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Abstract

Background: Gehan’s two-stage design was historically the design of choice for phase II oncology trials. One of the
reasons it is less frequently used today is that it does not allow for a formal test of treatment efficacy, and therefore
does not control conventional type-I and type-II error-rates.

Methods: We describe how recently developed methodology for flexible two-stage single-arm trials can be used to
incorporate the hypothesis test commonly associated with phase II trials in to Gehan’s design. We additionally detail
how this hypothesis test can be optimised in order to maximise its power, and describe how the second stage sample
sizes can be chosen to more readily provide the operating characteristics that were originally envisioned by Gehan.
Finally, we contrast our modified Gehan designs to Simon’s designs, based on two examples motivated by real clinical
trials.

Results: Gehan’s original designs are often greatly under- or over-powered when compared to type-II error-rates
typically used in phase II. However, we demonstrate that the control parameters of his design can be chosen to
resolve this problem. With this, though, the modified Gehan designs have operating characteristics similar to the more
familiar Simon designs.

Conclusions: The trial design settings in which Gehan’s design will be preferable over Simon’s designs are likely
limited. Provided the second stage sample sizes are chosen carefully, however, one scenario of potential utility is
when the trial’s primary goal is to ascertain the treatment response rate to a certain precision.
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Background
Phase II oncology clinical trials are commonly carried
out via non-randomized single-arm designs. In particu-
lar, Gehan’s two-stage single-arm design was perhaps the
first design ever forwarded for phase II oncology trials
[1]. In it, stage one is conducted to ascertain whether the
regimen under study displays enough anti-cancer activ-
ity to justify further investigation, with this decision based
upon whether at least one tumour response is observed
amongst a small number of patients. Following the obser-
vation of at least one response, stage two is then con-
structed to try and ensure that the true response rate can
be estimated to a certain precision.
Whilst Gehan’s design was once commonly utilised [2],

it was later replaced as the typical approach to phase II
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trial conduct by two two-stage group sequential designs
offered by Simon [3]. Importantly, the parameters of
Simon’s designs are those which, amongst the parameter
combinations that control the operating characteristics of
a particular hypothesis test, minimise the expected sam-
ple size under a nominated uninteresting response rate,
or minimise the trial’s maximal possible sample size. The
simplicity of Simon’s designs, and their efficiency at weed-
ing out inactive agents, has led to their evident sustained
popularity [4–6].
Moreover, the fact that Simon’s designs are still com-

monly utilised has meant that developing methodology
for their extension remains an active area of research.
Several recent such presentations have focused upon a so-
called flexible two-stage design framework that allows, in
particular, the second stage sample size to be dependent
on the number of responses observed in stage one [7–11].
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Interestingly, these flexible designs therefore have paral-
lels with Gehan’s once popular design, which also specifies
the stage-two sample sizes in a response adaptive manner.
Ultimately, Gehan’s design fell out of common use

because, unlike Simon’s designs, it provides no means of
formally testing whether a regimen’s observed response
rate is sufficiently large to warrant its further development
[2]. That is, it affords no method for controlling a study’s
type-I error-rate or power to a desired level. Indeed, the
latest available figures on phase II oncology trials suggest
Gehan’s approach is now used infrequently in compari-
son to Simon’s designs. Specifically, Langrand-Escure et al.
(2017) [6] reviewed phase II clinical trials published in
three top oncology journals between 2010 and 2015. They
identified only six studies that utilised Gehan’s design.
However, on our further inspection, only three of these
articles cited Gehan’s paper. Therefore, to more accurately
quantify how often Gehan’s design has been employed in
recent years, we carried out a narrative literature review,
ultimately finding evidence that Gehan’s design is being
used more regularly than previous reviews suggest.
Specifically, we surveyed the 200 articles, according to

Google Scholar, which have cited Gehan’s 1961 paper
since January 1 2008. Additionally, we reviewed the 1872
articles on PubMed Central, with a publication date later
than January 1 2008, that contained “Gehan" in any
field. We found 52 papers that stated they had utilised
either Gehan’s methodology, or a modified version of
it, with many in high impact oncology journals. Further
details of how this survey was conducted are provided in
Additional files 1 and 2. Moreover, two of the articles
found by Langrand-Escure et al. (2017) [6] were not iden-
tified in our search. Consequently, it is possible that
substantially more published trials have utilised Gehan’s
design in recent years than our narrative review suggests.
And, of course, there may well be numerous unpublished
trials that have utilised his approach, given that many
studies remain unpublished [12], and as it has been argued
previously, single-arm trials may be more susceptible
to non-publication than their randomised counterparts
because their small sample size leads to a perception that
they have less intrinsic value [13].
Therefore, methods that improve Gehan’s original

design, and provide further evidence on its statistical char-
acteristics, are of value to the trials community. Here, our
focus is on providing such methodology. Significantly, we
describe how techniques for flexible two-stage single-arm
trials can be used to incorporate hypothesis testing in to
Gehan’s design. We further expound on how this test can
be optimised in order to maximise its power. Following
this, we describe modified approaches to specifying the
second-stage sample sizes in Gehan’s design, in order to
permit the design’s desired operating characteristics to be
more commonly attained.

The primary motivation for our work is then to utilise
our results to be able to present a thorough compari-
son of our modified versions of Gehan’s design to Simon’s
designs. We achieve this based on two real trial examples,
and discuss important considerations around the power
of the designs, along with the precision to which they can
estimate the response rate on trial conclusion. We con-
clude with a discussion of the potential scenarios in which
our enhanced versions of Gehan’s design could be useful
within the context of developing a novel treatment regime.

