular,
the application of mobile robots with manipulators in public
spaces is, in our view, unrealistic in the near future, due to safety
reasons on the one hand, but also due to the cognitive
prerequisites involved in the control of dexterous hands on
the other (The Conversation, 2018). Furthermore, hardware
limitations concerning a stable use of tactile information
impose significant hurdles. While robot manipulation in
constrained industrial environments with a high repetition of
the very same or at least similar actions applied to similar objects
under controlled illumination conditions is common, the
variability of objects, users, and constellations in public spaces
constitutes a major challenge that reduces the possible
applications of such robots. In the SMOOTH-project, we
therefore decided to not equip our robot with robot arms.

While the reliability of individual sensor modalities such as
vision and speech has increased over the course of the last
20 years—in particular, through the application of deep neural

FIGURE 5 | SMOOTH-robot solving four different tasks in various environments using four different modules: (A) baggage delivery in a hotel; (B) transport of
humans in a hospital; (C) delivery of coffee; and (D) delivery of beverages in an airport.
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networks—to a level where some rather specific tasks such as
cancer diagnosis on medical images can be performed at a level
matching and sometimes even exceeding human performance
(Schmidhuber, 2014), the integration of such modules into
satisfactory behaviors is still a challenge. Even the dream of
fully autonomous cars—which appeared to be within close
reach some years ago—seems now to be realistic only in a
much more distant future (The Conversation, 2020).

A fundamental problem turned out to be the complexities of
human interaction that require—besides perceptive skills—a high
degree of cognitive and social skills, which even humans take
many years to develop. The main reason for the difficulty of
bringing robots out into human social spaces is the enormous
complexity of human interaction, which is multimodal,
incremental, and highly dynamic and has been optimized for
efficiency over the course of thousands of years—optimized for
human processing and human needs, of course. Humans use their
body orientation, speed, gaze, mimics, gesture, and speech to
coordinate their actions with those of others (e.g., Mondada
(2018)), and due to incremental processing (Levelt, 1989), they
can adjust to each other incredibly quickly and on several of these
channels at the same time (Cameron et al., 2016; Jensen et al.,
2020). Furthermore, humans share common ground based on
previous joint experience, cultural knowledge, and human nature
(Clark, 1996), which helps them orient themselves quickly as to
what is going on. Thus, for humans, it is relatively easy to move in
congested spaces or identify who would like to receive a glass of
water and who would not because they can make use of a
multitude of social signals to infer other people’s intentions
and predict their behavior, which they interpret on the basis
of extensive background knowledge.

The difficulty of interacting robots leaving lab environments
and becoming commercial applications is especially relevant in
the light of public expectations, which are often more driven by
science fiction movies than the state of the art of today’s
technology. One consequence is to balance the amount of
anthropomorphism applied carfully. Humanlike shapes or
features might provoke expectations that current technology
cannot fulfil. Therefore, it was important to us that the robot
is clearly identifiable as a machine; however, since
anthropomorphic behaviors increase the usability of a robot,
the SMOOTH-robot is equipped with some basic dialog and
gaze behavior (Fischer, 2019) (see Figures 3, 4).

Given the complexities in human–robot interaction discussed
above, it is unlikely that all problems will be solved within the next
decade. However, using progress made so far in related disciplines
such as vision, navigation, speech processing, and robot control,
we believe that it is possible to realize basic interaction schemes,
which might be sufficient for many tasks that are also relevant
outside laboratories.

In the following, we describe some of the progress that has been
made in different disciplines utilized on the SMOOTH-robot.

2.2.1 Perception
Pose estimation and other vision processes have long been used in
constrained industrial environments to perform manufacturing
tasks, such as bin picking and packaging inspection. However,

after the publication of AlexNet (Krizhevsky et al., 2012), deep
learning has seen a surge in popularity, which has led to vision
also being deployed in more unconstrained environments. While
deep learning can be used to solve many types of problems,
semantic segmentation and object detection are especially
relevant for mobile robots. Semantic segmentation is the task
of assigning each pixel in an image a label based on what type of
object the pixel belongs to. This was first accomplished using deep
learning in the study by (Long et al., 2014). Later models
(Ronneberger et al., 2015; Chen et al., 2016; Chen et al., 2017)
have improved both the efficiency and the accuracy on common
semantic segmentation data sets. While semantic segmentation is
very useful for differentiating between uncountable objects (stuff
classes) like roads and walls, it does not distinguish between
countable objects (thing classes) like humans and chairs. For this,
object detection is used.

Object detection involves detecting each object of the desired
classes and predicting a bounding box for each. Deep learning–based
object detection algorithms are usually categorized into two
categories: two-stage and one-stage detectors. Two-stage detectors
(Girshick et al., 2013; Girshick, 2015; Ren et al., 2015) function by
first using a region proposal step to propose regions of interest which
could contain objects and then classifying those regions as objects/
not objects and their class. One-stage detectors either use anchors,
that is, they restrict detections to predefined bounding boxes and
regions (Liu et al., 2015; Redmon et al., 2015; Lin et al., 2017), or are
anchorless (Law and Deng, 2018; Duan et al., 2019; Liu et al., 2019)
and omit the region proposal step of the two-stage detectors by going
directly from input to classified bounding boxes. This greatly
increases the speed of the detectors, albeit with a marginal
reduction inaccuracy.

These object detectors give a robot a good idea about which
objects are in the environment, but they do not provide any fine-
grained information since only the bounding box is estimated. To
obtain a segmentation mask for each object, an instance
segmentation network can be used. These exist in either
accurate two-stage (He et al., 2017) or fast one-stage (Bolya
et al., 2019) versions. Another type of object detector which
estimates fine-grained information is the human pose estimator
(Cao et al., 2018; Zhou et al., 2019), which estimates the skeletal
structure of each person. In SMOOTH, we use the anchorless
one-stage detector CenterNet (Zhou et al., 2019) to detect the
add-on modules and people to solve the three use cases (see
Figures 5, 6).

Gaze is an important nonverbal communication cue in
human interaction. It carries valuable information on
attention, intention, the emotional and cognitive state, etc.
It can also be employed in human–robot communication for
achieving a more natural interaction environment. A person’s
gaze is not easy to estimate, especially from a distance, due to
limited image resolution. This is why many authors in the past
have resorted to using its first proxy, head pose (Doniec et al.,
2006). However, actual eye gaze contains significant
additional information, which can be utilized in
human–robot interaction (Palinko et al., 2016). Recently,
appearance-based gaze estimation methods have become
more widespread, which allow easier remote eye tracking
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(Baltrušaitis et al., 2016). In the SMOOTH-project, we use this
approach to make the robot’s behavior more responsive to
people’s needs, for example, the SMOOTH-robot will offer a
glass of water to the person in a group who establishes mutual
gaze with it first.

