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The morbidity associated with neurodegenerative diseases (NDs) is increasing, posing a
threat to the mental and physical quality of life of humans. The crucial effect of microbiota
on brain physiological processes is mediated through a bidirectional interaction, termed as
the gut–brain axis (GBA), which is being investigated in studies. Many clinical and
laboratory trials have indicated the importance of microbiota in the development of NDs
via various microbial molecules that transmit from the gut to the brain across the GBA or
nervous system. In this review, we summarize the implications of gut microbiota in ND,
which will be beneficial for understanding the etiology and progression of NDs that may in
turn help in developing ND interventions and clinical treatments for these diseases.
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1 INTRODUCTION

Neurodegenerative diseases (NDs) including Alzheimer’s disease (AD), Parkinson’s disease (PD),
Huntingdon disease (HD), and multiple sclerosis (MS) are characterized by the progressive loss of
neurons that is associated with neurotoxic etiological substances in the brain and the surrounding
organs. The maximum human life span has expanded because of the improvement in nutrition and
health care with the development of the economy and technology. However, the incidence of NDs
increases with age, generating increasingly severe burdens to society (1, 2). Unfortunately, because
of the unclear pathogenesis of these diseases and the complexity of the nervous system, an effective
treatment is lacking, although several clinical trials are ongoing.

Diverse microbes including bacteria, archaea, viruses, and various eukaryotes such as fungi
and protozoa are present in different ecological niches in the gut and are collectively known as
the gut microbiota (3). The gut microbiota profoundly affects several aspects of host physiology,
including nutritional metabolism, anti-infection, immune system, and nerve development (4, 5).
Rapid industrialization, urbanization, and development in food and medical technology, such as
increasing intake of fast food, cause the gut microbiota to confront a different habitat, and thus,
it has become more vulnerable than before (6). Recently, the importance of gut microbiota has
emerged because of its vital role in NDs and in modulating the differentiation, maturation,
proliferation, and activation of tissue-resident immune cells in the central nervous system
(CNS) (7–11).
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Gut–brain axis (GBA) participates in the bidirectional
communication between the gut and the brain via
neurotransmitters and various metabolites (12, 13). In this
review, we summarize the possible pathophysiological roles of
the microbiota in NDs. Furthermore, we focus on the potential of
microbiota composition and metabolites as novel therapeutic
interventions for these chronic diseases.

1.1 Gut Microbiota
Gut microbiota that consists of various dynamic microorganisms
establishes a symbiotic relationship with the host. The metabolic
activities and interactions of gut microbiota affect normal
physiology and susceptibility of the host to diseases (5, 14).
The differences in pH, immune factors, and digestive enzymes in
the gut are responsible for the diversity and individual differences
at the bacterial strain level (15). Moreover, each individual
harbors distinct microbial community that results in the
formation of a stable and resilient state (14). In an adult gut
mucosa, Bacteroidetes and Firmicutes are the predominant phyla,
whereas the abundance of Actinobacteria, Proteobacteria, and
Verrucomicrobia is low (16, 17).

Gut microbiota can directly affect human health by secreting
microbial components such as vitamins, essential amino acids,
and lipids (9, 13, 18). These components may be involved in the
GBA via neural, endocrine, and immune signaling pathways and
thus affect physiological functions such as gastrointestinal
barrier, nutritional metabolism, immune response, and
neurological development associated with aging (19–22).

1.2 Correlation Between Gut Microbiota
and Neurodegenerative Disease
The gut microbiota is considered essential for brain physiological
processes such as myelination, neurogenesis, and microglial
activation; regulation of human behavior; and affecting mental
processes such as mood and cognition (9, 23, 24). Moreover, the
gut microbiota is highly sensitive to external lifestyles such as
diet, sleep deprivation, circadian rhythm disturbances, chronic
noise, and sedentary behavior, which are also considered the risk
factors for some NDs (6, 25–31). The gut microbiota is critical
for maintaining a healthy functional state of microglia, which is
necessary to prevent neurodevelopmental abnormalities and
NDs (8, 32–34). Clinical trials have confirmed the crucial role
of microglia activation in AD pathology (22, 35, 36).

1.3 Gut Microbiota–Brain Communications
1.3.1 Gut–Brain Axis
GBA refers to the communication between gut microbiota and the
brain and involves multiple physiological processes, which are
strategic points in maintaining the homeostasis of the
gastrointestinal (GI) tract, CNS, and microbial systems (Figure 1).