Methods
Gehan’s design
We proceed by first formally describing Gehan’s design.
As noted, Gehan proposed a two-stage approach in which
a regimen’s performance is judged according to the num-
ber of patients who experience a tumour response. Thus,
denoting the outcome for patient i by Xi, Gehan’s frame-
work supposes that Xi ∼ Bern(π), for response rate π ∈
[ 0, 1]. A response rate, π1 ∈ (0, 1], is specified so as to
warrant the further investigation of the regimen. Then,
the sample size required in stage one, n1 ∈ N

+, is chosen
based on S1 = ∑n1

i=1 Xi ∼ Bin(n1,π), using a rejection
probability β1 ∈ (0, 1), as

argmin
n1∈N+

{b(0 | n1,π1) ≤ β1}, (1)

where b(s | m,π) = mCsπ s(1 − π)m−s is the probability
mass function of a Bin(m,π) random variable. Thus, n1 is
chosen such that if the response rate is at least π1, then
the probability of observing no responses is less than or
equal to β1.
Then, if the observed value of S1, s1, is equal to zero, the

study is stopped for futility. Otherwise, Gehan suggested
that the sample size for stage two, n2 ∈ N, be chosen to
allow the true response rate to be estimated to a certain
precision. Explicitly, an interim estimate of the response
rate, π̂ ∈[ 0, 1], is specified based on the first stage data.
We then choose n2 as

argmin
n2∈N

⎧
⎨

⎩

√
π̂(1 − π̂)

n1 + n2
≤ γ

⎫
⎬

⎭
. (2)

Here,
√

π̂(1 − π̂)/(n1 + n2) is an estimate of the stan-
dard error of the response rate at the end of stage two.
Thus, Gehan proposed that this estimate be controlled to
somemaximal value γ ∈ (0, 1]. Note that the above allows
for n2 = 0, signifying that the desired precision is met at
the end of stage one.
Observing that the above calculation is heavily depen-

dent upon π̂ , Gehan advised that a conservative value be
specified via the upper 75th percent confidence limit for
π , based on the stage one data. He did not describe pre-
cisely how this confidence interval should be computed,
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but the designs that were subsequently presented suggest
that a Wald-based confidence interval was utilised, giving
for any s1 and n1

π̂ ≡ π̂(s1, n1) = min
{
s1
n1

+ �−1(1 − 0.125)
√
s1(n1 − s1)

n31
, 1

}

.

(3)

This proposal remains a potentially reasonable one if
our desire is to approximately provide a certain level of
precision in the estimate of the response rate at the end
of stage two. However, this specification of π̂ , based on an
argument for conservatism, can be improved upon with-
out a significant increase in computational or statistical
complexity. Specifically, given the typically small nature
of n1, a confidence limit based on a confidence interval
determination procedure that is not reliant on asymptotic
theory could be utilised. Moreover, Eq. (2) will be max-
imised, for any n1 + n2 ∈ N

+, when π̂ = 0.5. Therefore,
using the upper confidence limit when s1/n1 ≥ 0.5 is actu-
ally less conservative than the simple maximum likelihood
estimate s1/n1. Such a possibility was an unlikely one in
the 1960s but may not be unreasonable in certain disease
settings today. Consequently, choosing Clopper-Pearson
[14] as the approach to confidence interval specification,
these considerations could lead to the following proposal
for π̂ , rather than that given in Eq. (3)

π̂(s1, n1) =
{
argmin

π̂∈�̂
|π̂ − 0.5| : s1 ∈ {1, . . . , n1 − 1},

0.1251/n1 : s1 = n1,
(4)

for �̂ = {QBeta(0.125, s1, n1 − s + 1),QBeta(0.875, s1 +
1, n1 − s1), s1/n1}. Here, QBeta(p, a, b) is the pth quantile
of a Beta distribution with shape parameters a and b. That
is, π̂ could be specified as either its maximum likelihood
estimate s1/n1, or its lower or upper 75th percent confi-
dence limits using Clopper-Pearson, according to which is
closest to 0.5 (the elements in �̂).
In this paper, we consider both of these methods for

specifying π̂ . We refer to Gehan’s original approach based
on Eq. (3) as the ‘original’, and our proposal in Eq. (4), as
the ‘conservative’ method. Note that in the above we retain
use of the 75% confidence interval. However, intervals for
other coverages could readily be employed.
The above completes the description of our approach

to specifying Gehan’s design. Notably, Gehan provided a
table of designs for several combinations of π1, β1, and γ .
We will return later to consider the power of these designs
following the inclusion of a hypothesis test.

Incorporating and optimising a hypothesis test
To resolve one of the principal limitations of Gehan’s
design framework, we now describe how we can modify

his approach to include the hypothesis test typically asso-
ciated with phase II oncology trials. Precisely, we test the
following null hypothesis