2.2.2 Navigation
Early indoor robot navigation followed two separate research
tracks: metric (spatial) navigation (Cox, 1991; Figueroa and
Mahajan, 1994) and behavior-based (topological) navigation
(Arkin, 1990; Maja, 1992; Meng and Kak, 1993; Park and
Kender, 1995). The spatial approach uses grid maps of the
environment and relies on geometric pose estimates of the
robot for planning and control, while the topological approach
uses a graph representation of the environment and relational
point of interest behaviors to transition from one node to another.
However, the development of SLAM (Montemerlo et al., 2002;
Durrant-Whyte and Bailey, 2006) and Monte Carlo localization
(Dellaert et al., 1999; Thrun et al., 2001) resulted in the wide-scale
adoption of spatial navigation in indoor robots. The use of spatial
navigation was further boosted by the growing popularity of ROS
middleware (Quigley et al., 2009), which provides open-source
libraries for spatial navigation. Spatial navigation has proved to be
very successful in static indoor environments; however, its strong
dependence on the global geometric pose of the robot makes it
unreliable in dynamic environments, where it is difficult to
estimate the geometric pose of the robot. Furthermore, it does
not incorporate semantic details of the environment, making it

unsuitable for deployment in environments shared with humans.
Current research in indoor robot navigation focuses on
addressing these problems.

With the recently improved semantic perception capabilities
(Zhao et al., 2019) of the robots, there have been several efforts to
incorporate semantic details in spatial navigation with the use of
semantic maps (Nüchter and Hertzberg, 2008; Kruse et al., 2013;
Kostavelis and Gasteratos, 2015; Crespo et al., 2020). Semantic
maps (see Figures 6, 7) enable robots to incorporate semantic
details of the environment in their motion plans. As mobile
robots in general are increasingly deployed in spaces occupied by
humans, navigation techniques should also adapt to humans and
accommodate their social conventions. Socially aware navigation
studies the ways in which robots can move while respecting social
norms while also allowing humans to feel comfortable. Respect of
personal and social space, predictable navigation patterns, and
reliable navigation patterns to increase comfort are investigated
with multiple approaches, such as personal space modeling, the
information process space (IPS) concept, and interaction spaces
Kruse et al. (2013), Rios-Martinez et al. (2015), Charalampous
et al. (2017a). Furthermore, increasingly, deep learning, and
especially deep reinforcement learning are being used to learn
socially aware motion plans (Alahi et al., 2016; Charalampous
et al., 2017b; Truong and Ngo, 2017; Chen et al., 2019a).

Advances in deep learning have also resulted in the revival of
behavior-based topological navigation approaches. Several works
(Gao et al., 2017; Sepulveda et al., 2018; Chen et al., 2019b) have
used end-to-end learning to learn behaviors for navigating in

FIGURE 6 | Visualization of the human pose detection module and the tracking-by-detection module with cost association: (A) output of the human pose detection
network; (B) estimated torso position and facing direction; (C) assigned labels by the tracker (visualized with differing colors of the torso marker); (D) costmap with cost
gradients assigned to each person.
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different types of indoor environments without a precise
geometric pose estimate of the robot. While these approaches
have shown promising results, they still lack the necessary
libraries and tools for deployment on robots in real
environments. Thus, in the SMOOTH-project, we have used
spatial navigation and have extended layered costmaps
[introduced in the study by Lu et al. (2014)] to model
different social spaces retained by group structures such as
F-formations to enable socially aware motion plans (cf.
Section 4.3). This ensures that the SMOOTH-robot can be
deployed in relatively static real-world environments along
with social acceptance. Human–robot interaction should also
be embedded inmotion planning and execution in an appropriate
fashion. In the case of the SMOOTH-robot, we integrated these
two aspects within a behavior tree system (Colledanchise and
Petter, 2018) and extended the robot capabilities to adapt to
human motion using input correlation learning (Porr and
Wörgötter, 2006).

2.2.3 Speech
Robots are slowly learning to read human social signals and to
coinhabit social spaces. Much progress has been made over the
past decade with respect to speech (Moore, 2019) and social signal
processing (Warta et al., 2018), safer navigation (Zacharaki et al.,
2020), intention and activity recognition, etc. (Trick et al., 2019;
Zhdanova et al., 2020). Regarding verbal interactions,
considerable progress has been made in recent years due to
the availability of hitherto unknown amounts of training data
(Skantze et al., 2019). For instance, spoken interaction with

computer systems such as Alexa or Siri is common nowadays;
such dialog systems are trained on large databases of spoken
interactions, storing common combinations of words and phrases
and even question–answer sequences. The problem with such
systems is that they operate on speech only and thus do not know
what the words that they process mean. Thus, such systems are
suited for chit-chat, but in order to get things done in the real
world, dialog systems still need to be crafted by hand. Similarly,
much progress has been made in speech recognition, but in spite
of huge databases, speech recognition is still very bad at
processing speech by novel users in noisy environments,
especially if these users are younger [e.g., Kennedy et al.
(2017)] or older [e.g., Zhou et al. (2016)] than the average
user. Thus, speech recognition is one of the areas that
constitute bottlenecks for the deployment of robots in social
spaces.

However, there are many ways in which robots can
support humans that do not presuppose sophisticated
speech recognition; in particular, if robots can respond in
a timely fashion to human behavior, then they can participate
in social spaces. Thus, satisfactory interactions can be
realized in robots as long as the robot is sufficiently
responsive, which is what this project has focused on.
Furthermore, people can also easily adapt to somewhat
restricted interaction partners (such as children or non-
native speakers,Fischer, 2016) by employing knowledge
about interaction to the interpretation of the responses of
limited interaction partners like robots; for instance, if a
robot behavior occurs in response to a human request, people

FIGURE 7 |Grouping and socially aware navigation: (A) robot’s field of view; (B) detected groups, the blue arrows indicated the people’s poses, circles indicate the
calculated o-space, and red arrows the optimal approach points; (C) robot motion planning using a standard obstacle-based costmap; (D) robot motion planning using
an additional social costmap layer on the top of the obstacle-based costmap (yellow arrows indicate detected people, red arrows indicate planned approach points, the
dark blue path indicates the global plan, and the green path indicates the local plan).
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are likely to interpret this behavior as a reply. Thus, in this
project, considerable work was carried out on coordinating
speech and other robot behavior to make the robot
responsive, timely, and interruptable [e.g., Baumann and
Lindner (2015)]. We furthermore found the robot’s
persuasiveness to depend on the coordination of speech
and gaze behavior (Fischer et al., 2020a; Palinko et al., 2020).