The pathways comprise the vagus nerve and the neural,
endocrine, and immune systems that exert direct or indirect
effects by stimulating the release of chemical transmitters such as
microbial hormones and metabolites (37, 38). Therefore, these
systems involved in GBA regulate many functions, such as
regulation of brain activity and emotions, immunomodulation,
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energy balance, and activation (39–41). The microbiota as a link
between mental health, cognitive brain centers, and peripheral
intestinal function has garnered considerable scientific attention.
Studies have reported that the disruption of GBA may be
associated with mood disorders and dysbiosis of gut
microbiota (40, 42), and the microbiota may affect the anxiety
and depressive behavior via the GBA (43). Depending on the
disease severity, specific microbiota alterations are found in
autistic patients (44).

1.3.2 Blood–Brain Barrier and Gut-Derived Molecules
The blood–brain barrier (BBB) is an anatomical, functional
structure that separates blood from brain tissues and
cerebrospinal fluid; it is composed of pia mater, choroid
plexus, cerebrovascular, and astrocytes (45–47). The BBB
serves as a gateway for the passage of many crucial substances
required for CNS functioning and secretes substances into the
blood and brain that are crucial for maintaining the CNS
homeostasis. Moreover, the BBB could also limit the transport
of gut-derived molecules into the brain (48). Vulnerable BBB is
caused by aging and may induce cerebrovascular inflammation
and CNS disorder (49–52).

For example, microorganism-associated molecular patterns
(MAMPs) play critical roles in the structural integrity and
essential cellular functions in microorganisms (53). When
MAMPs are accidentally enhanced or decreased, acute or
chronic inflammation associated with various neurological
disorders is induced (54).

Several microbial molecules such as lipopolysaccharides
(LPS), short-chain fatty acids (SCFAs), trimethylamines
(TMAs), and vitamins are associated with the permeability of
BBB (55–57). These molecules could act on BBB to directly affect
brain neurons or stimulate the immune and endocrine systems
to protect against neuroinflammation or neurodegeneration.

LPS is a crucial component of the outer membrane of Gram-
negative bacteria. It is one of the most extensively studied
components of bacterial immune stimulation, which can
induce systemic inflammation and sepsis when it is present in
an excessive amount (58). The permeability of BBB in germ-free
mice decreased after LPS administration (56). In addition, a
study reported that systemic LPS can stimulate the microglia,
resulting in chronic neuroinflammation in germ-free mice (59).
Moreover, indigestible diet fibers and resistant starch can be
fermented by gut microbiota, producing SCFAs (such as acetate,
propionate, and butyrate) and other metabolites such as
hydrogen and methane (60). SCFAs affect the psychological
functions and suppress inflammation by affecting cellular
functions including G-protein-coupled receptor activation and
histone deacetylase activation, which further affect host intestinal
epithelial integrity, BBB integrity, and brain functions (61–63).
The gut-derived TMA, namely, trimethylamine-n-oxide
(TMAO), is secreted by microbiomes such as Anaerococcus,
Clostridium, Desulfovibrio, and Providencia (64). The presence
of TMAO in cerebrospinal fluid revealed its ability to cross the
BBB (65). Interestingly, in a clinical study, the TMAO levels in
the cerebrospinal fluid increased in cognitively impaired
individuals with AD, representing a finding that may be useful
February 2022 | Volume 13 | Article 785644
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FIGURE 1 | Microbiota modulates the gut–brain axis through its secretions, including microorganism-associated molecular patterns (MAMPs) and microbial metabolites.
As the intestinal permeability decreased due to the microbial molecules, these molecules were involved in generalized gut–brain signaling, such as the immune-modulating
pathway, endocrine signaling pathway, the neural signaling pathway, and the neuroendocrine signaling pathway. Neurotransmitter-like substances such as gamma-
aminobutyric acid (GABA) directly influence the central nervous system (CNS) through nerve pathways; other gut-derived substances such as MAMPs and short-chain
fatty acids (SCFAs) influence the CNS by decreasing blood–brain barrier (BBB) permeability. Furthermore, these microbial molecules activate immune resident cells or
neuron cells, which accelerate neurodegenerative disease (ND) physiopathology.
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for developing a therapeutic approach for the NDs characterized
by protein misfolding such as AD (66).

1.3.3 Nervous System Modifications
The bidirectional communication network comprises the CNS,
autonomic nervous system (ANS), enteric nervous system (ENS),
and the hypothalamic–pituitary–adrenal (HPA) axis.

Microbiota communicates with the brain via the vagus nerve.
The absence of specific neurochemical and behavioral effects in
vagotomized germ-free mice demonstrated that the vagal
pathway is an important communication route between the gut
and the brain (37). The ENS interacts with the CNS through the
vagus nerve by generating direct neurochemical signals from the
gut microbiota to the brain and vice versa (67). The HPA axis is a
part of the limbic system having structures such as the
hippocampus, hypothalamus, and amygdala and involving
memory and emotional responses. Chronic stress or pro-
inflammatory cytokines such as interleukin (IL)-6 increase the
level of corticotropin-releasing factor secreted from the
hypothalamus and adrenocorticotropic hormone (ACTH)
secreted from the pituitary gland, which results in the secretion
of cortisol from the adrenal gland, which is toxic to the
brain (68).

