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Clavibacter michiganensis subsp. michiganesis (Cmm) is 
a quarantine-worthy pest in México. The implementa-
tion and validation of new technologies is necessary to 
reduce the time for bacterial detection in laboratory 
conditions and Raman spectroscopy is an ambitious 
technology that has all of the features needed to char-
acterize and identify bacteria. Under controlled condi-
tions a contagion process was induced with Cmm, the 
disease epidemiology was monitored. Micro-Raman 
spectroscopy (532 nm λ laser) technique was evaluated 
its performance at assisting on Cmm detection through 
its characteristic Raman spectrum fingerprint. Our 
experiment was conducted with tomato plants in a 
completely randomized block experimental design (13 
plants × 4 rows). The Cmm infection was confirmed by 
16S rDNA and plants showed symptoms from 48 to 72 
h after inoculation, the evolution of the incidence and 
severity on plant population varied over time and it 
kept an aggregated spatial pattern. The contagion pro-

cess reached 79% just 24 days after the epidemic was 
induced. Micro-Raman spectroscopy proved its speed, 
efficiency and usefulness as a non-destructive method 
for the preliminary detection of Cmm. Carotenoid 
specific bands with wavelengths at 1146 and 1510 cm-1 
were the distinguishable markers. Chemometric analy-
ses showed the best performance by the implementa-
tion of PCA-LDA supervised classification algorithms 
applied over Raman spectrum data with 100% of per-
formance in metrics of classifiers (sensitivity, specificity, 
accuracy, negative and positive predictive value) that 
allowed us to differentiate Cmm from other endophytic 
bacteria (Bacillus and Pantoea). The unsupervised 
KMeans algorithm showed good performance (100, 96, 
98, 91 y 100%, respectively).

Keywords : chemometrics, epidemiology, KMeans, LDA, 
PCA
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The tomato crop (Solanum lycopersicun L.) is a do-
mesticated species belonging to the Solanaceae family. 
Taxonomically, it is located in the Lycopersicon section 
alongside 13 related wild species, which can be found on 
the western coast of South America (Ecuador, Peru, and 
Chile), this region is considered to be their center of origin; 
nevertheless, domestication of cultivated tomato occurred 

*Corresponding author.  
Phone) +52 (444) 826 2300, FAX) +52 (444) 826 8410 
E-mail) vallejo.pmr@gmail.com

 This is an Open Access article distributed under the terms of the 
Creative Commons Attribution Non-Commercial License (http://
creativecommons.org/licenses/by-nc/4.0) which permits unrestricted 
noncommercial use, distribution, and reproduction in any medium,  
provided the original work is properly cited.

Articles can be freely viewed online at www.ppjonline.org.



Vallejo Pérez et al.382

in México (Knapp and Peralta, 2016). The global impor-
tance of the tomato crop resides in the fact that its fruits 
are an important source of vitamins and minerals in the 
human diet, as they are frequently consumed both fresh 
and processed, amounting to 120 million tons produced 
annually worldwide (Colvine and Branthôme, 2016; FAO, 
2017). Corporate farming is supported by cultivating high-
performing varieties, which also enhance desirable traits to 
consumers and tend to be grown in monocropping systems 
on broad swaths of farmlands. Nevertheless, even with 
the availability of phytopathogen resistant cultivars, the 
emergence of new pathogen strains and antibiotic-resistant 
variants constitute risk factors that may potentially prompt 
an epidemic outbreak that could undermine food security 
(Fletcher et al., 2006). 

Evaluating and predicting pathogen effects on cultivars 
represent a continuous challenge due to the low genetic di-
versity of crops, which increases the potential for pathogen 
spreading rate and crop damage. Thus, it is necessary to 
advance in the development of new technologies and infra-
structure to execute more-robust surveillance mechanisms, 
appropriate sampling protocols, and disease diagnosis tech-
niques (Fletcher et al., 2006). Currently, there are many 
types of methods for rapid and accurate identification of 
dangerous biological agents, these can be further divided 
into conventional, and modern technologies, and there are 
also integrated and automated diagnostic systems for de-
tection and identification of microorganisms (Mirski et al., 
2014). Raman spectroscopy belongs to the family of vibra-
tional spectroscopic techniques, the instrument creates spe-
cific Raman spectral fingerprints by recording the molecu-
lar vibrations of the cellular compounds, and it is currently 
advertised as a hot and ambitious technology that has all 
of the features needed to characterize and identify bacteria, 
because Raman fingerprint represents the complete infor-
mation of the biochemistry of the cell (Ashton et al., 2011; 
Lorenz et al., 2017). A modern Raman microscope allows 
to analyze bacteria at single-cell level and the application 
of this approach can be used to readily and specifically 
detect plant pathogens (Gan et al., 2017). Moreover, this 
technique can even be employed for functional analyses 
of microbial communities, but its biggest challenge is that 
spontaneous Raman signals are naturally weak, especially 
at single cell levels (Wang et al., 2016).

