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Abstract: The pathogenesis and molecular mechanisms of ovarian low malignant potential (LMP)
tumors or borderline ovarian tumors (BOTs) have not been fully elucidated to date. Surgery remains
the cornerstone of treatment for this disease, and diagnosis is mainly made by histopathology to
date. However, there is no integrated analysis investigating the tumorigenesis of BOTs with open
experimental data. Therefore, we first utilized a functionome-based speculative model from the
aggregated obtainable datasets to explore the expression profiling data among all BOTs and two major
subtypes of BOTs, serous BOTs (SBOTs) and mucinous BOTs (MBOTs), by analyzing the functional
regularity patterns and clustering the separate gene sets. We next prospected and assembled the
association between these targeted biomolecular functions and their related genes. Our research
found that BOTs can be accurately recognized by gene expression profiles by means of integrative
polygenic analytics among all BOTs, SBOTs, and MBOTs; the results exhibited the top 41 common
dysregulated biomolecular functions, which were sorted into four major categories: immune and
inflammatory response-related functions, cell membrane- and transporter-related functions, cell cycle-
and signaling-related functions, and cell metabolism-related functions, which were the key elements
involved in its pathogenesis. In contrast to previous research, we identified 19 representative genes
from the above classified categories (IL6, CCR2 for immune and inflammatory response-related
functions; IFNG, ATP1B1, GAS6, and PSEN1 for cell membrane- and transporter-related functions;
CTNNB1, GATA3, and IL1B for cell cycle- and signaling-related functions; and AKT1, SIRT1, IL4,
PDGFB, MAPK3, SRC, TWIST1, TGFB1, ADIPOQ, and PPARGC1A for cell metabolism-related func-
tions) that were relevant in the cause and development of BOTs. We also noticed that a dysfunctional
pathway of galactose catabolism had taken place among all BOTs, SBOTs, and MBOTs from the
analyzed gene set databases of canonical pathways. With the help of immunostaining, we verified
significantly higher performance of interleukin 6 (IL6) and galactose-1-phosphate uridylyltransferase
(GALT) among BOTs than the controls. In conclusion, a bioinformatic platform of gene-set integrative
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molecular functionomes and biophysiological pathways was constructed in this study to interpret
the complicated pathogenic pathways of BOTs, and these important findings demonstrated the
dysregulated immunological functionome and dysfunctional metabolic pathway as potential roles
during the tumorigenesis of BOTs and may be helpful for the diagnosis and therapy of BOTs in
the future.

Keywords: borderline ovarian tumors (BOTs); gene ontology (GO); functionome-based and data-
driven analysis; immune and inflammatory response; cell membrane and transporter; cell cycle and
signaling; cell metabolism; galactose catabolism

1. Introduction

Ovarian low malignancy potential (LMP) tumors, or borderline ovarian tumors (BOTs),
are a unique subtype of epithelial ovarian cancers (EOCs) that are the leading cause of
death of gynecologic cancers and the fifth leading cause of all cancer-related deaths among
women. To date, BOTs consist of disparate groups of neoplasms based on histopathological
and molecular characteristics, as well as clinical behavior [1]. In 1929, Howard Taylor
first found ovarian LMP tumors as a “semimalignant” disease between benign neoplasms
and invasive carcinoma, regardless of clinical manifestations or histologic features [2].
In 1971, the International Federation of Obstetrics and Gynecology (FIGO) identified
these “semimalignant” ovarian tumors as a “low-grade malignant tumor” totally different
from ovarian cancer, and the word “borderline tumor” displaced “low-grade malignant
tumor” in the World Health Organization (WHO) classification of female genital tumors
in 2014 [3,4]. The BOT accounts for approximately 10~15% of EOCs and usually occurs
in younger women compared with generally common high-grade serous ovarian, tubal,
and peritoneal cancers with a stepwise manner of progression from precursor lesions to
invasive disease [5,6]. In recent decades, clear evidence has shown that the BOT does
have intercalary biologic, histologic, pathogenetic, and molecular features intermediate
between clearly benign and frankly malignant ovarian neoplasms, and BOTs are classified
into serous borderline ovarian tumors (SBOTs), mucinous borderline ovarian tumors
(MBOTs), seromucinous borderline tumors, endometrial borderline tumors, clear cell
borderline tumors, transitional (Brenner) and other subtypes on the basis of histogenesis
and histopathology in light of the recent 2014 WHO classification of tumors of female
genital organs [4]. Generally, SBOTs, approximately 65% of BOTs [7], occur mostly in
North America, the Middle East, and most of Europe. In contrast, MBOTs, approximately
32% of BOTs [8], occur predominately in East Asia and parts of Europe [9]. BOTs are
predominantly diagnosed in premenopausal females before the age of 40 and are rarely
confirmed in older women after the age of 65 [10–12].