Consequently, the combination of neural and hormonal
communications facilitates the CNS to influence the activities
and function of intestinal cells (69, 70). Moreover, gut microbiota
affects host health by modulating gut cells and maintaining
intestinal metabolic and immune homeostasis (71–73). For
example, microbial intestinal dysbiosis and increased intestinal
permeability associated with Clostridium overgrowth are
considered a feature of immune-related intestinal and extra-
intestinal disorders (74).

Interestingly, the microbiota also alters the production of
neurotransmitters and hormones such as dopamine, adrenaline,
noradrenaline, serotonin (5-HT), gamma-aminobutyric acid
(GABA), glucagon-like peptide-1, and peptide YY or their
precursors, which act on the CNS or ENS directly via the
vagus nerve or indirectly by entering the circulation (Figure 1)
(38, 75).

1.3.4 Modification of Immune System
Gut microbiota plays an indispensable role in the maturation of
the host immune system and intestinal homeostasis (4). The
dysfunction of the interaction between microbiota and immune
system induces immune signaling, thus indicating implications
in CNS development and NDs (24). Studies have shown that the
gut microbiota is associated with the regulation of some immune
signaling pathways such as the inflammasome signaling
pathway, type I interferon signaling pathway (IFN-I), and
nuclear factor (NF)-kB signaling pathway (18, 76).

Compared with the wild-type mouse model, the ASC-,
caspase-1-, and IL-18 (typical inflammasomes) knockout
mouse model showed altered a-diversity in a study (77).
Furthermore , evidence suggests that the act ivated
inflammasome and the increased level of pro-inflammatory
cytokines such as IL-1b, IL-6, and IL-18 proteins are associated
with the major depressive disease (78). In MS, inflammasome
Frontiers in Immunology | www.frontiersin.org 4
signaling can be inhibited by IFN (79). IFN-I is associated with
the maturation of dendritic cells (DCs), enhancement of
cytotoxic T cells, and bidirectional interaction between the host
and the gut microbiota (80). However, commensal lactic acid
bacteria can trigger the Toll-like receptor (TLR) 3-mediated IFN-
I secretion of intestinal DCs (81). In addition, because the critical
transcription factor contributes to immune response, the
increased NF-kB level with the cooperative expression of TNF-
a was detected both in the intestinal and hippocampal zones,
which are associated with amnesia; the symptoms of amnesia
and colitis were attenuated after the recovery of gut microbiota
a-diversity was disturbed in a colitis model (82).
2 FROM BENCH TO CLINIC: THE
EMERGING ROLE OF GUT MICROBIOTA
IN NEURODEGENERATIVE DISEASES

Gut dysbiosis has adverse effects on cognition, behavior, and
motor performance (83). The frailty of the gut on the physiology
alters the intestinal environment and gut microbiota (Figure 2)
(22). The gut microbiota, being considered as potential
diagnostic features of NDs, affects different pathophysiological
stages in cognitive impairments. In this section, we review the
involvement of microbiota in typical NDs (Table 1).

2.1 Alzheimer’s Disease
AD is the most common ND in the elderly population, and age-
related adult dementia accounts for 60%–70% of dementia cases;
the lifetime AD risk is approximately 20% in women and 10% in
men (104). AD is chronic and irreversible and involves
progressive cognitive impairment and behavioral changes such
as memory loss, disorientation, and loss of mobility, which are
characterized by synaptic dysfunction by synthesized factors,
accumulation of neurotoxic protein aggregates, age-related
processes, neuroinflammation, lead neuron, and synaptic loss
(105–107). A classical pathology of AD involves amyloid-beta
(Ab) extracellular neurotic plaques, which are distributed
throughout the cerebral cortex, and over-phosphorylated Tau
protein-containing neurofibrillary tangles, which primitively
occur in the medial temporal lobe and then diffuse to the
isocortical regions of the temporal, parietal, and frontal lobes
(108–110). Studies have reported that the deposition of Ab and
Tau protein occurs 10–20 years before the onset of clinical
dementia symptoms (111). Numerous studies on AD treatment
or intervention strategies in animal models have achieved
promising results. Unfortunately, drugs targeting the
pathological procedure have been found not effective in AD
clinical treatment (112).