The present research is focused on the study of Clavi-
bacter michiganensis subsp. michiganensis (Cmm), which 
causes the bacterial canker of tomato (BCT), a quarantine-
worthy pest included on the list of regulated plant pests in 
Mexico and the United States of America, among other 
countries (EPPO, 2016). Cmm bacterium spreads by seeds 

and it is highly contagious. At the moment, there are no 
genetic materials showing resistance or tolerance to the 
Cmm bacterium (Sen et al., 2013). BCT occurrence is usu-
ally erratic, the disease is asymptomatic at its early stages, 
and the compatible interaction between Cmm and tomato is 
an extremely complex and multi-faceted biological system, 
one of whose facets is the level of genetic variability in 
each organism (Martínez-Castro et al., 2018).

Therefore, the objective of this research involves evalua-
tion under controlled conditions the utility of Raman spec-
troscopy (532 nm λ  laser) technique to reduce the time for 
bacterial recognition by using a preliminary detection of 
Cmm colonies through its Raman spectrum fingerprint and 
chemometric analyses in stationary laboratory conditions.

Materials and Methods

Experimental establishment and plant inoculation. 
The experiment was conducted with Ramses F1 (Harris 
Moran®) tomato plants (S. lycopersicun L.). The trial was 
conducted under net-house conditions in the CIACyT-
UASLP located at coordinates 22.150715 N, -101.025097 
W, and elevation of 1850 MASL. We used a completely 
randomized block experimental design composed of four 
blocks (rows) and 13 plants per block (repetitions). All the 
plants were kept isolated using anti-aphid mesh (net-house) 
in a fertirrigation system in plastic growing bags with a 
peat-based substrate (Premier® Horticulture Inc. Canada), 
and agronomic practices were implemented (irrigation, fer-
tilization, and crop management) in accordance to recom-
mendations for the zone (Jasso et al., 2012).

After 5 weeks of growth cycle, nine randomly selected 
plants were inoculated with Cmm bacteria. The Cmm 
pathogenic isolate was supplied by the National Center 
of Genetic Resources (CNRG) under the auspices of the 
National Forestry, Agricultural, and Livestock Research 
Institute (INIFAP). The selected method to inoculate the 
plants drew on Sen et al. (2013) with some modifications. 
The inoculum was prepared with Cmm isolate (supplied by 
CNRG-INIFAP) grown on Luria-Bertani (LB) liquid me-
dium at 28°C at 150 rpm until reached an optical density of 
0.2 at 600 nm (Multiskan GO™, Thermo Fisher Scientific 
Inc.) corresponding to about 108 cfu/ml. A piece of steril-
ized cotton soaked with 100 µl of the bacterial solution was 
held (Parafilm®) upon 2 superficial incisions of 2 mm long 
located at stem section between the second and third true 
leaf. For the negative controls, three plants were inoculated 
with sterile distilled water. Finally, the plants were wrapped 
in polyethylene bags to raise the relative humidity over a 
24 h period. After this time period, the Cmm inoculated 
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plants were placed within the original plant population that 
conformed the experiment to induce contagion to neighbor-
ing plants and the disease epidemiology was evaluated.

Evaluating the severity and incidence of BCT. Disease 
incidence and severity were evaluated daily for 40 days 
until the plants reached 14 weeks of age. Severity was 
evaluated using the scale proposed by Sen et al. (2013), 
consisting of five categories: no symptoms = 0; one leaf 
with wilting symptoms = 1; more than one wilted leaves, 
less than 50% of the leaves with wilting symptoms = 2; be-
tween 50% and 75% of leaves wilted = 3; more than 75% 
of leaves wilted but less than 100% = 4; the entire plant 
wilted and dead = 5. Relative incidence (Inc-R) was de-
fined as the number of plants with symptoms of the disease 
observed only on the date of evaluation, while cumulative 
incidence (Inc-C) amounted to the total number of plants 
that showed symptoms before and during the evaluation. 
The spatio-temporal pattern of the epidemic was analyzed 
using zone mappings under the interpolative geostatistical 
analysis method in the Surfer® program vers. 14, repre-
sented by three-dimensional and contour maps. Addition-
ally, Morosita aggregation indices were calculated pursuant 
to Campbell and Madden (1990), and the area under the 
disease progress curve (AUDPC) was calculated using the 
Guillén-Sánchez et al. (2003) trapezoid method. Tempera-
ture and precipitation weather variables were monitored us-
ing a Davis Vantage Pro2™ (Davis Instruments, Hayward 
USA) weather station.