The SMOOTH-project started off with a focus on the
application of mobile robots in elderly care in the context of
three use cases (see Figure 1). However, due to the Corona crisis,
we could not experiment in the elderly care facility anymore and
therefore extended our use cases, which turned out to be easier
than expected since the developed robot competences
could— due to the modular design of the robot—be easily
transferred to other contexts, such as serving drinks at a
reception or solving logistic problems at the university or
other institutions.

3 THE DESIGN OF THE SMOOTH-ROBOT

With respect to the technological progress that has been made in
the last decades and the still existing hurdles as outlined in
Section 2, in the SMOOTH-project, we aimed at a reasonable
balance between what is technologically possible and what is
required to launch a new generation of service robots able to
interact with humans. Our robot should neither require nor
pretend to possess humanlike cognitive and social capabilities,
which would only lead to unstable robot behaviors and user
expectations that are doomed to be disappointed. Although we
made a mild use of anthropomorphism, the overall design of the
robot clearly indicates the presence of a machine and not a
human or animal-like being and by that prevents such
misconceptions.

The robot is also supposed to be producible to a price that can
lead to acceptable business cases for end-users. Out of economic
considerations, we decided that our robot should be able to solve
multiple use cases outside the elderly care home also by applying
different kinds of modules (see Figure 3).

3.1 The Design Process
The design process of the SMOOTH-robot [described in detail in
the study by (Juel et al., 2019)] followed a user-centered design
approach. We actively involved end-users, here care center staff
and residents. The design process consists of four phases that are
represented in Figures 8A–D. At the beginning (Figure 8A), we
conducted ethnographic observation and situated interviews with
caregivers and residents. From this study, areas where a robot
could help the elderly and support the caregivers were identified,
which then resulted in the definition of three use cases of the
SMOOTH-robot, as also shown in Figure 1B.

To further include the end-user in the design process, we
conducted a co-design workshop (Figure 8B) supported by
situated interviews involving a focus group of caregivers and
residents, during which the participants were asked to develop
design concepts for a robot to solve the different use cases. To
gain knowledge about how our robot would affect the end-user,

we organized a workshop at a robot philosophy conference 9

where we invited external experts to discuss the use cases within
the areas of ethics, design, and gerontopsychology. Some results
of these discussions were published in the study by Fischer et al.
(2020b).

Inspired by the user feedback, external experts, and the
imposed requirements on price, shape, and functionality, the
consortium designed three initial concepts for the SMOOTH-
robot (Figure 8C). Each of the initial designs consists of the same
three-wheeled mobile platform with two actuated wheels and a
single caster wheel that allows the robot to turn around the axis
between its driven wheels. In each design, the robot is able to pick
up a module using different lifting mechanisms.

Within the consortium of the SMOOTH-project, we set up
four main requirements for the robot design: affordability,
modularity, simplicity, and acceptability. The three designs
went through a selection process where the consortium
discussed the shape, technical characteristics of the robot, and
how well it would solve the use cases, with respect to the four
main requirements. By means of this selection process, one design
was selected for further conceptualization.

After having chosen the basic robot concept (Figure 8D), we
made some refinements to the mobile platform, and we also
designed a more specific UI hub (head). The refined version has
the safety laser moved up above the wheels. To make sure that the
full 270o FoV of the safety laser is unobstructed in the placement,
a groove was added to either side of it. The UI hub consists of
screens, various computers, and vision sensors. Also, a first
version of the different modules for solving the three use cases
in the project was created.

Based on this refined design, a physical robot prototype was
developed. The robot is internally built of three different parts.
The bottom is a mobile base and includes the safety laser,
batteries, motors, brakes, and other robot electronics and
mechanics, which was built by the company Robotize 10. The
batteries are placed along the sides of the robot, moving the center
of mass further back. The middle part consists of all the
processing units and a microphone used for speech
recognition. The top part, the sensor head, hosts two screens
and four stereo cameras used for human–robot interaction.

The design concept of the SMOOTH-robot is heavily focused
on hardware modularity. Having a multipurpose robot where
various modules can be designed and picked up to be transported
by the same robot can create value in many different areas of
society. Figures 3, 5 show some of the modules that were
developed during the project to address different use cases.
Furthermore, in Figure 2, different conceptual drawings are
shown where the SMOOTH-robot uses different modules to
solve different tasks in hotels, airports, and hospitals.

9Workshop 13: Exploring Responsible Robotics Hands-On: A Conference Lab on
Three Use Cases (SMOOTH Project)) Organizers: Kerstin Fischer, University of
Southern Denmark, Denmark, Johanna Seibt, Aarhus University, Denmark,
Norbert Krüger, University of Southern Denmark, Denmark. Robophilosophy
2018—Envisioning Robots In Society: Politics, Power, And Public Space, February
14–17, 2018 @University of Vienna, Austria
10www.robotize.com
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4 SENSORIAL AND BBEHAVIORAL
MODULES

The SMOOTH-robot is supposed to get involved in semi-
complex interaction patterns making use of different sensorial
modalities. This includes vision, in particular, the detection and
interpretation of human actions (Section 4.1), basic navigation
(Section 4.2) and socially aware navigation in environments
where humans interact with each other (Section 4.3), the use
of speech and dialogue (Section 4.4), and robot control
(Section 4.5).

4.1 Visual Modules: Human Detection, Body
Pose Estimation, Object, and Gaze
Detection
In order for the robot to behave predictably in a human-rich
environment, the robot needs to be able to detect where humans
are in relation to it while estimating properties such as body pose,
their walking speed and direction, and interactability. We
developed a sophisticated vision system capable of such
detections. The developed system consists of various vision
modules to extract information from the environment and

FIGURE 8 | Overview of the SMOOTH design process: (A) ethnographic observation, (B) design workshop, (C) initial conceptualization, and (D) fine tuning.
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format the information so that it can be used by the robot to make
decisions and perform actions. The core module is a multi-
camera multi-detector tracking-by-detection system (Juel et al.,
2020), designed specifically for mobile robots. It takes the output
from any number of RGB-D sensors and processes it using a set of
detectors, for example, the human detector shown in Figure 6A.
The detections from each camera are then transformed into a
common coordinate frame, allowing the tracker to operate on
them collectively.

Any type of detector could be used in the system as long as it
can output a 2D bounding box, a 3D position, and an optional 3D
orientation. The detector developed in the SMOOTH-project
uses a 2D convolutional neural network (Zhou et al., 2019) to
detect objects in the RGB frame from each RGB-D sensor. The
network in its standard configuration detects bounding boxes for
many object types like a bed, chair, table, and human. This
network is retrained to detect bounding boxes for the add-on
module used for the logistic use case (see Section 5.1). It also has a
configuration for human pose estimation where it simultaneously
detects bounding boxes and joint positions for each person in the
frame. Next, the detector projects each detection to 3D using the
depth frame from the RGB-D sensor. If only a bounding box is
available, the 3D position is found using the media depth value in
a small square at the center of the bound box. In the human pose
configuration, the position of the human is found as the mean
position between the two shoulder joints. The heading direction is
calculated as the vector orthogonal to the vector between the
shoulder joints (Figure 6B), since people tend to position their
torso in the direction they are moving.