2.1.1 Involvement of Microbiome in Alzheimer’s
Disease
The frailty of the host is related to the reduced diversity of core
microbiota groups such as Lactobacilli, Bacteroides, and
Prevotella and the increased abundance of Ruminococcus,
Atopobium, and Enterobacteriaceae (113). Interestingly, these
February 2022 | Volume 13 | Article 785644
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FIGURE 2 | Neurotoxic substances that are produced by gut microbiota influence cognitive impairment progression by transmitting from gut to brain, in which
intestinal barrier and blood–brain barrier served as crucial customs passes. Moreover, these neurotoxic substances cannot traverse from usual intestinal and blood–
brain barriers, while aging, unhealthy lifestyles, and acute or chronic enteritis would disrupt the integrity of both intestinal and blood–brain barriers, leading to
cognitive impairment.
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microbial communities are associated with the host’s mood and
behavior, which are precipitating factors for cognitive
impairment. Studies have reported that gut microbiota is
altered in AD. When AD patients were compared with healthy
controls, AD patients exhibited diverse microbiota, an increased
abundance of Bacteroidetes, and a reduced abundance of
Firmicutes, Proteobacteria, and Actinobacteria (88, 89).
Moreover, the composition of the gut microbiota of SAPM8
mice, which exhibited learning and cognitive impairment similar
to AD patients, revealed conspicuous character divergence
compared with that of the healthy control; the correlation
density and clustering operational taxonomic unit of gut
microbiota decreased (87). The increasing abundance of
microbiota such as norank f Lachnospiracea, unclassified f
Lachnospiraceae, and Alistypes in SAPM8 models is consistent
with that reported in AD patients in another study (114). The
analogous shifts of the microbiota were also found in other
transgenic AD pathology-like mouse models compared with 3-
year-old wild-type mouse models; the microbiota composition
was similar but the diversity started changing after 6 months of
age, and the AD pathology-like models showed increased
abundance of Proteobacteria and Erisilopelotrichaeae (115). In
addition, neuroinflammation and amyloidosis are affected by the
perturbation of gut microbiota diversity induced by antibiotics in
the AD mouse model (116, 117).

Fecal microbiota transplantation (FMT) is considered both a
typically investigative and a potential therapeutic approach for
ND (Figure 3). A study reported increased cerebral Ab
pathology in a germ-free amyloid precursor protein (APP)
Frontiers in Immunology | www.frontiersin.org 6
transgenic mouse model with FMT compared with that in a
cognitively impaired mouse model, whereas wild-type mice with
FMT exhibited less effective pathology (118). Compared with
germ-free mice with FMT from AD patients and healthy donors,
the FMT model showed cognitive impairment (119).
Correspondingly, frequent FMT from healthy wild-type mouse
models to AD pathology-like transgenic mice effectively
reactivated the glial cells and reduced Ab pathology,
neurofibrillary tangles, and cognitive impairment (120).

2.1.2 Modifications of Microbial Molecules in
Alzheimer’s Disease
As previously mentioned, the gut microbiota-derived molecules
may cause gut dysbiosis, and GBA is a crucial precipitating factor
for AD. LPS, peptidoglycan (PGN), bacterial epigenetics, bacterial
DNA, and bacterial amyloids are the typical MAMPs associated
with AD. The cluster differentiation 14 (CD14) receptor, termed
LPS receptor, coordinates with the microglia to promote Ab
deposition, stimulates TLR4 in astrocytes that is a ligand for Ab
metabolism, and accelerates neuron loss (58, 121, 122). AD
patients showed 2-fold higher levels of LPS in the neocortex and
3-fold higher LPS levels in the hippocampus than healthy controls
(123). Andreadou et al. (124) reported an increased level of LPS in
both cerebrospinal fluid and serum in AD patients and a negative
correlation between the LPS level and cognitive state. In AD
mouse models , LPS induced cognitive impairment,
neuroinflammation, and sickness behaviors such as anxiety and
fear (125, 126). PGN is a dominant component of the Gram-
negative cell wall that is recognized by specific pattern-recognition
TABLE 1 | Involvements of gut microbiota in neurodegenerative disease.

Bacterial genus Possible involvements Related neurodegenerative
diseases

Reference

Escherichia, Pseudomonas, Staphylococcus, Streptococcus,
Bacillus, Mycobacteria, Citrobacter, Klebsiella, Salmonella

Bacterial amyloid, FapCs, Translocate
across BBB through GBA

Alzheimer’s disease Cao et al. (84)

Lactobacillus GABA, Balance the regulation of cortical
excitability and neural excitation-inhibition

Alzheimer’s disease Ciminelli et al. (85)
Auger et al. (86)

Bifidobacterium GABA, Balance the regulation of cortical
excitability and neural excitation-inhibition

Alzheimer’s disease Auger et al. (86)

Proteobacteria,
Bacteroidetes,
Firmicutes,
Actinobacteria,
Lachnospiracea

Unknown Alzheimer’s disease Vogt et al. (87)
Zhuang et al. (88)
Ling et al. (89)

Roseburia,
Faecalibacterium

Can produce SCFAs Parkinson’s disease Nuzum et al. (90)