BOTs, unlike invasive ovarian cancer, are chiefly diagnosed at an early stage (75% of
BOTs are diagnosed at stage I) and have more slothful clinical behavior, resulting in an
excellent prognosis [13]. Generally, the 5-year overall survival rates of BOTs for stages I, II,
and III are 99, 98, and 96%, respectively, and the 10-year overall survival rates of BOTs for
stages I, II, and III are 97, 90, and 88%, respectively [14]. Nevertheless, some patients with
BOTs under primary treatment may suffer from later symptomatic recurrence or malignant
transformation resistant to platinum chemotherapy and death even after 20 years [15–17].
To date, surgery is still the major ideal method to treat BOTs. There are two standard surgical
methods applied for removing macroscopically visible BOTs: a conservative operation for
the young with a desire for fertility preservation or childbearing and radical surgery for
the postmenopausal groups [18–20]. In addition, the method of surgery also depends on
the histopathological characteristics of BOTs since there is always a risk of recurrence or
development of invasive ovarian tumors [13,21,22]. Adjuvant chemotherapy and radiotherapy
are not usually considered the standard therapy except surgical intervention because the
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role of adjuvant chemotherapy for BOTs is restricted [23–27], not to mention contentious
radiational, hormonal, or targeted therapy in borderline ovarian tumors [21].

Because conventional chemotherapy demonstrated very limited activity in BOTs, some
studies had started on molecular and gene mutations of BOTs early, hoping to find a more
effective treatment for eradication after surgery. Recent studies have inferenced several
assumptions, including the incessant ovulation hypothesis, gonadotropin hypothesis,
hormonal hypothesis, and inflammation hypothesis, for the tumorigenesis of BOTs [28–31].
Earlier studies for BOTs and their first two most common subtypes, SBOT and MBOT,
identified that mutations in the KRAS, BRAF, and ERBB2 genes and overexpression of the
p53 and Claudin-1 genes characterized SBOTs and that KRAS mutation, ERBB2 mutation
or amplification, trefoil factor-3 (TFF3) strong expression, and HER-2/neu amplification
accounted for a certain proportion of MBOT occurrence [17,32–37]. Therefore, detecting
the status of KRAS, ERBB2, p53, or BRAF mutation status may be a useful way to predict
or investigate the possibility and tendency for the recurrence of BOTs or invasive ovarian
carcinoma under satisfactory clinical scenarios. In addition to discovering the position of
gene mutations, several preclinical studies have also clarified that several biomolecular
activations of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated
kinase (ERK) pathway, PI3K/AKT/mTOR pathway, Hedgehog pathway, and angiogenesis
pathway take place in both SBOTs and MBOTs, with certain separate proportions that may
appear as targeting subjects for innovative therapies [17,34,38–41]. As a result, clinical trials
for low-grade serous carcinoma, mucinous carcinoma, and BOTs with targeted therapies
focused on potential genes or pathways mentioned above have developed slowly and
gradually in recent years, including MEK inhibitor (MEKi) therapy, agents targeting the
PI3K/AKT/mTOR pathway, and antiangiogenic agents. However, all results of these
targeted therapies are still pending to date due to extremely limited information and
experience [42–44].