The next step in the tracking-by-detection system is assigning
a temporally consistent ID to each detection using the tracker
(Figure 6C). With this, it is possible for the robot to differentiate
between people while estimating their velocities and thereby
predicting their future position. Tracking people’s position
enables the robot to maintain a temporally consistent costmap
(Figure 6C). The tracker makes the costmap consistent even in
the event of occasional false negatives where a person is not
detected for a few frames or if they leave the field of view of the
camera, by predicting where they are going. Another feature of
the tracker is that it enables the robot to perceive the detected
features of a person over time. These features include the skeletal
pose of the person, which, as a time series, could be used for
action recognition. The detectors and tracking-by-detection
modules are used to detect people to interact within the
guiding and drink-serving use cases (see Section 5.2 and
Section 5.3).

Another important feature that the robot can use to make
decisions is the person’s gaze. There are two aspects of gaze
interaction that are important for the SMOOTH-robot: analysis
of humans gaze and display of the robot’s own gaze to
communicate intention.

We use the open-source appearance-based head and gaze-
tracking software library, OpenFace (Baltrušaitis et al., 2016) (see
Figure 9A), for analyzing people’s gaze. It estimates people’s head
pose and gaze, which are quite usable in interaction scenarios.
Knowing where people look can enable the robot to be more
reactive to their attention. Mutual gaze is a special interaction cue

that signifies that two interaction partners are looking at each
other and are aware of this shared visual attention. If there is
mutual gaze between a person and the SMOOTH-robot, it is safe
to assume that the person is attending to the robot, and thus, the
robot can start talking to him or her (see Figure 9B). Conversely,
if the human is looking elsewhere, the robot knows that it is not
yet time to start a dialogue. In this case, the SMOOTH-robot can
try to capture the person’s attention by either looking at them
silently or by speaking while gazing at them (“Excuse me, do you
have a minute?”). Technically, the gaze tracking algorithms
estimate the head pose and the gaze angle of humans, which
provides gaze vectors in 3D space. If these vectors intersect with
the robot’s body, it is considered that people are looking at it. As
SMOOTH proceeds with the interaction once this signal is
detected, gaze interaction makes the robot more responsive
and more interactive.

Regarding the robot displaying its own gaze, we are simulating
two eyes on the robot’s front display (see Figure 9C). The eyes are
designed in a very symbolical and abstract way; they are shown as
two large white circles on a gray background representing the
scleras, which contain two small black circles, representing the
pupils. The pupils move on a white background to simulate the
robot’s gaze direction. It also blinks from time to time to make the
gaze behavior more natural (see Figure 9D). When the robot’s
cameras detect faces in front of the robot, it will start looking at
them. It will switch between the different detected faces, thus
simulating human gaze behavior. It also breaks eye contact with
people once in a while, as it is unnatural to keep staring at a
person.

One important task of displaying gaze on the SMOOTH-robot
is serving the purpose of conveying intention; SMOOTH
communicates to its environment what its visual system is
focused at. This has been proven very useful in selecting
whom the robot will interact with next (Palinko et al., 2020).
It has also been found that the robot can be more persuasive when
establishing eye contact with its interaction partners (Fischer
et al., 2020a).

4.2 Basic Navigation
The SMOOTH-robot utilizes and builds on the top of the
navigation stack in ROS (Marder-Eppstein et al., 2010), often
referred to as move_base or the navigation stack. A prerequisite
for using this framework is that the robot has recorded a map of
the environment, using any type of SLAM (simultaneous
localization and mapping) algorithm and can localize itself
inside this map during the operation. The robot accomplishes
this by utilizing its sensor suite comprising odometry encoders,
an IMU, and a laser scanner.

The static map, in which the robot can now localize itself, is
used as the basis for the search space of the navigation algorithms
that calculate the robot’s route. Inmove_base, this search space is
made up of a layered structure of costmaps, that is, maps that
describe the cost of being at a certain location due to some specific
information about the environment, for example, static objects,
dynamic obstacles, people, social constructs, and more.

The path planning algorithm searches for a path from point A
to point B in the combination of these costmaps by optimizing for

Frontiers in Robotics and AI | www.frontiersin.org October 2021 | Volume 8 | Article 64563911

Krüger et al. The SMOOTH-Robot

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


the lowest cost. Figure 10 shows the robot positioned in a tight
corridor and facing upward but being asked to go to the position
of the red arrow behind it. In Figure 10A, the global path
planner is using Dijkstra’s algorithm to plan the shortest path,
but this results in the robot being asked to turn on the spot in the
tight corridor, which is not possible. Figure 10B illustrates
another path planning algorithm called SBPL or Search
Based Lattice Planner (Likachev and Ferguson, 2009), which
utilizes knowledge of the precise footprint and kinematics of the
robot to plan a path that is feasible for the robot to follow.
Planning using SBPL is more time consuming but results in
paths that are kinematically and dynamically feasible; for
instance, it would not plan a path that tells the robot to
rotate on the spot if there is not enough room for the robot
to physically do so. Therefore, it depends on the use case and the
environment of the robot as to which algorithm is the most
suitable. The SMOOTH-robot is configured using both planners
and can use either depending on the actual situation; for
example, fast planning times are preferable in a dynamic
environment with many people.

There are two types of costmaps in the navigation
stack—global and local. The global costmap covers the entire
area of the robot’s environment and is utilized by the path
planning algorithm. In contrast, the local costmap is
constrained to a local area around the robot and follows it
around. This reduced the computational effort in keeping the
local costmap up to date with the newest sensor information,
which is coming in at high frequencies from the laser scanner and
the camera. The local costmap is utilized by the controller of the
robot that calculates the velocities for the robot wheels that allow
it to follow the planned path. In Figure 10, the global costmap is
shown in grayscale and covers the entire area—notice the gray
gradient around the black walls. The local costmap is shown in
color and is centered on the robot and shows a similar cost
gradient around the walls.

Due to the layered structure of the costmaps, it is possible to
influence the planner behavior by simply creating a new layer that
describes a certain type of cost, such as the cost of social spaces
and grouping described in Section 4.3.

4.3 Socially Aware Navigation
Humans instinctively use social cues, such as facing direction,
occupied space, and body language, to deduce whether others are
interacting, thus avoiding interruptions and allowing them to join
the activity. Such interactions are common and consistently
exhibit certain arrangements. F-formations (Kendon, 1990)
describe the distinct group structures that spontaneously form
when two or more people are interacting and the social areas
constructed by the groups. These occupied areas are defined as
follows: the o-space, the area within the group, reserved for
interaction, the p-space, the area incorporating the previously
mentioned space and the persons’ bodies, and, finally, the r-space,
which is the surrounding space and is reserved for individuals
joining or leaving the group. The o-space can be seen in both
Figures 7B,D.