Cmm isolation and molecular identification. The phy-
tosanitary analysis was performed on all plants than con-
formed the experiment at 14 weeks of age to determine the 
presence of Cmm in plant’s vascular tissue. The procedure 
consisted of cutting 10 cm of stem located between the 
second and third leaf, which were then washed with soap 
and running water, superficially disinfected with 70% al-
cohol (2 mins) and 1.5% sodium hypochlorite (1 min), and 
rinsed with sterile deionized water. Later, the stems were 
dissected and the internal vascular stem tissue with brown 
coloring was extracted and submerged in 5 ml of sterile 
distilled water for 15 mins. The suspended mixing allowed 
diffusion of bacteria out of plant tissue and the bacteria 
were grown in Nutritive Agar medium (Bioxon™) and 
incubated at 28°C for 72 h. Bacterial colonies isolated were 
purified and classified pursuant to their colony morphology 
and Gram staining (EPPO, 2016). 

The bacterial genomic DNA was extracted using lysis 
buffer (Tris Base 50 mM, EDTA 50 mM, and SDS 3%), 
in accordance with the procedure described by Sambrook 

and Russell (2001) beginning with bacterial isolates that 
had been previously augmented in B-King liquid media 
for 24 h at 28°C (EPPO, 2016). The PCR amplification 
process was done using the genomic DNA of the genetic 
region 16S of ribosomal DNA with oligonucleotides F27 
(5’-AGAGTTTGATCMTGGCTCAG-3’) and R1492 (5’- 
TACGGYTACCTTGTTACGACTT-3’) under the fol-
lowing conditions: 95°C for 5 mins, followed by 35 cycles 
at 95°C for 45 s, 55°C for 45 s and 72°C for 90 s, and a 
final extension at 72°C for 5 mins (Monciardini et al., 
2002). PCR products of expected sizes were purified and 
sequenced. The taxonomic assignment of partial sequences 
larger than 1 Kb of 16S rDNA genes was performed with 
the classification service implemented in the SINA Align-
ment Service using the SILVA database with default pa-
rameter settings, the minimum identity with the query se-
quence was adjusted to 0.90 (Pruesse et al., 2012; Quast et 
al., 2013). The BLASTn algorithm was used to search the 
NCBI GenBank database (Benson et al., 2010) to confirm 
taxonomical assignment of sequences.

Detection of Cmm assisted by Micro-Raman Spectros-
copy. The preliminary detection of Cmm through its Raman 
spectrum fingerprint was done under stationary laboratory 
conditions. The analysis was carried out according to Paret 
et al. (2010, 2012) with some modifications. All the bacte-
rial pure isolates (colonies) obtained were grown individu-
ally in LB liquid media (5 ml) and incubated at 28°C and 
200 rpm until reached an optical density of 0.1 at 600 nm. 
The bacteria was individually harvested by centrifugation 
(14,000 rpm for 3 mins at 8ºC) and washed once in 0.85% 
NaCl and twice using sterile deionized water. Cells washed 
were resuspended in 100 µl of sterile deionized water and 
the optical density was adjusted to 0.1 at 600 nm (Paret et 
al., 2010). For the Micro-Raman analysis, a polished mirror 
aluminum sheet of 20 × 30 mm2 and 0.2 mm in thickness, 
with made micro-cavities of 300 µm diameter was used as 
a substrate to obtain the Raman spectra (Misra et al., 2009). 
The aluminum substrate was cleaned with methanol and 
dried, 3 µl of each processed bacterial suspensions were 
placed in a separated micro-cavity (4 repetitions per pure 
isolate) and left to dry for 30 minutes. Negative control 
samples were obtained without the addition of bacteria 
(sterile deionized water). The corresponding Raman finger-
print was obtained from the bacterial sample deposited on 
the micro-cavity using a Raman Confocal Horiba XploRA 
ONTM™ (Horiba Scientific, Ltd.) microscope equipped 
with a 532-nm (HeNe) under the following conditions: 
spectral range of 100-2000 cm-1, acquisition time 10 s to 
avoid sample damaging, laser power ≈ 20 mW, 1200 gr/
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mm grating, slit 100 µm, hole 300 µm, 10X lens (micro-
spot with 10 µm diameter) and CCD cooled detector with 
Peltier system. The CDD resolution is 2 cm-1.

Spectral Preprocessing and Computational Analysis. 
Raman spectra datasets obtained from different bacterial 
colonies were identified and stored in comma separated 
values (CSV) format, then, they were preprocessed to elim-
inate background fluorescence by subtracting a fifth-order 
polynomial from the original spectra and normalizing them 
to the area under the curve measure for the entire spectral 
range using the Vancouver Raman Algorithm program 
(Zhao et al., 2007). To perform the computational opera-
tions on our data, we wrote the corresponding preprocess-
ing and calling routines on Python programming language. 
We employed the Scikit-Learn (Pedregosa et al., 2011) 
library, which is a collection of machine learning libraries 
used in several fields of research. We used Principal Com-
ponents Analysis (PCA) (Wold et al., 1987) for feature 
selection, then, we applied Linear Discriminant Analysis 
(LDA) and KMeans clustering algorithm as classifiers.