Pseudomonas Fap, change of a-synuclein Parkinson’s disease Christensen et al. (91)
Enterobacteriaceae Curli, a-synuclein aggregation Parkinson’s disease Sampson et al. (92)
Clostridium coccoides, Bacteroides fragilis,
Prevotellaceae

Unknown Parkinson’s disease Hopfner et al. (93)
Hasegawa et al. (94)
Scheperjans et al. (95)

Hydrogen-product bacteria Reduced dopaminergic loss Parkinson’s disease Fujita et al. (96)
Yorikata et al. (97)
Guo et al. (98)

Coriobacteriales, Erysipelotrichales, Bacteroidales,
Burkholderiale

Unknown Huntingdon disease Kong et al. (99)
Radulescu et al. (100)

Clostridium Decrease level of SCFA secretion Multiple sclerosis Miyake et al. (101)
Firmicutes, Bacteroidetes,
Prevotella

Unknown Multiple sclerosis Cosorich et al. (102)
Chen et al. (103)
February 2022 | Volu
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receptors (PRRs) of the innate immune system (127). Gut
microbiota-derived PGN could traverse the BBB and affect gene
transcription and social behaviors (128). Currently, the pathogenic
role of bacterial DNA in AD is being considered. In in vitro AD
pathological assays, Tetz et al. (129, 130) reported the induction of
Tau aggregation, as well as Ab misfolding and aggregation by
bacterial eDNA. Bacterial amyloids are the extracellular proteins
secreted by Escherichia, Pseudomonas, Staphylococcus,
Streptococcus, Bacillus, Mycobacteria, Citrobacter, Klebsiella, and
Salmonella species and could translocate across the BBB through
GBA associated with NDs (84). In in vitro assays, specific bacterial
amyloid FapCs were found to be Ab-binding hot spots that
participate in the incorporation of Ab nanofibrils (74). In
zebrafish AD models, fragment amyloids from infectious
bacteria enhanced Ab pathogenesis and further made the
cognitive impairment more severe (131). The crucial role of
SCFA in AD has emerged. In an in vitro trial, SCFA inhibited
Ab aggregation (132). By comparing the AD mouse model and
wild-type mouse model of different ages, the perturbed a-diversity
of microbiota and decreased level of SCFAs were found to be
associated with the bacterial amyloid deposition and
Frontiers in Immunology | www.frontiersin.org 7
ultrastructural alteration in the gut (133). In a similar trial by
Zheng et al. (134) on the content of SCFAs in fecal samples, the
AD mouse model showed a significant difference in the levels of
propionic acid, isobutyric acid, 3-hydroxy butyric acid, and 3-
hydroxisopropyl acid as well as the decreased levels of lactic acid,
2-hydroxy butyric acid, 2-hydroxy isobutyric acid, levulinic acid,
and valproic acid compared with wild-type mice. In addition, an in
vitro study suggested that sodium butyrate could protect the
neuron cells from Ab-induced neurotoxic effects (135).

In co-metabolism by host and gut microbiota, bile acids
maintain the secondary function of steroid hormones by
serving as signaling molecules that affect the cellular receptors
associated with CNS development (136), including membrane-
bound receptors (such as sphingosine-1-phosphate receptor 2
and Takeda G-protein-coupled bile acid receptor 5) and nuclear
receptors (such as Farnesoid X receptor) (137) In a study of 1,562
clinical cases, diverse bile acid metabolites in serum were
quantified, which revealed that bile acids are the biomarker of
AD pathology (138).

TMAOs are the metabolites of dietary choline. In the
network-based algorithm engineered by Xu and Wang (139),
FIGURE 3 | Served as both a typically investigative and a potential therapeutic approach for cognitive impairment, utilize fecal microbiota transplantation (FMT) has
been spread. These three typical trials suggested potential prevention or clinical therapies for cognitive impairment.
February 2022 | Volume 13 | Article 785644
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TMAO ranked first in 56 human AD biomarkers. The increase in
TMAO is detectable in patients with cognitive impairment (65).
In an in vitro trial, researchers observed that TMAO participates
in Ab aggregation (140). In AD mouse models, TMAO
administration accelerated the senescence of hippocampal cells
and Ab pathology and aggravated cognitive impairment (141). In
another study, long-term cognitive impairment was ameliorated
with reduction in the TMAO proportion in the plasma of the AD
mouse model (142). This finding suggested that TMAO
exacerbates ND pathology and cognitive impairment; however,
the changes in serum TMAO in ND patients remain to
be investigated.