Although modern molecular studies, including analyses of mutational status, DNA
copy number changes, and gene expression profiles, have provided initial insight into the
pathogenesis of BOTs, there is still no integrative model for analyzing the comparison of
genome profiles between BOTs, the more common SBOT, and the less common MBOT.
To further understand the detailed information of the crucial deregulated biomolecular
and genetic functions, we had previously organized integrated gene expression profiles
downloaded from public databases and established a gene-based set regularity model
based on the ordinal change among the gene elements in a gene set detected by microarrays
to rebuild the gene set regularity (GSR) indices of the global functions and functionomes
for measurement of the changes of the ordering levels of the gene elements defined by
the gene ontology (GO) gene sets definition. It could be utilized for investigating the
meaningful dysregulated functions and dysfunctional pathway participating in compli-
cated diseases such as ovarian carcinomas via comparison to differentially expressed genes
(DEGs) [45–50]. Using these research methods, we conducted a genome-wide integrative
investigation to analyze the global functions of BOTs at different subtypes by analyzing
entire meaningful deregulated functions of BOTs detected by microarrays via concepts
of the DEGs and rebuilt a functionome-pattern of a GSR model of the global functions to
investigate further comprehensive data of the related, meaningful, neoplastic mechanisms
and dysregulated functions accompanied by corresponding genes at different subtypes
of BOTs, including mainly SBOTs and MBOTs. We could observe more clearly if there
was significant functional pathogenic and biomolecular deterioration among all BOTs,
SBOTs, and MBOTs by quantifying the general and further categorized functions under
the structure of the GO-defined gene sets. The consequences of these analytics may be
conducive to further specific investigation and advancement of precise therapy for BOTs in
the future.
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2. Results
2.1. Workflow for the Integrative Analyzing Model

The workflow of this study is shown in Figure 1, and the minutiae of this algorithm
are depicted in the Section 4. First, we transformed the extracted gene expression profiles
of the gene elements to ordinal data and then to 10,192 quantified GO terms based on the
sequence of expression from the gene elements in each gene set. This procedure generated
functionomes consisting of 10,192 GSR indices, defining relatively comprehensive biolog-
ical and molecular functions for investigating BOTs. Next, we calculated the quantified
functions and the functional regularity patterns between 92 BOT samples and 136 normal
ovarian controls with gene set regularity (GSR) indices and set up the GSR model of the
functionome pattern. We then investigated the informativeness of the genome-wide func-
tionome consisting of GSR indices and established a functionome-based training method
for classification and prediction with the help of a set of supervised mathematical com-
mands from machine learning, which is a support vector machine (SVM). The deregulated
functions were detected by significant difference between BOT groups and normal controls,
and the p-value was set at 0.05. The variation in the GSR indices between each BOT group
consisting of all BOTs, SBOTs, and MBPTs and normal controls indicated that the biomolec-
ular functions were widely dysregulated in the BOT groups compared with the normal
controls with statistical significance. Finally, we performed a whole-genome integrative
analysis to identify meaningful dysfunctional pathways and potential DEGs and possible
essential parts of the pathogenesis of BOTs by discovering the dysregulated biomolecular
and genetic functions of BOTs detected by microarrays with gene expression profiles. The
crucial biological functions and genes involved in the pathogenesis of BOTs were detected
by investigating genome-wide GO-defined functions and DEGs.

2.2. Microarray Gene Expression Datasets and Gene Set Definition

We used the integrative method of gene ontology-based analysis to investigate all
related dysregulated functions of BOTs. DNA microarray gene expression datasets were
downloaded from the National Center for Biotechnology Information (NCBI) Gene Expres-
sion Omnibus (GEO) database, and the sample data were obtained from 28 dataset series
containing six different DNA microarray platforms without any missing data. A total of
92 BOT samples were collected, including 79 samples of SBOT and 13 samples of MBOT in
terms of histological classification (Table 1); 35 samples of stage I, five samples of stage II,
ten samples of stage III, one sample of stages IV, and 41 samples of unconfirmed stages in
terms of the International Federation of Gynecology and Obstetrics (FIGO) staging system.
For comparison, 136 normal ovarian samples were gathered as a control group. Detailed
information of all collected samples is available in Table S1. The 10,192 GO gene set defi-
nitions for annotation of all functions were downloaded from the Molecular Signatures
Database (MSigDB) with the version “c5.all.v7.1.symbols.gmt” [51].