PCA is a widespread method employed for dimensional-
ity reduction, multivariate correlation analysis and model 
quality evaluation. It is based on the projection of a set of n 
data samples {Xi} with Xi = (xi, ..., xim) from a m-dimension-
al space, onto a k-dimensional feature space generated by a 
basis of orthogonal eigenvectors {ê1, ..., êk} corresponding 
to the k largest eigenvalues {l1, ..., l k} of Xi (Abdi and Wil-
liams, 2010). PCA can be used to increase class separation 
among elements in a dataset by reducing correlation of the 
projected representation as each l i is a measure of the vari-
ance along the respective direction êi (Jolliffe, 2002). PCA 
projection matrix W is obtained mainly through Singular 
Value Decomposition (SVD) on modern software (Abdi 
and Williams, 2010). In this study we employed PCA to 
obtain a previous feature selection for the classifiers used 
in order to improve their performance. The number of 
components Ncomp used for PCA was chosen in such way 
that it gave optimal results for all methods, so their per-
formance could be compared in a consistent manner. To 
this end, a sequential execution of the algorithms used in 
this work was performed and the metrics were recorded 
for each execution, iterating over the range of Ncomp∈ [1, 
50]. We restricted the number of testing components to this 
range because eigenvalues l i of our dataset became very 
close to zero for i > 50, and they could not be accurately 
represented by computer double precision floating point 
data types, making PCA numerically unstable beyond such 
range. Once Ncomp was determined, we used this value for 
all classification algorithm executions. Metrics taken from 

algorithms using a previous step of feature selection with 
PCA, were all using the same number of components Ncomp. 

LDA is a supervised feature selection and classification 
method, which simultaneously maximizes the distance 
between the mean classes while minimizing the variance 
within each class. Considering a set of samples {Xi} of m-
dimensional vectors partitioned into N = 2 subsets {Xi} 
= A∪B, A ∩ B = ∅, A, B ≠ ∅ with maximally separate 
means mA and mB and minimal within class variance (Xan-
thopoulos et al., 2013). For the case N > 2 classes, LDA is 
generalized to Multiclass LDA by the use of multivariate 
analysis of variance. Although LDA can be used for both 
feature selection and classification, due to the high dimen-
sionality of the Raman spectrum samples, we use it in here 
only as a classifier. We divided the dataset into two subsets 
for training and testing executions, each one containing 
respectively 70% and 30% of the original data in a random 
way.

Additionally, the KMeans clustering is an efficient un-
supervised clustering algorithm often used for the large 
number of samples and features (Izenman, 2008). In the 
KMeans algorithm, an initial set X =  {Xi} of n samples, 
is partitioned into C = {C1, ..., Ck} classes. KMeans tries 
to minimize the distance of an element Xi to the centroid 
m j of the cluster Cj at which Xi belongs, by iteratively real-
locating the m j positions, the resumed steps for KMeans are 
describe in Hartigan and Wong (1979) and Jolliffe (2002). 
To perform the unsupervised classification on the Raman 
spectra dataset, we executed 20 repetitions of the KMeans 
algorithm with different random initializations.

Finally, to evaluate the performance of the classifiers 
employed in this paper (PCA, LDA, PCA+LDA and 
PCA+KMeans), we compute several metrics used for bi-

Table 1. Quality metrics used

Validation and quality tools Equations

Sensitivity
TP

× 100
TP + FN

Specificity
TN

× 100
TN + FP

Positive predictive value (PPV)
TP

× 100
TP + FP

Negative predictive value (NPV)
TN

× 100
TN + FN

Accuracy
(Sensitivity + Specificity)

2

TP = True Positive, FP = False Positive, TN = True Negative, FN = 
False Negative.
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nary classification assessment (Siqueira and Lima, 2016; 
Velez et al., 2007), that includes metrics corresponding to 
Sensitivity (SENS), defined as the confidence that a posi-
tive result for a sample of the labeled class is obtained; the 
Specificity (SPEC), which is the confidence that a negative 
result for a sample of non-labeled classes is obtained; the 
Positive Predictive Value (PPV) measuring the propor-
tion of positives that are correctly assigned, the Negative 
Predictive Value (NPV) which measures the proportion of 
negatives that are correctly assigned, and finally the Ac-
curacy (ACC), that is the proportion of all tests that are cor-
rectly classified (Santos et al., 2017). Table 1 summarizes 
these equations.

To have an insight into the performance behavior of each 
algorithm we computed the correlation ri,k of the original 
spectral band Yi at the Raman spectrum of the samples to 
the k-th principal component by the equation:

ri,k = l ka ik

var(Yi)1/2

Where a ik is the j-th coefficient of the eigenvector êk (Jol-
liffe, 2002).