H0 : π = π0, (5)

where π0 ∈ (0,π1). As usual, we will desire to control
the type-I error-rate under H0 to some α ∈ (0, 1). Note
that here, π0 is an uninteresting or null response rate that
would make the regimen of no further interest. Typically,
this is specified based on the historical response rate for
the current standard of care.
Now, the methodology of the previous section allows us

to prescribe values for n1, and n2 for each s1 ∈ {0, . . . , n1},
which we will signify from here by n2(s1). Such notation
is common in the flexible and adaptive two-stage single-
arm trial literature [7–9], and indeed we can readily view
Gehan’s design as a type of flexible two-stage design. For,
whilst these articles have generally sought to determine
values n2(s1) that minimise some function of the trial’s
(expected) required sample size, as is evident, Gehan’s
framework simply prescribes an alternative approach to
specifying the second stage sample sizes based on the first
stage data.
Importantly, the literature on flexibly designing two-

stage single-arm trials is facilitated by the concept of a
discrete conditional error function (DCEF), as formalised
by Englert and Keiser (2012) [7]. A DCEF consists of val-
ues D(s1) ∈[ 0, 1] for s1 ∈ {0, . . . , n1}. Using these values,
if D(s1) = 0 the trial is terminated at the end of the first
stage for futility (H0 is not rejected). Similarly, ifD(s1) = 1
the trial is terminated at the end of stage one for efficacy
(H0 is rejected). Otherwise, for those s1 such that D(s1) ∈
(0, 1), the trial continues to the end of stage two, and
rejects H0 if the second stage p-value, p2, is sufficiently
small. Formally, H0 is rejected when

p2{s2|n2(s1),π0} = P{S2 ≥ s2 | n2(s1),π0},
= 1 − B{s2 − 1 | n2(s1),π0},
≤ D(s1),

where S2 = ∑n1+n2(s1)
i=n1+1 Xi ∼ Bin{n2(s1),π}, and

B(s | m,π) is the cumulative distribution function of a
Bin(m,π) variable. Then, the test is controlled to level α

provided that
n1∑

s1=0
D(s1)b(s1 | n1,π0) ≤ α. (6)

It is this concept of a DCEF that allows us to incorporate
a hypothesis test in to Gehan’s design. Our task is sim-
ply to choose values for the D(s1) such that Eq. (6) holds:
any such set of values, in combination with the testing
rules described, allows us to include a formal test of the
hypothesis given in Eq. (5), and be assured that the type-I
error-rate is controlled to the desired level.
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In practice, there will be many such sets of values that
will conform to the above requirement, and therefore a
method is necessitated for choosing between them. To
achieve this in a logical manner, we can specify an opti-
mality criteria of interest. As noted above, the previous
articles in this domain have focused on methods for opti-
mally choosing theD(s1) tominimise some function of the
trial’s expected sample size. In fact, in Englert and Keiser
(2013) [8] and Shan et al. (2016) [9], each D(s1) is directly
associated with a value for n2(s1). That is, n2 is dependent
on s1 through the value of D(s1). Thus, their optimisation
procedures also determine the second stage sample sizes.
In our setting, Gehan’s precision requirement is instead

responsible for the specification of the n2(s1). Con-
sequently, we cannot use considerations around the
expected sample size to optimise the D(s1). Therefore, we
propose here to instead maximise the power of the result-
ing hypothesis test. To this end, note that the probability
we reject H0 for any π ∈[ 0, 1] is given by

P(π) =
n1∑

s1=0
P{P2 ≤ D(s1) | n2(s1),π}b(s1 | n1,π), (7)

where P2 denotes the random value of the second stage p-
value, the distribution of which is dependent upon π and
n2(s1) [8]. Then, it is P(π1) that we use as our optimality
criteria.
The final key consideration is to carefully specify the

restrictions that are placed upon the D(s1). Here, the
following are used

1 D(0) < D(1) < · · · < D(n1). This restriction is
logical in that the probability we will reject H0 should
increase as the number of responses observed at
interim does.

2 D(s1) ∈ {0, 1 − B[ n2(s1) − 1 |,
n2(s1),π0] , . . . , 1 − B[ 0 |, n2(s1),π0] , 1}. This
restriction corresponds to the fact that we need not
treat the D(s1) as continuous parameters, as for each
s1 there are a finite number of possible p-values that
can be observed at the end of stage two; specifically
those specified in the set here.

3 D(s1) ∈ {0, 1} if n2(s1) = 0. If n2(s1) = 0 the trial is
stopped at the end of stage one. To ensure that a
decision is always made in our testing framework, we
must therefore have that H0 is either rejected
(D(s1) = 1) or not rejected (D(s1) = 0) at this point.
A caveat of this restriction is that we must have
D(0) = 0, as D(0) = 1 would imply a type-I
error-rate of one given Restriction 1.

4 D(s1) /∈ {0, 1} if n2(s1) > 0. If n2(s1) > 0 then the
trial progresses to stage two. In this case, D(s1)
should not equal 0 or 1 as it is not logical for a

decision on the trial’s outcome to be certain before
the second stage commences.

Thus, our problem is reduced tomaximising Eq. (7) over
an n1-dimensional discrete search space. Unfortunately,
this will in general still leave an extremely large number
of possible choices for the D(s1). Fortunately, Englert and
Keiser (2013) [8] have demonstrated how this problem can
be resolved using the branch-and-bound algorithm to effi-
ciently and exhaustively search over the possible designs.
Briefly, this algorithm works by recursively defining the
D(s1) for s1 ∈ {0, . . . , n1} through repeated branching
steps that split the optimisation problem in to further and
further sub-problems. Within this recursion, the bound-
ing step systematically discards sub-problems that cannot
lead to the optimal design. Here, this corresponds to
those sub-problems which either cannot control the type-
I error-rate to the desired level α, or cannot increase the
trial’s power relative to that of the best design identified
thus far. More precisely, after s branching steps, when
D(s1) has been specified for s1 ∈ {0, . . . , s}, the mini-
mal possible type-I error-rate of a design for any potential
choices of D(s1) for s1 ∈ {s + 1, . . . , n1}, is given by

αmin =
s∑

s1=0
D(s1)b(s1 | n1,π0) + D(s)

n1∑

s1=s+1
b(s1 | n1,π0),

and the maximal possible power will be

Pmax =
s∑

s1=0
P{P2 ≤ D(s1) | n2(s1),π1}b(s1 | n1,π1)

+
n1∑

s1=s+1
b(s1 | n1,π1).