GABA, the precursors of which are glutamates metabolized
by the genera Lactobacillus and Bifidobacterium, is an essential
inhibitory neurotransmitter, which balances the regulation of
cortical excitability and neural excitation-inhibition. GABA plays
a crucial role in CNS development (85). A study reported that the
inhibitory GABA signaling could ameliorate cognitive
impairment in the cognitive impairment mouse model (86).
The disruption of GABA balance is considered a contributor to
cognitive impairment, warranting further studies.

2.2 Parkinson’s Disease
PD is a progressive ND, with aging as the main risk factor, and its
estimated morbidity is 6% (143, 144). PD can be manifested by
both motor and non-motor symptoms. Motor symptoms include
resting tremor, bradykinesia, postural instability, and rigidity.
For some PD patients, parkinsonian tremor is the only visible
symptom during diagnosis (145). Non-motor symptoms include
cognitive decline, depression, anxiety, dysautonomia, dementia,
and sleep disturbances (145). PD is closely related to
gastrointestinal complications such as bloating, nausea, and
abdominal discomfort (146).

One of the general pathologies of PD is the loss of
dopaminergic neurons in the substantia nigra pars compacta
(SNpc) located in the midbrain, which is mainly responsible for
motor disorders. The degeneration of dopaminergic neurons is
closely associated with Lewy bodies, which are cytoplasmic
inclusions that comprise insoluble alpha-synuclein (a-Syn)
aggregates (147). The six stages of such Lewy pathology in PD
have been demonstrated. The disease was proposed to start in the
gut with misfolded a-Syn and then be localized to the
brain (148).

2.2.1 Involvement of Microbiome in Parkinson’s
Disease
Despite intensive studies on PD, no effective treatments with
sustained benefits are available. Recent findings have shown that
gut microbiota is closely related to PD and causes changes in
microbe diversity and metabolites. In several case–control
studies, an increasing abundance of Lactobacillaceae,
Barnesiellaceae, and Enterococcacea was observed and a
decreasing abundance of Clostridium coccoides, Bacteroides
fragilis, and Prevotellaceae have been observed in PD patients
compared with those in healthy controls (93–95). PD patients
may also have increased intestinal permeability and bacterial
overgrowth in the small intestine (149, 150). A recent study in
Frontiers in Immunology | www.frontiersin.org 8
the a-Syn-overexpressing (ASO) mice showed that the gut
microbiota plays a crucial role in PD manifestation. ASO mice
administered feces from PD patients showed increasing motor
symptoms compared with the mice administered healthy feces
(151). A case report of a PD patient with healthy FMT showed
the temporary improvement of leg tremors and other PD
symptoms (152).

2.2.2 Modifications of Microbial Molecules in
Parkinson’s Disease
Gut-derived microbial molecules are considered crucial
biomarkers of PD, in addition to AD. LPS acts as a PD-
inducing factor that causes intraneural LPS to activate
microglia and dopaminergic neuron degeneration. In a mouse
model, microglial nicotinamide adenine dinucleotide phosphate
oxidase expression was shown to be regulated by LPS, leading to
mitochondrial dysfunction, which further initiated neurotoxic
effects (153, 154). Currently, LPS administration is extensively
used to induce PD-like pathology in mouse models (155). PGNs
are recognized as exogenous foreign substances by the host
immune system, and they are known as ligands with PRRs
because they are unique to bacteria (127). A recent study on
the PGN recognition protein genes suggested its causative role in
gut microbiota and gut homeostasis related to PD risk (156, 157).

Moreover, two types of bacterial amyloids, namely, Fap and
Curli, are associated with PD pathology. Fap produced by
Pseudomonas induced a conformational change in a-Syn in an
in vitro trial (91). Curli produced by Enterobacteriaceae
promoted a-Syn aggregation and motor impairment in a
mouse model (92).

After comparing fecal samples of patients with those of
healthy controls, patients with PD showed SCFA reduction
and altered microbiota composition (57). Interestingly, the
plasma SCFA levels increased with the severity of PD and
antiparkinsonian medical approaches (158). In addition, the
colonization of SCFA-producing bacteria such as Roseburia
and Faecalibacterium was found to be more in healthy controls
than that in patients with PD (90).

Whether TMAO can be used as a diagnostic biomarker of PD
is unknown. However, it was detectable in the CSF of a PD
mouse model (141). TMAO level alterations in PD are still
controversial because its high plasma levels were associated
with terminal PD, whereas low plasma TMAO levels were
associated with increased risk of early-stage PD (159, 160).