Results

Incidence and severity of the bacterial canker of to-
mato. The plants analyzed were classified into one of three 
categories due to the disease behavior: (i) plants inoculated 
with Cmm (In+), (ii) plants positively infected by contagion 
with Cmm (Co+), and (iii) negative asymptomatic plants 
(N-). After forty-eight to seventy-two h of Cmm inocula-

tion, the infected tomato plants (In+) began to show disease 
symptoms of bacterial canker of tomato (BCT), the entire 
leaves became wilted and the stem tissue showed discolor-
ation at the inoculation point; however, some plants later 
became asymptomatic and the inoculation site on the stem 
evolved into a corky canker. 

The relative incidence (Inc-R) behaved dynamically 
in the population, with a waxing and waning number of 
symptomatic plants. The experiment began with 9 plants 
artificially infected with Cmm (In+), but 23 days later, 40% 
of the population (21 plants) simultaneously showed some 
degree of disease severity (In+, Co+); nevertheless, the 
cumulative incidence (Inc-C) observed over the 40 days 
of evaluation amounted to 79% (38 plants), peaking at 24 
days after the epidemic was induced. BCT disease progress 
curve of the Inc-C behaved logarithmically (R2 = 0.859) 
(Fig. 1). 

The severity of the symptoms associated with Cmm also 
behaved dynamically, at both the individual and population 
levels, as they were displaying rising and falling values 
over the growth cycle. The interpolation maps confirmed 
the observations made throughout the experiment (Fig. 
2). The scale value 5 (dead plant) was observed solely in 
two artificially-inoculated plants (In+), but the 7 remain-
ing inoculated plants (In+) exhibited values ranging from 

Fig. 1. Temporal progress curves of relative incidence (Inc-R) 
and cumulative incidence (Inc-C) of tomato plants infected with C. 
michiganensis subsp. michiganensis.

Fig. 2. Interpolation maps of disease severity: 2 days (Morisita 
Index: < 1) and 23 days (Morisita Index: 1.7) after the epidemic 
was induced (DDI) with C. michiganensis subsp. michiganensis 
in tomato plants.
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0, 1, 2, and 3 on the scale. Comparing the area under the 
disease progress curve (AUDPC), the artificially-infected 
plants (In+) exhibited statistically higher values (P ≤ 0.05) 
(AUDPC = 25) than the contagion-infected plants (Co+) 
(AUDPC = 6.3), and the last ones (Co+) were generally 
those neighboring the artificially inoculated plants (In+). 
Only 11 plants (21%) were symptom-free (N-) 40 days 
after the epidemic was induced, and their AUDPC values 
were practically null. The spatio-temporal pattern, two 
days after the epidemic was induced (DDI) resembled the 
structure of a uniform distribution (Morisita Index: < 1), 
but later evaluations showed an aggregated pattern (Morisita 
Index: 1.7) (Fig. 2) (Campbell and Madden, 1990). It is 
worth to note that the highest incidence occurred in rows 3 
and 4, where runoff converged during irrigation, and that 
incidence was most evident 23 days after the epidemic was 
induced (Fig. 2). 

Molecular Identification of Cmm. The bacterial colony 
morphology of the Cmm isolate provided by CNRF-INI-
FAP and used in the experiment could be characterized as 
follows: Gram (+), yellow, circular, smooth-edged, flat and 
elevated surface, and creamy texture. The phytosanitary 
analysis performed at 14 weeks of age in plant population 
to determine the presence of Cmm in the vascular tissue, 

allows the isolation of different bacterial colonies from the 
symptomatic and asymptomatic tomato plants (In+, Co+) 
and displaying different colony morphologies. Strains with 
colony morphologies similar to the Cmm isolate (supplied 
by CNRG-INIFAP) were obtained from both inoculated 
(In+) and contagion infected (Co+) plants and they showed 
the same colony morphology of previously described Cmm 
CNRF-INIFAP isolate. The molecular 16S rDNA analysis 
of reisolated bacterial strains were classified as Clavibacter 
michiganensis subsp. michiganensis (NCBI Accession 
Numbers: HQ144239.1, KR922121.1, HQ144230.1, 
HQ144239.1, KR922121.1, HQ144230.1). Additionally, 
other endophytic bacteria were isolated and molecularly 
identified, turning out to be the genera of Bacillus sp. (NCBI 
Accession Number: HM566983.1) and Pantoea sp. (NCBI 
Accession Number: MF352035.1, KU933320.1). There-
fore, in our study we confirmed the infection of tomato 
plants with the virulent Cmm CNRF-INIFAP isolate.