We can therefore discard all sub-problems when αmin >

α or Pmax < Pcurrent, where Pcurrent is the largest power
of the designs considered so far. It is this bounding step
that allows for the efficient consideration of all possible
designs, as we are able to avoid the computational cost of
evaluating many sets of D(s1) that could not possibly be
optimal.
Note that one small caveat to the above considerations

is that a design may not exist that is capable of controlling
the type-I error-rate to α. Explicitly, the most conservative
possible design would take for s1 ∈ {1, . . . , n1}

D(s1) =

⎧
⎪⎨

⎪⎩

0 :
∑s1

s=1 n2(s1) = 0,
b[ n2(s1) | n2(s1),π0] : n2(s1) > 0,
1 : n2(s1) = 0 and

∑s1−1
s=1 n2(s1) > 0.

Thus the minimal possible type-I error-rate is P(π0)
with the above values of the D(s1), and therefore if this is
greater than α no DCEF exists which attains the desired
type-I error-rate. However, later, we perform a large
search over what are likely to be common choices for α,
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γ , π0, and π1, and demonstrate that this is likely to rarely
occur in practice, at least when using the conservative
approach to specifying π̂ in fG.
This describes our complete approach to optimising a

test of the hypotheses given in Eq. (5) within Gehan’s
design. A program to execute our search procedure in R is
available in the singlearm package [15].

Alternative methods for specifying the second stage
sample sizes
Later, we will observe that Gehan’s design determina-
tion procedure, even with our conservative method for
specifying π̂ at the end of stage one, would routinely be
expected not to provide the desired level of precision in
the estimate of the response rate at the end of stage two.
For this reason, we here detail several alternative meth-
ods that could be used to specify the second stage sample
sizes.
First, suppose that n1 is specified as the solution of

Eq. (1). Then, a general framework for specifying n2, for
any s1, can be prescribed by allocating it as the solution of
the following problem

argmin
n2∈N

{f (n2 | θ) ≤ γ }.

Here, f is a function that evaluates the suitability of
a candidate n2, for a given vector of (decision guiding)
parameters θ . In Gehan’s original proposal

f = fG
{
n2 | (π̂ , n1)�

}
=

√
π̂(1 − π̂)

n1 + n2
.

It is a consequence of that fact that fG provides only an
estimate of the true standard error that the desired pre-
cision may not be achieved at the end of the trial. One
way to resolve this issue would be to specify f via a func-
tion L(s1, s2, n1, n2), which prescribes the length of the
confidence interval for π at the end of the trial, given
the number of responses observed in stages one and two.
Then, n2 could be determined using

f = fL
{
n2 | (s1, n1)�

}
= 0.5

�−1(1 − α/2)
max

s2∈{0,...,n2}
L(s1, s2, n1, n2).

That is, n2 could be chosen to ensure that, no matter the
value of s2, half of the confidence interval width is always
constrained to �−1(1 − α/2)γ . The factor �−1(1 − α/2)
arises here to correspond to Gehan’s original precision
requirement, which aims to ensure a Wald confidence
interval for π at the end of stage two has length 2�−1(1−
α/2)γ (i.e., so that the designs aim to achieve the same
precision requirement).
In practice, such an approach may lead in certain cir-

cumstances to undesirably large values of the n2(s1). An
intermediate option might be to make use of an interim
estimate of π , as well as a function L(s1, s2, n1, n2). Then,

half the expected length of the final confidence interval
could be constrained to γ , when the true response rate is
π̂ , by taking

f = fEL
{
n2 | (π̂ , s1, n1)�

}

= 0.5
�−1(1 − α/2)

n2∑

s2=0
b(s2 | n2, π̂)L(s1, s2, n1, n2).

In this paper, we will consider the operating charac-
teristics of designs determined using fG, fL, and fEL for
the specification of the second stage sample sizes, con-
sidering the utility of both Eqs. (3) and (4) for the value
of π̂ in fEL. Furthermore, we utilise Clopper-Pearson for
L(s1, s2, n1, n2) in the above equations, giving

L(s1,s2,n1,n2)≡ L(s ≡ s1 + s2, n ≡ n1 + n2),

=
⎧
⎨

⎩

QBeta(1 − α/2, s + 1, n − s)
−QBeta(α/2, s, n − s + 1) : s /∈ {0, n},
1 − (α/2)1/n : otherwise.

(8)

Design comparison
In what follows, we assess the power of Gehan’s original
designs for the majority of parameters considered in Table
II of his paper. We motivate a more in depth examination
of the performance of our modified and optimised designs
using design parameters based on two real clinical trials.
Firstly, Dupuis-Girod et al. (2012) [16] presented the

results of a phase II study to test the efficacy of beva-
cizumab in reducing high cardiac output in severe hepatic
forms of hereditary hemorrhagic telangiectasia. Gehan’s
design was employed, with β1 = 0.1, π1 = 0.3, and
γ = 0.1. We will consider designs for α = 0.05, when
π0 = π1 − 0.15 = 0.15.
In Additional file 1 we also present results correspond-