Molecular hydrogen is a common by-product of carbohydrate
fermentation in the host microbiota. Due to the bidirectional
translocation from the cell membrane and antioxidant
properties, molecular hydrogen might have neuroprotective
effects and is being used in bacterial overgrowth in the small
intestine (161). A clinical study revealed the low abundance of
bacterial hydrogen products in patients with PD compared with
that in healthy controls (162). Inflammation and peripheral
blood cell apoptosis in healthy adults can be reduced by
drinking hydrogen-rich water (163). Moreover, in a previous
study using a PD mouse model, dopaminergic loss was shown to
reduce with drinking of hydrogen water (96). Moreover, regular
drinking of hydrogen water reduced motor impairment in
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patients with PD (97). A similar study using an autism spectrum
disorder mouse model also reported amelioration of the autistic-
like behavior in mice (98). However, the specific mechanism of
hydrogen in modulating cognitive impairment is still unknown.

2.3 Huntington Disease
HD is an autosomal dominant rare ND with an estimated global
prevalence of 2.7 cases in 100,000 people, with the onset age
between 35 and 44 years (164, 165). The main manifestations of
HD include cognitive impairment, psychiatric disorder, and
motor symptoms. Motor disturbance progresses into dysphagia
with weight loss and aspiration difficulties, leading to fatality
(164, 166). In addition, the abnormal expansion of HTT results
in HTT dysfunction in brain development, transcriptional
process, histone modification, and mitochondrial function,
which eventually triggers the aforementioned manifestations
(165, 167). Despite the availability of explicit information on
HD symptoms and pathogenesis, no effective treatment is
available for curing the disease or delaying its progression.

2.3.1 Involvement of Microbiome in Huntington
Disease
Emerging evidence has linked gut microbiota with neurological
health, thus creating the possibility of bringing gut microbiota
into HD diagnosis and treatment (168). HD may be
characterized by changes in the abundance or diversity of gut
microbiota, and such changes may include sexual differences
(169). A recent study compared the gut microbiota in an HD
mouse model with that in wild-type mice and reported an
increase in the abundance of Bacteroidales and Lactobacillales
and a decrease in the abundance of Clostridiales in a male HD
mouse model. By contrast, an increase in the abundance of
Coriobacteriales , Erysipelotrichales , Bacteroidales , and
Burkholderiale and a decrease in the abundance of Clostridiales
were observed in female HD mice. Furthermore, male HD mice
showed higher microbial diversity than both female and wild-
type mice (99). Another study showed the decreased levels of
myelin-related proteins and mature oligodendrocytes in the
prefrontal cortex in microbiota-deficient mice, which led to
reduced callosal myelination and white matter plasticity (100);
the study revealed the effect of the lack of microbiota in
aggravating internal HD phenotypes.

2.3.2 Modifications of Microbial Molecules in
Huntington Disease
In addition to the relation between HD and gut microbiota
diversity, some SCFAs and bioactive metabolites derived from
gut microbiota secretion are evident in HD onset and
progression, which mainly act on the biological processes of
the GBA (170). Serotonin, tyrosine, 2-hydroxyphenylacetic acid,
3-hydroxyphenylacetic acid, and 4-hydroxyphenylacetic acid can
cause diet and bioactive compound dysbiosis in the GBA,
whereas indole-3-propionic acid can lead to intestinal
permeability (171). More studies on such gut microbiota-
derived metabolites can help in understanding the complex
relationship between gut microbiota and HD and shed light on
the early diagnosis and treatment of HD.
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2.4 Multiple Sclerosis
MS is a chronic inflammatory and demyelinating disorder in the
CNS. MS exhibits different phenotypes, with approximately 15%
cases in a primary progressive MS (PPMS) course and 85% cases
in a relapsing-remitting MS (RRMS) course (172). PPMS is a
progressive neurologic disorder characterized by spastic
paraparesis and sphincter dysfunction (173). A patient
presenting with clinically isolated syndromes can be suspected
as having RRMS, which is characterized by sustained neurologic
symptom relapse and recovery (174, 175). The essential
pathology of MS remains to be elucidated. However, MS
development may be affected by both internal and external
factors, eventually leading to immune dysregulation.

2.4.1 Microbiota Implicates Internal Factor Effect on
Multiple Sclerosis
Recent studies have shown that internal gut microbiota
significantly effects MS and can be affected by environmental
factors (176). The 16S rRNA sequencing of intestinal microbiota
showed a high abundance of the phylum Firmicutes and lower
abundance of the phylum Bacteroidetes in patients with MS than
those in healthy controls (102). The increased abundance of
Euryachaeota and Akkermansia has been observed in untreated
patients with MS compared with that in healthy controls (177).
Other studies have pointed out specifically that the decreased
abundance of Prevotella in patients with RRMS can increase the
disease activity (103). The reduction in Clostridium abundance in
patients with RRMS, leading to a decreased level of SCFA
secretion, was also observed in a study (101). Considering the
extent of such changes in patients with MS, FMT trials have
further proven the relationship between gut microbiota and MS.
The transplant of MS microbiota in mouse models resulted in an
increased experimental autoimmune encephalomyelitis
incidence, resulting in more severe MS symptoms (178, 179).
Currently, two human FMT trials have reported the successful
amelioration of MS symptoms (180, 181).