Spectral Raman features. The Micro-Raman instrumen-
tation allows to obtain the spectral signature of Cmm and 
the acquisition time (10 s) does not cause any bacterial 
cell damage (Fig. 3A). The characteristic Raman spectrum 
of the Cmm CNRF-INIFAP isolate was characterized by 
wavelength peaks at 944, 992, 1146, 1179, 1254, 1435, 

Fig. 3. Raman spectra obtained at 532 nm λ corresponding to the bacteria: (A) Clavibacter michiganensis subsp. michiganensis, raw 
spectra (B) C. michiganensis subsp. michiganensis preprocessed spectra (average 4 repetitions), (C) Pantoea sp., and (D) Bacillus sp.
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1510, 1568, and 1656 cm-1 (Fig. 3B). The respective peaks 
varied in relative intensity, but among them, bands at 1146 
and 1510 cm-1 stand out, which are the vibrational modes 
of the C=C and C−C bonds (stretching) of the trans iso-
mer in the carotenoids (Jehlička and Oren, 2013). The 992 
cm-1 band, matching vibrational mode A1g of the benzene 
ring (Chen et al., 2007), and band 1179 cm-1, associated 
with the saccharides (Athamneh and Senger, 2012), gener-
ally found as components of the cell wall in Cmm, were 
observed at smaller intensity. Bands with relatively weak 
intensity were found at wavelengths 944 cm-1, associ-
ated with phenyl ring CH and COH (bend) (Maiti et al., 
2013), band 1254 cm-1, associated with mode νasym (O-P-O) 
(Movileanu et al., 1999), band 1435 cm-1 associated with 
vibration C-C stretch (D-Band) and the band 1568 cm-1 
characteristic of carbon G band (C-C) (Malard et al., 2009) 
and, finally, the band 1656 cm-1, associated to ν(C=O) of 
the amide I (Gelder et al., 2007). Raman spectra of Pantoea 
sp. (Fig. 3C) and Bacillus sp. (Fig. 3D) were different from 
those observed in Cmm (Table 2), and their Raman spectra 
match those previously reported by other authors (Polisetti 
et al., 2016). It is important to keep in mind than during 
routine analysis, control samples (positive and negative) 
should always be included, because slight instrumental 
displacements (± 5 cm-1) may happen during spectral mea-
surements.

Computational Analysis. Supervised and unsupervised 
computer classification analyses were conducted on 75 
bacterial isolates, of which 22 were Cmm and 53 were 
endophyte bacteria (Bacillus sp. and Pantoea sp.). To au-
tomatically classify our spectra dataset we proceeded in 
the following way: we applied the unsupervised KMeans 
classifier directly to the Raman spectra data (KMeans), 
we also classified the spectra by previously performing 
dimensionality reduction via PCA, and selected the first 12 
principal components of each spectrum (PCA+KMeans). 
For the supervised LDA method we also applied the classi-
fier directly over spectral vector (LDA) and we also use it 
in conjunction with PCA (PCA+LDA). 

The number of principal components for feature selec-
tion than produced simultaneously an optimal performance 

for both PCA+KMeans and PCA+LDA algorithms was 
searched as described in the methodology section. The 
value found was Ncomp = 12. Naturally, the optimal values 
found on each case were very different, even though they 
were using the same value of Ncomp at the PCA feature pre-
selection stage. The explained variance for each of the first 
12 principal components of our dataset, along with their 
corresponding cumulative values are depicted in Fig. 4, 
which shows that these components account for 98.2% of 
the total variance. 

We see that the KMeans classifier can differentiate Ra-
man spectral signatures of the bacteria analyzed (Cmm vs 
Endophytic) when it is applied directly to them with SENS 
of 100%, SPEC of 96%, ACC of 98%, PPV of 91% and 

Fig. 4. The number of principal components for feature selection 
and classification of Raman spectra with supervised and unsuper-
vised algorithms.

Table 3. Performance metrics of classifiers (percentage)

(%) KMeans PCA+ KMeans LDA PCA+LDA
SENS 100 95 - 100
SPEC   96 13 - 100
PPV   91 31 - 100
NPV 100 87 - 100
ACC   98 54 - 100

SENS = Sensitivity, SPEC = Specificity, PPV = Positive Predictive 
Value, NPV = Negative Predictive Value, ACC = Accuracy.

Table 2. Peak positions of the Raman bands of the bacteria isolated in this work. Spectra were recorded in the 800-1800 cm−1 region, 
with a 532 nm λ laser

Bacteria Wavenumbers (cm−1) Spectrum
Cmm 944, 992, 1146, 1179, 1254, 1435, 1510, 1568, 1656 b

Pantoea sp. 877, 946, 995, 1120, 1148, 1184, 1218, 1301, 1331, 1440, 1513, 1576, 1650 c
Bacillus sp. 1029, 1077, 1218, 1306, 1334, 1442, 1574, 1616, 1650 d
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NPV of 100%. On the other hand, Table 3 shows an impor-
tant loss on performance metrics for KMeans when used 
along with PCA dimensionality reduction (PCA+KMeans).

The LDA classifier did not manage to distinguish the 
two groups (Cmm vs Endophytic) when applied directly 
to the spectral samples. Therefore, to reduce the ratio of 
the number of dimensions to number of samples, we opted 
to use feature selection via PCA. The execution of the 
PCA+LDA method returned an exact classification and the 
performance evaluation were of 100% for SENS, SPEC, 
ACC, PPV and NPV, without producing any false posi-
tive (FP) or false negative (FN). On our tests, PCA+LDA 
can achieve better levels of specificity and accuracy than 
KMeans. We also observed that PCA+LDA has a low 
probability of overfitting when applied to identify Raman 
spectra of Cmm against endophyte bacteria signatures, as in 

our experiments the testing and training datasets returned 
exactly the same classification. 