ing to Lorenzen et al. (2008) [17], who investigated the
tumour response rate to neoadjuvant continuous infusion
of weekly 5-fluorouracil and escalating doses of oxali-
platin plus concurrent radiation in patients with locally
advanced oesophageal squamous cell carcinoma. This
trial also used Gehan’s design, but for β1 = 0.05, π1 = 0.5,
and γ = 0.1. In this case, we consider designs for α = 0.1,
with π0 = π1 − 0.2 = 0.3.
In both cases, we denote the Simon designs as having

stage-wise group sizes n1 and n2, and futility boundaries f1
and f2 (that is, stage two is commended if s1 > f1, and H0
rejected only when s1 + s2 > f2). Then, for these designs,
we have

n2(s1) =
{
0 : s1 ≤ f1,
n2 : s1 > f1.
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In our assessments, we repeatedly examine several dif-
ferent statistical quantities in order to compare the per-
formance of the designs. In all instances, we calculate
these quantities using exact calculations, without recourse
to simulation, by employing exhaustive calculations over
possible trial outcomes.
Firstly, we will examine the expected sample size (ESS)

required by the various designs. Therefore, note that we
can compute this for any π ∈[ 0, 1] using

ESS(π) =
n1∑

s1=0
{n1 + n2(s1)}b(s1 | n,π).

We also compare the expected length of the 100(1−α)%
confidence intervals at the end of the trials, conditional on
not stopping for futility in stage one. That is, conditional
on S1 > f1, where for the Gehan designs we take f1 =
argmaxs1∈{0,...,n1}{D(s1) = 0}. We compute this, for any
π ∈[ 0, 1], as

EL(π | S1 > f1)

=
∑n1

s1=f1
∑n2(s1)

s2=0 L{s1 + s2, n1 + n2(s1)}b(s1 | n1,π)b{s2 | n2(s1),π}
∑n1

s1=1 b(s1 | n1,π)
.

We will refer to this as the conditional expected length
(CEL). We focus on the CEL, rather than the uncondi-
tional expected length of the confidence interval across
all possible values of s1, for two reasons. Firstly, because
Gehan’s designs is constructed to try and provide a certain
precision at the end of stage two. And secondly, as anal-
ysis of this kind is arguably more important when a trial
has not been stopped early for futility [18].
Adaptive two-stage designs require specialised method-

ology for confidence interval construction, and therefore
when computing the CEL, we utilise for L(s1, s2, n1, n2) the
exact Clopper-Pearson type confidence interval, based on
an ordering of the sample space induced by the optimal
compatible estimator, described by Kunzmann and Keiser
(2018) [11]. Our reason for utilising such confidence inter-
vals for computing the CEL, but not when evaluating fL
and fEL, is as follows: the adjusted confidence intervals of
Kunzmann and Keiser (2018) [11] are only defined given
the n2(s1). Thus after accounting for the complexity of
their calculation, this means that they cannot be used in a
computationally efficient to choose the n2(s1).
Furthermore, note that by the above we are utilising

the same type of confidence interval construction pro-
cedure for both the Gehan and Simon designs, in order
to make our comparisons fair. Finally, unfortunately no
closed form expressions are available for such L. However,
they can be computed using available software [11]. We
have stored all our required confidence intervals in .csv
files contained within Additional file 5, and provided the
Julia code for their determination in Additional file 4.

When comparing the various Gehan designs to each
other, we will also consider EL(π | S1 = s1), the con-
ditional expected confidence interval lengths for each
possible value of s1 > 0, given by

EL(π |S1= s1)=
n2(s1)∑

s2=0
L{s1+s2, n1+n2(s1)}b{s2 | n2(s1),π}.

Note that code to re-create our design evaluations and
reproduce each of the tables and figures is provided in
Additional file 3.

Results
Power of Gehan’s design
First, we present the optimal values of the D(s1), along
with the corresponding type-I error-rate, power, and val-
ues of ESS(π0) and ESS(π1), for several of the parame-
ter combinations given in Table II of Gehan (1961) [1].
Explicitly, these correspond to (β1, γ ,π1) ∈ {0.05, 0.1} ×
{0.05, 0.1} × {0.2, 0.25, 0.3} with α = 0.05. Our results are
provided in Table 1 for both the original and conserva-
tive methods for specifying π̂ at the end of stage one, in
Gehan’s original fG for specifying the second stage sample
sizes. In Additional file 1, we present further results for
many other possible parameter combinations.
From Table 1, we observe that in all instances our search

procedure returns values for the D(s1) that imply a type-I
error-rate of less than α = 0.05. Moreover, the cor-
responding power of the designs ranges between 0.073
and 0.948. Thus, as was noted earlier, in no instance
is the optimization procedure unable to find a design
confirming to the desired level of type-I error control.
However, there are instances in which the discrete nature
of the test only permits a design with P(π0) � α,
which in turn results in some small values of P(π1).
Nonetheless, it is clear that the power of Gehan’s designs
is heavily dependent upon the choice of the design
parameters.
In addition, note that the power of the design when

using the conservative method for specifying π̂ is always
larger than that for the original method. This is a conse-
quence of the fact that the conservative method, as was
discussed, results in larger values for the n2(s1). This is
evidently at a cost to the trials ESS under π0 and π1,
however.

Comparison to Simon’s designs
Wenow focus on design for ourmotivating scenario based
on Dupuis-Girod et al. (2012) [16]. In this case, our opti-
mal version of Gehan’s design using the original method
for constructing π̂ , for use with fG, has n1 = 7 and
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D(0) = 0, D(1) = 0.0115, D(2) = 0.0419, D(3) = 0.0791,
D(4) = 0.1798, D(5) = 0.2775, D(6) = D(7) = 1,
n2(0) = 0, n2(1) = 14, n2(2) = 18,
n2(3) = 16, n2(4) = 10, n2(5) = 2,
n2(6) = n2(7) = 0,
P(π0) = 0.021, P(π1) = 0.404,

ESS(π0) = 17.42, ESS(π1) = 20.83.