2.4.2 Microbiota Implicates External Factor Effects
on Multiple Sclerosis
External environmental factors such as Epstein–Barr virus
infection, smoking, and vitamin D intake also have significant
effects on MS progression. The relationship between vitamin D
and MS has led to research on an upsurge in the effect of diet in
MS treatment (182). Diets can affect the diversity and levels of
gut microbiota and then indirectly affect MS development (183).
Patients with obesity showed the same phenomenon of increase
in Firmicutes and Actinobacteria abundance similar to those in
patients with MS. Additionally, obese patients with MS had a
reduced abundance of Bacteroidetes compared with patients
having normal weight (184). Moreover, obese patients exhibit
low levels of 25-hydroxyvitamin D3 (vitamin D storage form)
and consequently high risks of MS development (185). Dietary
studies in patients with MS have shown the positive effects of
dietary intervention with vitamin D supplement in low-calorie
diets, alleviating the chronic inflammatory symptoms of MS
(186). Recently, intermittent fasting has been introduced into MS
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treatment because of its significant effects, including the supply
the abundant of gut microbiota and the secretion of leptin and
glutathione (187). All these studies have shown that diet can be
considered as an MS treatment alternative.
3 CONTROVERSIES AND PERSPECTIVES

NDs are systemic diseases that can be studied in diverse
disciplines including microbiology and neuroscience. Several
pieces of evidence in preclinical, clinical, in vitro, and in vivo
studies have suggested the relationship of gut microbiota with
brain shapes, neurological processes, and cognitive behavior
(Figure 2). However, the findings of most studies are less
reliable because of limited sample sizes. The effect of
microbiota on ND pathophysiology in FMT trials is unclear
because of the unreliable microbiota, and most trials have
focused on animal models.

Comprehensive, normalized, and rigorous analysis and
evaluation standards are needed because of differences in
cohorts, lifestyles, ages, and genders across studies. The
differences across studies can be summarized as follows.

First, tremendous regional differences have been observed, for
example, the abundance of gut Bacteroides was reported to be high
in AD patients from the USA, whereas it was reported to be low in
AD patients from China (87, 188). Two studies from different
provinces in China also showed an inverse change in Blautia
abundance (188, 189). Second, a few studies have reviewed the
effects of specific species of microbiota on ND pathology; however,
the mechanisms remain unclear. For example, the abundance of
Akkermansia increased in human patients with AD, PD, and MS,
whereas Akkermansia intragastric administration in an ADmouse
model produced protective effects on cognitive impairments;
increased Akkermansia proportion in AD and PD mouse
models has also been reported to ameliorate the underlying
pathology (87, 177, 190–192). Based on the aforementioned
findings, we speculate that controversial experimental results
were obtained because of the limited pathogenesis of ND mouse
models. Human ND etiologies are quite intricate, involving long-
termmanifold metabolic disorders, gut microbiota alteration, gene
mutation, and various hereditary factors, whereas most mouse
model etiologies rely on gene editing or medical injection, which
might lead to inconsistent pathogenic processes (24, 193–201).
Third, studies have demonstrated that microbiota altered with
aging; yet, no evidence is available to confirm whether the altered
microflora is healthy, unhealthy, stable, or vulnerable (10, 15, 22,
113, 202). Construction of a standard ND patient fecal microbiota
bank can revolutionize the analysis of fecal microbiota through a
Frontiers in Immunology | www.frontiersin.org 10
noninvasive ND diagnostic approach. Furthermore, more precise
animal models that simulate both human ND pathology and its
intestinal environments are needed.

Similarly, the nervous system and BBB become weaker with
aging (49, 203, 204). Thus, it is essential to understand how the
vulnerability of neurons and BBB affects GBA modulation.
Further studies are required to assess the long-term effect of
GBA stability as a new “endocrine organ” on ND pathology (48).
Specific microbial molecule modulation in gut–brain signaling
both chemically and physically may provide a therapeutic
approach targeted on microbiome effects. For example, the
application of microbiota-targeted psychotropic medicines
without dependency, which could reduce the dependency
caused by existing psychotropic drugs or the drugs that inhibit
the proliferation of specific ND-causing microbiota or bacterial
metabolite production, might be a revolutionary therapy.
4 CONCLUSION

Gut microbiota influences brain disorders through modulating
the immune system, direct neural signaling, and activating the
humoral pathway by microbial molecules and some unknown
potential pathways. Considerable attention has been paid toward
elucidating the unknown mechanism and influence factors;
therefore, direct intervention of ND pathophysiology by gut
microbiota should be reconsidered. Further studies from bench
to clinical on these mysteries are required to better understand
the underlying mechanism.
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