The class centroids (means) found by KMeans applied 
directly to Raman spectra are displayed in Fig. 5 and the 
Fig. 6 illustrates the corresponding centroids when KMeans 
is applied to the principal components extracted by PCA. 
Note that the values shown do not belong to the principal 
components but to the projection of the class centroids onto 
such components. Fig. 7 shows the class centroids found 

Fig. 5. Class centroids obtained by KMeans classifier for Raman 
spectrum samples of C. michiganensis subsp. michiganensis and 
Endophytic bacteria.

Fig. 6. Class centroids obtained by KMeans classifier for princi-
pal components of Raman spectrum samples of C. michiganensis 
subsp. michiganensis and Endophyte bacteria.

Fig. 7. Class centroids obtained by LDA classifier for principal 
components of Raman spectrum samples of C. michiganensis 
subsp. michiganensis and Endophyte bacteria. Stems represent 
absolute values of components of the eigenvector used by LDA 
for class separation.

Table 4. PCA correlations to spectral bands associated to key 
compounds (bold-typed) to differentiate C. michiganensis subsp. 
michiganensis bacteria (fingerprint)

Wavenumbers 
(cm−1)

Band Correlations

PC1 PC8 PC9
  840 0.08898 0.27657 0.12938
  912 0.79354 0.07651 0.09566
  944 0.74578 0.16238 0.05213
  992 0.83523 0.03110 0.24548
1070 0.59842 0.23792 0.07671
1146 0.99055 0.04614 0.03336
1254 0.55826 0.20966 0.08965
1332 0.97574 0.01291 0.06342
1460 0.45860 0.31558 0.19149
1510 0.99045 0.09225 0.07836
1568 0.95005 0.08255 0.01474
1656 0.88012 0.15466 0.24434
1745 0.53756 0.25293 0.03216

Values shown are for the three principal components with the largest 
LDA discriminant weights. 
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by LDA applied over the same principal components and 
stand out the PCA1, PCA8 and PCA9; additionally, the 
absolute values of the components of the eigenvector esti-
mated by LDA are shown in Table 4 in order to have visual 
comparison of the components weights used by the LDA 
classifier.

Discussion

The pathogenic relationship between the tomato (S. lycop-
ersicum) and the Cmm bacterium arose before the crop was 
domesticated. In this evolutionary process, the bacterium 
adapted itself to the vascular tissue as an endophyte, sub-
sequently it evolved as a pathogen (Bentley et al., 2008). 
As such, the bacterium can systematically infect the plant 
through the vascular tissue, and in the early stages, the 
pathogen behaves like a biotrophic organism, inducing la-
tent asymptomatic infections (Eichenlaub and Gartemann, 
2011; Sharabani et al., 2013). 

In this research, the Cmm-inoculated plants began to 
show disease symptoms from 48 to 72 h after inoculation; 
however, the evolution of the incidence and severity varied 
over time in the plant population. The plants inoculated 
at the beginning of the experiment displayed more severe 
symptoms pursuant to the area under the disease progress 
curve (AUDPC), and several even died (22%). Contrary 
to that, the plants infected by contagion remained asymp-
tomatic, in accordance with previous reports, mentioning 
that plant age can lead to asymptomatic infections, until the 
plant reaches the productive stage and the seeds of the fruits 
become Cmm’s principal means of spreading (Eichenlaub 
and Gartemann, 2011). The concentration of the bacterium 
at the time of the infection is also determinant, because in 
concentrations below 104 colony-forming units (CFU), the 
movement of the bacterium is limited, but at 108 cfu, the 
bacterium moves up and down in the vascular tissue of the 
plant from the point of inoculation (Xu et al., 2010). 

The contagion between plants advanced rapidly, reach-
ing 79% just 24 days after the epidemic was induced. 
Chang et al. (1991) reported similar results, remarking that 
the speed of the epidemic is a function of the initial disease 
incidence. The irrigation water is likely to be the principal 
mean by which Cmm spreads (Xu et al., 2010), because 
during the experiment the highest disease incidence was 
found in rows 3 and 4. Additionally, the plants infected by 
contagion, generally were located in proximity to the inoc-
ulated plants, due to close contact between them (Xu et al., 
2010), leading to clustered (foci) distribution patterns 23 
days after the epidemic was induced. This outcome agrees 
with Kawaguchi et al. (2010) results, who mentioned that 

in addition to irrigation water, infected material (seed and/
or seedling), leaf-pruning, and disbudding practices all con-
dition the directionality of infections and how they cluster. 
Therefore, the opportune detection of Cmm symptomatic 
plants, allows defining the hotspots for bacterial disper-
sion with a preponderance of aggregated spatial pattern. In 
addition, the cultural conditions (irrigation, pruning direc-
tionality and environmental conditions) will conditioned 
the samplings protocols design to determine the cumulative 
incidence of the BCT disease. It is worth mentioning that 
on cool (26-28°C), cloudy, and rainy days, the unilateral 
wilting symptoms and marginal leaf necrosis were exac-
erbated, as these conditions are likely to boost bacterial 
growth inside the plant (Sen et al., 2015).