Similarly, using fG with our conservative method for
constructing π̂

D(0) = 0, D(1) = D(2) = 0.0419, D(3) = 0.2798, D(4) = 0.5203,

D(5) = D(6) = 0.7759, D(7) = 0.8791,

n2(0) = 0, n2(1) = n2(2) = n2(3) = n2(4) = n2(5) = n2(6) = 18,

n2(7) = 13,

P(π0) = 0.049, P(π1) = 0.572,

ESS(π0) = 19.23, ESS(π1) = 23.52.

Thus, the power of these modified Gehan designs is less
than that we would generally desire in a phase II trial.
Whilst for the former design this is in part due to the con-
servativeness of the test, even the conservative approach
for constructing π̂ , which has larger second stage sample
sizes, and attains a type-I error-rate close to the desired
level, still only has power of 0.572. It is thus clear that nei-
ther method is capable of providing a reasonable amount
of power for π0 = π1 − 0.15. It is therefore useful to
describe how this can be achieved, and also informative to
examine the performance of the designs when they have a
more typical level of power.
Explicitly, to achieve this for either method, we can treat

γ as a parameter and identify a γ ∈ (0, 1) that provides,
say, 80% power. It is important to realise that such a search
must be conducted carefully, as the discrete nature of the
design means P(π1) may not be monotonic in γ . A simple
option is to search for the maximal γ such that P(π1) is
above the desired level. This is logical because the ESS will
monotonically decrease in γ , as increasing γ has no effect
on the design other than to monotonically decrease the
n2(s1).
Performing this search for the original method, we find

that γ = 0.0658 gives a design with n1 = 7 and

D(0) = 0, D(1) = 0.0418, D(2) = 0.0714, D(3) = 0.1421,
D(4) = 0.7279, D(5) = 0.8578, D(6) = D(7) = 1,
n2(0) = 0, n2(1) = 42, n2(2) = 51,
n2(3) = 46, n2(4) = 32, n2(5) = 12,
n2(6) = n2(7) = 0,
P(π0) = 0.049, P(π1) = 0.800,

ESS(π0) = 37.52, ESS(π1) = 47.43.

Whilst for the conservative approach, γ = 0.0686
results in a design with n1 = 7 and

D(0) = 0, D(1) = 0.0354, D(2) = 0.0745, D(3) = 0.2457,

D(4) = 0.3848, D(5) = 0.7067, D(6) = 0.9948, D(7) = 0.9960,

n2(0) = 0, n2(1) = n2(2) = n2(3) = n2(4) = n2(5) = n2(6) = 46,

n2(7) = 34,

P(π0) = 0.050, P(π1) = 0.804,

ESS(π0) = 38.04, ESS(π1) = 48.9.

It is now highly informative to ask whether these opti-
mised Gehan designs offer advantageous performance
over Simon’s popular designs. Thus, next, we contrast
the performance of these designs to the null-optimal
and minimax Simon design’s when β = 0.2. Precisely,
these are

Null-optimal : f1 = 3, n1 = 19, f2 = 12, n2 = 36,
Minimax : f1 = 3, n1 = 23, f2 = 11, n2 = 25.

Thus the maximal sample size of both of the Gehan
designs listed above is larger than that for both Simon
designs. We further investigate the likely required sample
size of these four designs through their ESS curves, which
are provided in Fig. 1 for π ∈[ 0, 1]. We can see that the
ESS of the Gehan designs is lower when π is close to zero;
a result of their smaller first stage sample size. Similarly,
the ability of the Gehan designs to lower their second stage
sample size when s1 is large means that they return to hav-
ing lower ESSs when π is large; this is particularly true for
the design utilising the original approach to specifying π̂ .
However, for a large range of arguably more realistic val-
ues of π , given the values of π0 and π1, the ESS of the
Simon designs is smaller.
A final important question is whether theGehan designs

more readily estimate π to a certain precision, in contrast
to that afforded by Simon’s designs. To this end, in Fig. 2
we compare the CEL curves of the four designs. We con-
sider only π ∈ (0, 1), as π ∈ {0, 1} can result in strange
results as the outcome of the designs is deterministic.
What we observe largely corresponds, as one would

expect, to the findings in Fig. 2. That is, for the majority
of values of π the design which has the largest ESS, has
the smallest CEL value. In particular, for Gehan’s design
with the original approach to specifying π̂ , when π is
large, the ESS of this design being much smaller results in
its CEL being substantially larger. Overall, it is clear that
Simon’s designs, and the Gehan design with the conser-
vative approach, have similar values for the CEL across a
wide range of response rates.

Gehan designs with modified second stage sample sizes
A further consequence of Fig. 2 is that the confidence
intervals determined at the end of the Gehan designs
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Fig. 1 Expected sample size curves. Shows the ESS(π) curves for Gehan’s designs using Methods A and B, and Simon’s null-optimal and minimax
designs

evidently must in certain cases have length substantially
greater than the implicitly desired 2�−1(1 − α/2)γ based
on Wald confidence intervals (which is, e.g., equal to 0.26
to 2 dp for the design using Gehan’s original approach to
specifying π̂ ).
We now conclude our results by investigating this fur-

ther for the originally desired precision in the Dupuis-
Girod et al. (2012) trial, γ = 0.1. Firstly, we determined
the optimised Gehan design based on fL to be

D(0) = 0, D(1) = 0.0287, D(2) = 0.0827, D(3) = 0.1975,

D(4) = 0.6295, D(5) = 0.9671, D(6) = 0.9671, D(7) = 0.9671,

n2(0) = 0,

n2(1) = n2(2) = n2(3) = n2(4) = n2(5) = n2(6) = n2(7) = 21,

P(π0) = 0.049, P(π1) = 0.619,

ESS(π0) = 21.27, ESS(π1) = 26.27.