On our robot, based on the vision modules described in
Section 4.1, an agglomerative hierarchical clustering method is
used to detect social groups using the persons’ positions and
orientations, thus considering the social structures mentioned
before (Kollakidou et al., 2021). The individuals are clustered with
a criterion of a maximum distance allowed in case of intended
interaction. The persons’ orientations are used to positively
influence the distance function used for clustering for
individuals who are facing each other or share the same focus
point and negatively influence the distance function in cases
where they do not share a field of view. Figure 7A shows
individuals whose poses are detected interacting, and
Figure 7B shows the detected groups and calculated approach
points. The robot can then approach the groups without
disrupting the interaction or altering the group’s structure.
This is achieved by determining the o- and p-spaces and
avoiding crossing the former while attempting to enter the
latter and thus acting as a group member.

As standard navigation techniques (as described in Section
4.2) do not consider all of the previously mentioned cues and
restrictions, they may result in motion patterns that are perceived
as uncomfortable and suboptimal by humans, indicating the need
for socially aware navigation. Socially aware navigation aims at
incorporating all static and dynamic parameters of the

FIGURE 9 | Persuasive robot dialogue; (A) robot’s persuasive utterances successfully encourage members of the general public to drink more; (B) persuasive
dialogue (“most participants” or “most female/male participants”) leads to significantly higher water intake.
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environment and making informed decisions considering the
outcome of the robot’s actions. To enable socially aware
navigation, we introduce an additional costmap layer on the
top of the standard obstacle-based costmap to model the p-space
and the o-space of the detected people and detected F-formations.

Figures 7C,D describe the difference between the motion
plans generated by basic navigation and socially aware
navigation. In the given example, the robot is navigating
from the first group (a group of 3 people) to the second
group (a group of 2 people). The robot starts with the people
grouping according to the algorithm described above and adds
the o-space of the detected groups and detected people to its
costmap as shown in Figure 7D (pink-colored cost around the
detected people). Figure 7C describes the robot’s motion plan
for moving from the first group to the second group using the
basic navigation (see Section 4.2). Here, the robot uses the
costmap based on obstacles and an inflation radius of 25 cm
around the obstacles for motion planning. The global plan is
generated using a Dijkstra planner, while the elastic band local
planner (Rösmann et al., 2017) is used for planning the online
motion based on the dynamics of the robot and the global plan.
As shown in Figure 7C, the robot ends up planning the shortest
path without respecting the social and personal space of the
surrounding people.

Figure 7D describes the robot’s motion plan with socially
aware navigation. Here, the robot uses the costmap which not
only incorporates the detected obstacles but also the social and
personal space of the detected people, thus resulting in the
socially aware motion plan.

4.4 Spoken Interaction and Dialogue
System
Once a human has been successfully approached as described
in Section 4.3, a dialogue can unfold as an exchange of speech
utterances in turns. Many dialogue systems model this as a
back-and-forth exchange. However, turns may overlap,
listeners may interrupt a speaker, and the speaker may
consequently adapt or abort their utterance while it is
being spoken, based on her perception of the listener or
the environment. For example, the environment may
change and additional knowledge may be gained by the
SMOOTH-robot that may lead it to change its speech plan
while it is speaking. Such behaviors are summarized as
incremental dialogue processing (Baumann, 2013), and we
have previously shown that incremental adaptation of speech
behaviors based on how the situation evolves improves the
perceived sociability of a robot (Baumann and Lindner,
2015).

Given the problems with recognizing speech of users, and
especially older adults [see Zhou et al. (2016)] in noisy
environments, we focused on implementing robot
responsiveness into its speech output behaviors. Incremental
speech output production requires incremental speech
synthesis (Baumann and Schlangen, 2012b) so that speech
output can be seamlessly extended (or shortened) without
audible breaks. In the project, we extended the existing state-

based dialogue system DialogOS11 (Koller et al., 2018) in two
ways: we integrate incremental speech input and output
capabilities based on InproTK (Baumann and Schlangen,
2012c) and we integrate an ROS interface to enable the tight
coupling between robot behavior and robot speech and dialogue
behaviors. This system allows for dialogue models that feature
interruptability and adaptability based on unexpected events (such
as an obstacle or potential danger), but also any other sensory
information, such as when the person being guided has
disappeared from the robot’s camera view. Furthermore, the
system allows for the incremental synthesis of robot utterances,
thus preserving the prosodic integrity of utterances (Baumann and
Schlangen, 2012a), even when they are interrupted, and the smooth
adaptation of the robot’s loudness of speech (Rottschäfer et al.,
2015) depending on the distance of the addressee. Besides enabling
dialogue, this also allows for incremental monologue, that is,
speech synthesis that is adapted to the external context.
Monologues and dialogues were implemented for the guiding
use case (see Section 5.2) with positive content, that is, some
emotionally nonarousing comments of potential interest to the
target community (such as what is planned for lunch, whether
there are new animals at the local zoo, etc.) based on our use case
development results in the study by (Fischer et al., 2020b).

Furthermore, we developed SMOOTH-robot utterances that
rest on shaping participants’ replies and thus predicting their
next utterances to circumvent speech recognition bottlenecks.
We created persuasive robot dialogues in the context of the
beverage service use case (see Section 5.3) that have been
demonstrated to lead to significant behavioral effects; in
particular, since dehydration is a considerable problem in elderly
care facilities, we concentrated on increasing people’s water intake,
and our studies show that the persuasive dialogues we created lead
to significantly higher water intake than the baseline dialogues.

For instance, one of the persuasive strategies we experimented
with is the personalization of social proof, where the robot
appeals to other groups that serve as an example for people’s
choices in the current situation. Corresponding to findings by
Goldstein et al. (2008), we find that tailoring social proof to the
gender identity of the participants leads to more than twice as
much water intake as in the no-persuasion condition, in which
people were only informed about the benefits of water intake, and
the general social proof condition.

In this experiment, which was carried out both in our laboratory
and in the community’s LivingLab, the robot guided participants
through the laboratory and instructed them to pick up things to set a
table. In the course of the experiment, the robot mentions the
benefits of water intake and then either uses a specific persuasive
utterance or not, which allows us to measure the impact of a single
persuasive utterance on water intake. That is, at the end of the
experiment, participants sit down at the table they have set
themselves, which includes a glass and a jug filled with water,
while they fill out the postexperimental questionnaire. After the
experiment, wemeasured howmuch water wasmissing from the jug
and their glass. Our results, illustrated in Figure 11, show that people

11https://github.com/dialogos-project/dialogos
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drank significantly less water if there was no further persuasive
utterance than they did if the robot mentioned that “most female/
male participants drink half a liter after this game” (depending on the
respective participant’s gender), with the general message “most
participants drink half a liter after this game” being in the middle.
These and similar persuasive utterances were also successfully tested
in the wild (see Figure 11B) where the robot offered water to
members of the general public (see Figure 11A), including many
older adults (Fischer et al., 2020a; Palinko et al., 2020).