The complex parasitic relationship between S. lycopersi-
cum and Cmm renders many of the epidemiological moni-
toring mechanisms moot (Sen et al., 2013), and because 
Cmm is considered a quarantine-worthy pest in various 
countries and economic regions, early detection becomes 
indispensable in order to implement timely measures to 
eradicate the pest and thereby to prevent it from spreading. 
The Micro-Raman spectroscopy used to differentiate Cmm 
bacteria isolated from symptomatic and asymptomatic 
plants stood out most for its speed, because the spectral 
analysis of the bacterial cells is done in a matter of minutes. 
The phytosanitary analysis, the most time spend is used 
to isolate the bacteria from the plant tissue; moreover, the 
spectral traits of Cmm allows to differentiate them from 
other endophytic bacteria, even those with similar colony 
morphology (Paret et al., 2010). Bands 1146 and 1510 cm-1 
are the primary markers that set Cmm to separate from the 
rest of the bacteria that are found in the vascular tissue and 
these bands are associated with vibration modes of the ca-
rotenoids that are a structural part of the Cmm membrane 
(Saperstein et al., 1954). 

The chemometric analysis and performance evaluation 
demonstrated that PCA+LDA was the best classifier algo-
rithm with 100% of SENC, SPEC, ACC, PPV and NPV; 
it was followed by KMeans algorithm applied directly 
on spectral band values. The classifiers PCA+KMeans 
algorithm and single LDA alone used as a classifier did 
not show good performance. To explain why PCA+LDA 
performed much better than PCA+KMeans, we want to 
point out that LDA employs discriminant coefficients that 
minimize intra-class variance while maximizing inter-
class separation. For our samples, we can see in Fig. 7 
that LDA assigns the largest discriminant coefficients to 
the principal components PC1, PC8, and PC9. The local 
peaks of principal component correlations to original spec-
tral band and their numerical values are shown in Table 
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4. Some correlation peaks correspond to wavenumbers of 
vibrational modes of key compounds linked to presence 
of Cmm. Specifically the bands at 944, 992, 1146, 1254, 
1510, 1568, and 1656 cm-1, which are marked in bold 
types, but the higher correlation values corresponded to 
the carotenoid bands (1146 and 1510 cm-1) that distinguish 
Cmm bacteria and those are considered as unique markers 
(Paret et al., 2010). We can also see that there are several 
other wavenumbers of very week intensity having correla-
tion peaks for principal components PC1, PC8, and PC9; 
however, due to Raman signals are naturally weak, the use 
of nanoparticles to enhance signals (Surface Enhance Ra-
man Spectroscopy) (Wang et al., 2016) will probably be 
required in future work. 

Such spectral features helped PCA+LDA to achieve a 
performance of 100% on the classification metrics em-
ployed. On the other hand, PCA+KMeans do not assign 
discriminant weights to principal components, which im-
plies that it gives all the principal components exactly the 
same importance, even if they are not correlated with spe-
cific bands associated to Cmm, thus metrics show a poorer 
performance for PCA+KMeans with respect to PCA+LDA 
(Table 3). Note that for PCA+LDA, being a supervised 
method, it is required to separate the dataset into training 
and testing samples, and to have a previous knowledge 
of the corresponding labels for the training set. While 
PCA+KMeans losses accuracy at the identification of Cmm 
based on Raman spectrum of samples, it still important to 
consider it, because it has the advantage of being an unsu-
pervised method. This characteristic makes PCA+KMeans 
convenient for circumstances when there are very few 
samples for the separation into training and testing sets, or 
when there are no previous knowledge about the samples, 
which makes impossible to assign labels for a training set 
in such cases.

The development of readily available, reliable and fast 
procedures to detect phytopathogens could raise the effi-
ciency of sampling and search procedures (Fletcher et al., 
2006; Vallejo et al., 2016). Diagnosis by way of conven-
tional procedures can take one day, but it generally takes a 
lot longer, depending on the bacterium in question; further-
more, in the event of an epidemic when it is necessary to 
process a lot of samples at once, conventional procedures 
can be unaffordable. Thereby the importance of the pres-
ent study as we demonstrated the usefulness of the Micro-
Raman spectroscopy as a fast and efficient method for the 
preliminary identification of Cmm, whose detection may 
otherwise be difficult in culture media due to the abundant 
growth of saprophytes (endophytic bacteria), in accordance 
with Paret et al. (2010).
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