In addition, that based on fEL with the original approach
to specifying π̂ was identified as

D(0) = 0, D(1) = 0.0003, D(2) = 0.0013, D(3) = 0.0041,

D(4) = 0.0056, D(5) = 0.0099, D(6) = 0.0266, D(7) = 0.1500,

n2(0) = 0, n2(1) = 14, n2(2) = 20,

n2(3) = 19, n2(4) = 16, n2(5) = 10,

n2(6) = 5, n2(7) = 1,

P(π0) = 0.0007, P(π1) = 0.107,

ESS(π0) = 18.09, ESS(π1) = 22.95.

And finally, that for fEL with our conservative approach
to specifying π̂ as

D(0) = 0, D(1) = 0.0419, D(2) = 0.0673, D(3) = 0.1702,

D(4) = D(5) = 0.3523,D(6) = 0.5203, D(7) = 0.6229,

n2(0) = 0, n2(1) = 18, n2(2) = n2(3) = n2(4) = n2(5) = 20,

n2(6) = 18, n2(7) = 6,

P(π0) = 0.046, P(π1) = 0.586,

ESS(π0) = 19.80, ESS(π1) = 24.85.

As we would expect, as the most conservative approach,
the required second stage sample sizes are largest for fL.
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Fig. 2 Expected confidence interval length curves, conditional on not stopping for futility at the end of stage one. Shows the EL(π | S1 > f1) curves
for Gehan’s designs using Methods A and B (with fG), and Simon’s null-optimal and minimax designs

Observe that for the conservative approach, relative to fG,
using fEL increases the stage two sample sizes for most s1,
but decreases it for s1 = 7.
We then present the CEL curves of the final 95% exact

Clopper-Pearson type confidence intervals for the five
designs (based on the considered combinations of func-
tion f with the original and conservative methods), for
s1 ∈ {1, . . . , n1}, in Fig. 3.
Gehan’s original design aimed to provide a (Wald) con-

fidence interval with approximate length of 2γ�−1(1 −
α/2) = 0.39 to 2 dp. It is evident that Gehan’s original
design (fG, Original) would often be expected to provide
Clopper-Pearson type confidence intervals of lengthmuch
larger than that desired. Moreover, we can see that util-
ising fEL rather than fG with the conservative approach
improves performance for several values, but not all, of
the s1.
Finally, using fL guarantees that the final confidence

interval has a CEL below that desired for all s1. So to do
fG and fEL when paired with the conservative approach
to specifying π̂ . In this case, where these designs require

only a small increase to the second stage sample sizes
(one that is arguably achievable given the maximal possi-
ble required sample size of Gehan’s original design), they
should almost certainly be preferred.

Discussion
Gehan’s design was once regularly used in phase II oncol-
ogy trials. It did not, however, include a formal test of a
regimen’s efficacy. Consequently, as the number of effec-
tive anti-cancer agents began to increase, and a higher
standard of evidence was necessitated for a treatment to
proceed to further testing, it fell out of habitual employ-
ment. Nonetheless, as was discussed, Gehan’s design is
still utilised in practice. Thus methodology to improve
upon Gehan’s original framework, and to describe the
potential advantages of the modified approach compared
to more commonly utilised designs, is therefore of value
to the trials community. Here, we provided such work,
describing the first methodology by which the hypothesis
test typically associated with single-arm phase II trials can
be incorporated in to Gehan’s design. We further went on
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Fig. 3 Expected confidence interval length curves, conditional on the number of responses in stage one. Shows the EL(π | S1 = s1) curves, for the
five different Gehan designs based on the possible combinations of method (A or B) and function (fG , fL , fEL), when s1 ∈ {1, . . . , n1}

to describe how this test can be optimised in order tomax-
imise its power, and then presented a statistical evaluation
of our modified Gehan designs.
It is valuable to note how our research builds upon

previous findings. Several studies have identified that a
major problem with Gehan’s design is that the proba-
bility stage two is commenced is typically high [19, 20],
with this true even when the response rate is below that
which we hope to observe. Here, we have provided the
additional result that the power of Gehan’s originally pre-
sented designs varies widely for a null response rate of
π0 = π1 − 0.15 (Table 1). This suggests that many studies
that have used Gehan’s design may have not had a strong
probability to reliably identify efficacious treatments. In
contrast, when the required precision γ was set to 0.05,
some of the designs had power far higher than that which
would typically be desired in a phase II trial.
We noted earlier that several of the designs in Table 1

have type-I error-rates substantially smaller than the per-
mitted level. This is a consequence of the discrete nature
of the design. In Additional file 1, via a large search
over potential design parameters, we provide evidence

that it is unlikely a reliable rule for when this will occur
can be described. However, we argue that it would be
expected to occur more often for larger values of γ and
π1, when the second stage sample sizes are small. For, in
this case, the number of permissible DCEFs will also be
small, and the possibility that one will utilise the entire
allowed type-I error will be reduced. A possible solution to
this problem might be to relax the monotonicity require-
ments on the DCEF. However, as noted, this should in
general be avoided. An ad hoc, but more acceptable solu-
tion, might be to artificially increase the values of the
n2(s1) beyond those required by the precision require-
ments. This will increase the number of potential DCEFs,
potentially permitting one which will more exhaustively
utilise the allowed type-I error.
The fact that the power of Gehan’s original designs is