The dialogue system developed has also been used in the guiding
use case (see Section 5.2), using incremental processing to adapt to
the time it takes to reach the destination, to respond to interruptions
in a timely fashion, and to adjust the robot’s loudness to the distance
from the respective user. Incremental robot response can also be
used to help people find objects by taking their current actions into
account, for instance, in “left, a bit further, yes, there!”Baumann et al.
(2013). Such an utterance depends on the user’s current behavior
Jensen et al. (2020). Because the dialogue system developed specifies
not only the dialogue flow but also the interaction with robot
behaviors through the integration with ROS, speech can be
adapted on the fly (i.e., continuously despite the state-based
model) to sensory information from the robot. In the guiding use
case, this feature is used to, for instance, greet other residents (in the
elderly care facility) or other people in the corridor and then to
return to the small talk during the joint walk.

4.5 Adaptive State Transition Model
The modules described in Section 4.1, Section 4.2, Section 4.3,
and Section 4.4 are integrated into behaviors that are then
sequenced and executed to generate the tasks required in the
use cases that are presented in Section 5. The organization and
sequencing of the behaviors is done through behavior trees
(Colledanchise and Ögren, 2017), which generalize hierarchical
finite state machines in a modular way. Although originally created

to generate reusable behaviors of nonplaying characters in games,
behavior trees have also been applied to create complex tasks in
robotics, and they have been shown to encompass other control
architectures like those using state machines. State transitions are
implemented as the predefined execution order of the nodes of the
behavior trees, which provide a fixed execution pattern for the
implemented behaviors. In our case, however, we included an
adaptive execution model based on learning, which can skip
behaviors on the tree (equivalently, states of the corresponding
state machine) to make the robot behavior more fluid. Specifically,
we used the adaptive execution model in use case 2 (see Section
5.2), where we integrated two sensory modalities of the robot
(vision and audio) through a correlation-based learning
mechanism [see Shaikh et al. (2019) for more details of the
mechanism] to create state transitions between robot behaviors
with pro-activity. In the context of use case 2, guiding to the dining
room (goal), the SMOOTH-robot performs several behaviors with
transitions in the following sequence:

Step 1: turning toward the direction of the call (i.e., the user
(caregiver) calls “SMOOTH come here” and the SMOOTH-
robot hears the call),
Step 2: approaching the user (i.e., during turning, the
SMOOTH-robot uses the vision modules described in
Section 4.1 to detect the user’s face and starts to move
toward the user, while at the same time, the user may also
walk toward the SMOOTH-robot to prepare (user
approaching) for following the SMOOTH-robot to a
destination),
Step 3: guiding the user to the destination (i.e., the user tells the
SMOOTH-robot to guide him or her to the destination).

For learning state transitions in this scenario, the correlation-
based learning mechanism will learn a new proactive behavior

FIGURE 10 | Learning transitions between behaviors in use case 2: (A) sensory-behavioral graph in the transition of guiding when the user approaches the robot.
A1, V1, V2, and A2 are sensory inputs of the SMOOTH-robot. A1 is an audio input (i.e., human command “come here!”). V1 is a visual input (i.e., human face recognition).
V2 is another visual input (i.e., humanmotion detection). A2 is another audio input (e.g., the human command “guideme!”).W refers to an adaptive connection that will be
established after learning. It will transmit a predictive signal (i.e., human approaching detection) to activate the guiding behavior. (B) In the first iteration, the robot
perceived the first audio input and turned toward the user call or sound source (A1→ Turn). After that, the robot visually detected the user and then approached (V1→
Approach). Then the robot detected the human motion (i.e., V2, human walking toward the robot as a predictive signal) and thereafter human speech (i.e., A2, guide me!
as a reflex signal) which finally leads to robot guiding behavior (A2 → Guide). In this process, the robot also learned that the inputs V2 (predictive signal) and A2 (reflex
signal) are correlated (learning process), meaning that the human motion implied a need for the guiding behavior. (C) After learning, the robot first perceived the sound
and turned toward the sound source (A1→ Turn). Afterward, it detected the human (V1) and his motion (V2). It then immediately performed the guiding behavior without
its approaching behavior. In this process, the robot basically proactively skipped its approaching behavior. In other words, the robot will perform guiding behavior as
soon as it detects the movement of the human toward a given target location (e.g., the dining room).
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transition in the human–robot interaction by correlating
predictive (earlier) and reflex (later) signals in the sensory-
behavioral graph (Figure 12A). The proactive behavior
transition is learnt when the reflex and predictive signals
overlap. After learning, the new pathway of the predictive
signal will be created to drive the proactive behavior. On the
SMOOTH-robot, this mechanism is implemented as follows: we
use computer vision (see Section 4.1) to detect the user
approaching, which provides the predictive signal and the
audio command recognition as the reflex signal of the robot

guiding behavior. In the first iteration, the transition of the
sensory-behavioral connection does not exist. When both
signals are overlapping as shown in Figure 12B, the
connection is learnt. In Figure 12B, a new interaction with
the robot occurs with the new transition. The recognition of
the user approaching drives the activation of the guiding behavior
before robot approaching behavior occurs. The control takes over
this behavior, and there is no need for command recognition.
With this adaptive state transition model, we show the flexibility
of the system where the SMOOTH-robot can interact in a normal

FIGURE 11 | Snapshots of robot learning transitions. In the learning phase, the SMOOTH-robot performed three sensor-driven behaviors sequentially: turning
driven by A1 (audio feedback), approaching driven by V1 (visual feedback), and guiding driven by A2 (audio feedback). Simultaneously, in this phase, the SMOOTH-robot
also learned the correlation of a visual-based (earlier) predictive signal (V1) when seeing the human walking to it and an audio-based (later) reflex signal (A2) when hearing
the command asking it to guide. After learning, it can realize the human motion (walking toward it) as the human intention to walk to a destination without naming it
explicitly. As a consequence, it switched to its guiding behavior to guide the human.
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way in the following behavioral sequences: 1) approaching and 2)
interacting toward guiding verbally with the user. Under the
learning state transitions, the SMOOTH-robot can also skip
approaching and directly perform guiding behavior if the
SMOOTH-robot anticipates human movement toward the
dining room through the vision-based (earlier) predictive
signal. The learning of transitions has been successfully tested
in use case 2 (guidance scenario).