not well calibrated may not be surprising, as it was not
constructed to provide a certain power, but to estimate a
response rate to within a certain precision. What is par-
ticularly troubling therefore is our presentations in Figs. 2
and 3, which demonstrated that typically the confidence
interval width at the end of stage two would not be that
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which was desired. It is for this reason that we described
how one can calculate the stage two sample sizes in an
alternative manner to allow for more precise estimation at
the end of the trial.
For our motivating example presented in this article,

and that discussed in Additional file 1, we again identi-
fied potential issues with the power of Gehan’s designs
for the utilised value of γ . For this reason, we advised
that choosing γ carefully is particularly important, and
described how a numerical search could be performed
to identify the value of γ that provides the desired
power.
The problem with this, however, is that once we modi-

fied the Gehan designs to have 80% power, on contrasting
their performance to Simon’s designs, it was clear that
Gehan’s designs often offered little advantage in terms of
their statistical operating characteristics. Gehan’s designs
tended to require fewer patients on average for extreme
values of the response rate, but for arguably more real-
istic interim values of π , Simon’s designs were often
more efficient (Fig. 1 and Additional file 1: Figure A5).
Additionally, in Fig. 2 we observed few possible val-
ues of π for which the CEL of the Gehan designs was
smaller than Simon’s designs. Though contrastingly, for
the second scenario, in Additional file 1: Figure A6 it
can be seen that Gehan’s designs would be expected to
more accurately estimate the response rate at the end of
stage tow.
The evident similar performance of the designs should

perhaps not surprise us, as for the same type-I and
type-II error-rates, the Gehan design’s parameters are
similar to those of a non-optimal version of a two-
stage group sequential design. This suggests that, for
particular required error-rates, Gehan’s framework may
have little utility for estimating the response rate π

efficiently.
This begs the important question as to when Gehan’s

designs could be useful, particularly when we take in to
consideration the grater volume of theoretical results and
software that is available pertaining to Simon’s designs.
Firstly, in rare disease settings the fact that Simon’s designs
may often have smaller ESSs makes them advantageous
over Gehan’s design. It may in particular be anticipated
that Gehan’s design would be useful when there are few
available efficacious therapies for the disease under study,
and thus any observed level of response would signify
interest in proceeding to stage two. That is to say, when
the value of π0 is small. For, this was in part Gehan’s
motivation for the construction of his design. However, in
this case, we could choose a non-optimal group sequen-
tial design with a small value of f1. We elaborate on this
in Additional file 1. Consequently, we feel it is unlikely
that Gehan’s design would regularly be preferable in such
a setting.

Note that in order to attempt to address aforementioned
issues around the interim stopping rule in Gehan’s design
being too relaxed, an extension to Gehan’s framework to
make it more applicable to trials with high response rates
has been presented [21]. We might hope a modification of
this form may improve how the operating characteristics
of Gehan’s design fair in comparison to Simon’s designs.
However, in Additional file 1 we describe how a particu-
lar logical modification to the stage one stopping rule in
Gehan’s design would be unlikely to result in improved
statistical performance. Consequently, we believe it is also
unlikely Gehan’s design will be preferable in situations
where the response rate is anticipated to be large.
As we observed in Fig. 2, Gehan’s design is likely to

have better performance in terms of the length of the
final confidence interval when the response rate is much
smaller than π0 and π1. However, this is simply a result
of its increased requisite sample size. Furthermore, if π0
is known accurately based on reliable historical data, we
would hope that this would be a rare occurrence. Ulti-
mately, we feel that there is one principal situation in
which Gehan’s designs may be particularly useful: when
the primary goal of a trial is to estimate the response rate
to a desired level of precision, and many patients are avail-
able to enroll in the study. This may occur perhaps when
the regimen under investigation is a novel single-agent, in
a more common cancer type. It was for this reason that we
described design based on the functions fL and fEL. With
these, Gehan’s framework then provides a direct way to
ensure that the response rate can be estimated precisely at
the end of stage two. As, to guarantee the same precision
with a two-stage group sequential design, a large search
would need to be conducted over the possible design
parameters to identify combinations that would lead to
precise estimation on trial completion, across all possi-
ble true response rates. That is, the principal advantage in
this setting would be computational. For, it may well be
the case, as was evident for the example design utilising
fL in the previous section, that the required second stage
sample sizes are constant for all s1, meaning the Gehan
design functions in a similar manner to a group-sequential
design. Of course, one should note that designs which
provide such precise final estimates could require signifi-
cantly increased sample sizes to those typically associated
with single-arm phase II trials.
A useful compromise between the two competing

designs could be to prospectively plan to use a flexible
two-stage design [7]. With this, at the interim analysis, the
remainder of the trial could then be specified in a group
sequential design style, to retain the simplicity of Simon’s
original designs. Alternatively, investigators could based
on the interim data decide to take a Gehan like approach
and complete stage two to achieve a precise final estimate
of the response rate.
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Conclusions
We can readily incorporate a hypothesis test in to Gehan’s
two-stage design, resolving one of its primary limitations.
However, trialists should think carefully about using this
design in practice, as Simon’s designs may often have
advantageous or comparable performance in terms of
their required sample size and the precision to which they
will be able to estimate the response rate.
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