Figure 13 shows the result of the real human–robot
interaction experiment. During learning, the robot performed
1) turning, 2) approaching, and 3) guiding. After learning, the
robot can use predictive visual feedback (V2, Figure 12) to detect
human movement early. In this experiment, in the second
repetition, the human moved toward the destination without
waiting for the robot to approach. The robot detected the human
movement; thereby it switched to guiding instead of approaching
as can be seen in a video.12

5 THE SMOOTH-ROBOT APPLIED TO
THREE USE CASES IN ELDERLY CARE
AND BEYOND

In the following three subsections, we will describe the
application of the SMOOTH-robot in the context of the three
use cases discussed before (see Figure 1B).

5.1 Logistics
The logistic use case of collecting laundry and garbage bins makes
use of the sensorial modules described in Section 4.1, the
navigation behavior described in Section 4.2, and an
additional object detection neural network for detecting bins.
The use case flow is split into 6 steps:

1. The robot navigates around the area searching for bins that
have to be transported. This is currently indicated by the bin’s
position (e.g., left of the entrance of a door to a room of a
resident), but it could also be indicated by some kind of active
IFID signal.

2. The robot detects a bin via the trained neural net (see Section
4.1) and estimates an initial bin position in the map. We use
some of the methods explained in the study by Haarslev et al.
(2020) to create a bin pose estimator using an object detection
network (Zhou et al., 2019).

3. The robot navigates toward the initial position, while still
detecting the bin until a stable pose is measured using the very
same neural network.

4. The robot moves according to the measured stable pose and
aligns the backside with the bin. The robot chamfers at the end
of the two robot back wings and can compensate for some
uncertainty in the pose estimation process.

5. The robot docks the bin and lifts it up using an automated
lifting mechanism (Figures 5C,D). After that, the robot can
freely drive away with the bin and automatically drop it off
again at a designated drop-off spot.

The first iteration of the use case follows the above procedure
and was executed at an elderly care facility. In this iteration, we
still used markers for detection and pose estimation of a wooden

FIGURE 12 | SMOOTH-robot successfully guided an elderly resident at the Ølby elderly care center in Køge, Denmark. It autonomously navigated in the center and
smoothly guided the resident without a stop-and-go pattern from the living room to the dining room over a distance of 25 m. During guiding, it also adapted its speed to
the human target for effective guiding. Furthermore, it also performed incremental monologue to encourage the resident to walk to the dining room.

12www.manoonpong.com/Smooth/D42/Smooth_UC2_Learning.mp4
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prototype of the bin which had to bemanually put on the robot by
a human since there was no automated lifting mechanism. The
final iteration of the use case was executed in the hallway at the
University of Southern Denmark. A video of both iterations is
available 13.

5.2 Guiding
Due to demographic change, health and elderly care systems are
dealing with a shortage of qualified caregivers. To address this, we
introduced a SMOOTH-robot to an elderly care center. Based on
our needs analysis, one of the important tasks for SMOOTH is to
guide an elderly resident to navigate to a target location (e.g., from
the living room to the dining room) in the center. The SMOOTH
guiding function includes several behavioral sequences: turning,
approaching, and guiding/navigating [see details in Section 4.5
(steps 1–3)]. To achieve this complex task, we developed adaptive
modular-based guiding control software and implemented it on
the SMOOTH-robot (Figure 14). The software consists of the
following sub-modules: incremental monologue, turning,
approaching, guiding, and navigation. It can generate robot
proactive behaviors with human–robot dialogue and
incremental monologue to smoothly interact with and guide
elderly people to the dining room in the elderly care center.

A key component with respect to the guiding of the residents is
the adaptation of the speed of the robot to the speed of the person
since the residents may have quite different movement
capabilities. The navigation process was extended using a
mechanism that adapts the gain of the robot speed during the
planned trajectory following to the walking speed of the resident.
Figure 4 shows some examples of a guiding experiment in which
the robot adapts its speed to match the speed of the human it
guides. As can be seen from Figure 4A, the robot stays within
±25% of a predefined distance. Figure 4B shows the value of the
speed controller gain as a function of time throughout the guiding
process; as stated before, the gain is adapted to ensure the robot
matches the speed of the human.

The incremental monologue, that is, the incremental synthesis
of robot utterances depending on sensory data (see Section 4.4),

is implemented in such a way that the robot adjusts the small talk
produced in this situation, for instance, about the lunch menu or
other topics of possible interest to the person guided, to the time it
takes to arrive at the dinner table. We can also tell jokes to the
resident where various joke lengths are estimated and selected
online based on the remaining distance to the destination (i.e., the
dining room). For example, the robot can tell jokes where a short
joke will be selected if the remaining distance is short. The result
of this implementation is demonstrated as use case 2. We tested
the control at the Ølby elderly care center in Køge which can be
seen in a video.14

5.3 Beverage Delivery
It is important for people to keep hydrated during the day. Lack of
hydration can lead to health issues, especially among the elderly.
The SMOOTH-robot can help to keep people hydrated in the
beverage delivery scenario described below. To be able to serve
beverages, the SMOOTH-robot needs a tray for holding cups.
Such an add-on was designed by the company Robotize, keeping
attention on low weight and avoiding spillage. The tray (see
Figure 3A) can hold up to 30 cups at a time. The cup holes are
triangulated circles, to ensure a tight fit and avoid wobbling. For
the robot to detect when a cup is removed, we opted for mounting
infrared distance sensors on the bottom of the tray which allow
easy detection of the cups’ presence (see Figure 3B). This
information is important as the robot needs to end its drink-
offering dialogue when a drink has already been taken.

Due to the Corona situation, we were not allowed to test the
use case in elderly care centers anymore, and thus, we needed to
find another facility. Fortunately, the beverage-serving use case is
easily transferable to other scenarios. We chose a meeting area at
the University of Southern Denmark where people also eat lunch
(see Figure 3C).

The robot is best equipped to handle reception type scenarios
where people are standing up, as the people detection algorithm
provides the most precise results in this case, but it can also
handle people sitting at tables, such as when they are having lunch

FIGURE 13 | Time evolution of the human–robot distance (A) and adaptive gain (B) during a guiding experiment.

13https://nextcloud.sdu.dk/index.php/s/Bc6D7w6aFomfB3p

14www.manoonpong.com/Smooth/M30/testing_koge/kogeII_20190912_
poulGuiding_1_blur.mp4
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at a cafeteria. We foresee two distinct situations which we have
addressed separately: a) when there are not too many people in a
given area, such that the robot has much space for navigation, and
b) when people are positioned more densely, such that approach
positions cannot be chosen with a certain degree of freedom. In
the first scenario (see Figure 3C), the robot is able to observe and
group people before making decisions on how to approach them,
as can be seen in a video.15 In the second scenario, when the robot
is not able to navigate easily between groups of people due to lack
of space, the robot was equipped to act spontaneously without
much prior planning.

The first scenario is shown in Figure 3C. Here, the robot starts
by scanning its surroundings and estimating the pose of all
detected people. Next, it assigns people to different groups
according to the procedure described in Section 4.3. After
grouping, the robot selects an approach point which would
make it visible to most group members (see Figure 5C). It
then uses the socially aware navigation described in Section
4.3 to reach the specific approach point. Once it arrives at this
location, it switches to the interaction mode, where it scans for
people’s visual attention as determined by their gaze direction
using the appearance-based gaze detection algorithm (see
Figure 9B). The robot establishes a mutual gaze with the
person looking at it, using its simulated eyes on the front
display of the head (see Figure 3A). Once eye contact is
achieved, the SMOOTH-robot greets the person using speech
communication (e.g., “Sorry to disturb you, but . . . ” or “Good

evening”). Our analysis shows that our dialogue initiations are
100% successful, and as many as 78% of all people addressed
actually respond verbally to the robot. The robot then offers the
user something to drink, for example, “can I offer you some
water?” Already, 59.4% accept the robot’s offer at this point. If
people reject the robot’s offer, the robot can try to convince them
with utterances conveying the importance of hydration, jokes,
and persuasive messages, like “most women actually do take
something to drink” [see Section 4.4 and Fischer et al. (2020a);
Palinko et al. (2020)].

In the second scenario where no planning is possible due to the
density of people in the area, the SMOOTH-robot moves around
in a pseudo-random fashion and switches to the interaction mode
as soon as it notices any person in its camera view (Naik et al.,
2021). In this case, special attention needs to be paid not to
address the same people multiple times. This is achieved by
memorizing the physical location of the person whom the
robot interacted with. As this assumes static people, it could
be improved by using face recognition algorithms in the future.
Once a person is detected in the robot’s field of view, the
SMOOTH-robot stops and gazes toward them. Then it turns
its body in the same direction, while the eyes are keeping the
proper eye contact, simulating the vesibulo-ocular reflex. While
turning, the robot greets the person and uses information about
their gaze to determine if a person is interested in interacting with
it. If it detects that person to be looking at it, it starts to offer water
(“Excuse me, would you like a bottle of water?”). Once a bottle is
removed from the tray or if a timeout is reached, the robot
continues on its pseudo-random path to find more people to
interact with.

FIGURE 14 | (A) Bin detection (blue rectangle) and (B) pose estimation (red arrow) during the docking behavior. (C,D) Lifting mechanism on SMOOTH.

15https://www.youtube.com/watch?v�423Lg6LhsLM
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During initial studies of beverage serving, gaze was found to
be a very useful tool for facilitating the interaction between
people and the robot. In one of the studies, we found that when
approaching groups of people, the person gazed at was most
often the one responding to the robot’s initiatives, unless that
group was dominated by a particular person who was
especially eager to talk to the robot Palinko et al. (2020). In
the same experiment, we found that gazing at the person
fortified the robot’s verbal communication, which resulted
in people lifting their glasses more often when there was
mutual gaze between them Fischer et al. (2020a). Table 1
shows the mean values and standard deviations of people
lifting their cups, saying “skål” (“cheers” in Danish), and
drinking water.

6 DISCUSSION

In this article, we introduced a novel assistive robot and a couple
of functionalities that are realized on the developed platform. We
made careful design choices concerning the technical complexity,
the degree of anthropomorphism, the price it can be produced
for, and its flexibility to be applied in various contexts, for which a
modular design was decisive. We demonstrated the robot’s
potential by means of three use cases and also described a
wider range of possible applications.

We also reflected on the difficulty of entering the market with
these kinds of robots, pointing to a number of obstacles former
attempts have been facing. Our robot aims at filling a gap between
logistic robots that are now widely used in companies and large
institutions and over-complex robots that lack stability and
affordable cost models.

For going from our prototype at TRL 5–6—where we are
now in the development—to a successful product, it will be
important to balance the complexity of the robot behaviors
with what is technically achievable using state-of-the-art
perception and control modules. Here, stability of behaviors
is to be favored compared to sophisticated but unrealistic
human–robot interaction schemes. Furthermore, the limits
of the state of the art that still hinder the realization of
smooth interactions should be taken into account. In
addition, the choice of good market entry points will be
crucial and so will affordable running costs. For that, not
only the price of the robot will be decisive but also low idle
times that can be achieved by using different modules for
different purposes as shown in Figure 2.

DATA AVAILABILITY STATEMENT

Since the project has ended in January 2021, in order to comply
with GDPR regulations, most raw data was deleted. The
remaining data supporting the conclusions of this article will
be made available by the authors without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Research Ethics Committee (https://komite.
regionsyddanmark.dk/wm373913). Authors had sent an
application on how to deal with ethical issues to the
Research Ethics Committee in May 2017 for the SMOOTH
project. The decision from the Committee was as follows: the
SMOOTH project was not notifiable. The reason for that is that
there will not be any systematic interventions performed
during the project. The patients/participants provided their
written informed consent to participate in this study. Written
informed consent was obtained from the individual(s) for the
publication of any potentially identifiable images or data
included in this article.

AUTHOR CONTRIBUTIONS

NK is the coordinator of the SMOOTH project. KF, PM, OP, LB,
JK, IR, and LD are senior members who were responsible for the
supervision of different activities in the SMOOTH project. LN,
WJ, FH, JI, AK, and KJ are PhD students/research assistants who
were responsible for implementation and testing. KF, RL, and EM
were responsible for user studies. CH was responsible for user
studies and general advice. NK and LN coordinated the writing of
this manuscript.

FUNDING

This work has been funded by the InnovationsFonden Danmark
in the context of the project SMOOTH (Seamless huMan–robot
interaction for the support of elderly people Grant no.: 6158-
00009B).

ACKNOWLEDGMENTS

We thank Ghita Galle and Jette Flarup from Køge Kommune
for their support during the design process and the
experiments performed in the elderly care institutions in
Køge. We also thank Anders Pjetursson, Christopher Prinds
Bilberg, and Laus Nissen for their contributions to the robot
and module development. We would also like to thank
Alejandro Pequeno Zurro and Danish Shaikh for their
support.

TABLE 1 | Means (and standard deviations) of participants drinking, lifting their
glass, and saying “skål” in response to the robot’s utterance (Fischer et al,
2020a).

N Drinks Lifts Says skål

No gaze 22 0.36 (0.49) 0.18 (0.39) 0.32 (0.48)
Gaze 20 0.55 (0.48) 0.65 (0.49) 0.70 (0.47)
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