Table 1. Number of samples and statistics of gene set regularity indices for the BOT, serous BOT (SBOT), and mucinous
BOT (MBOT) groups.

Groups Sample Control Total Sample Mean (SD 1) Control Mean (SD 1) p-Value

All BOTs 92 136 228 0.6689 (0.1892) 0.7731 (0.1647) <0.05
SBOT (Serous) 79 136 215 0.7036 (0.1772) 0.7732 (0.1646) <0.05

MBOT (Mucinous) 13 136 149 0.5032 (0.1590) 0.7731 (0.1643) <0.05
1 SD, standard deviation.
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Figure 1. Workflow of this study. The DNA microarray gene expression datasets of 92 borderline
ovarian tumor (BOT) samples and 136 normal ovarian controls were downloaded from a publicly
available database with the gene set regularity (GSR) index calculated by the Gene Ontology (GO)
gene set. Functionomes consisting of 10,192 GO gene sets established from the polygenic model and
machine learning with statistical methods and cumulative portion transformations were used to
recognize the functionome patterns to discover dysfunctional GO terms, pathways, and differentially
expressed genes (DEGs). Finally, the pathogenesis of BOTs was investigated by integrative analysis.

2.3. Means and Histograms of GSR Indices of Functionomes among Each BOT Sample Group with
Different Divergences

We calculated the means of the GSR indices of functionomes for all BOTs, serous
BOTs (SBOTs), and mucinous BOTs (MBOTs), corrected by the averages from the control
groups, as shown in Figure 2. The GSR index delineated by quantified changes in the
gene expression ranking in a gene set was computed based on the extent of ranking
change within a gene set defined by the GO terms or biological canonical pathways
between the case and control groups, and the variations in GSR indices between each
case and the normal control group were statistically significant (p < 0.05), which revealed
notably decreased deviations among all BOT groups (orange lattice in Figure 2A), SBOTs
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(orange lattice in Figure 2B), and MBOTs (orange lattice in Figure 2C), indicating the steady
deterioration of functional regulation of BOTs apart from normal controls (blue lattice in
Figure 2). More obvious deviation in MBOTs distinct from SBOTs indicated more irregular
changes of dysregulated function. Quantifying the regulation of dysregulated functions by
surveying the average of the total GSR indices among each functionome, with subsequent
corrections based on the control groups, the numerical average values of the corrected GSR
indices for all BOTs, SBOTs, and MBOTs were 0.6689, 0.7036, and 0.5032, respectively.

Figure 2. Histograms of global GSR indices of functionomes among all BOTs (serous BOTs and
mucinous BOTs (orange) and control groups (blue)): These figures reveal different distributions of
the functionomes for three case sample groups and control group’s statistical significance (p < 0.05).
The normal control group (blue) located on the right side of the histogram was the same for the
three case groups and used as the controls. A second peak of distribution was observed (orange),
indicating deregulated biomolecular functions among all BOTs, SBOTs, and MBOTs. (A) Corrected
GSR indices of all BOTs: 0.6689; (B) corrected GSR indices of serous BOTs: 0.7036; and (C) corrected
GSR indices of mucinous BOTs: 0.5032.

2.4. Global Functional Regularity Patterns Predicted and Classified by Machine Learning with
High Accuracies

As the histograms show above, there were indeed significant differences in functional
regularity patterns among the three case groups (all BOTs, SBOTs, and MBOTs) from the
normal control group. With the help of supervised machine learning, we used a support
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vector machine (SVM) technological algorithm to recognize, classify, and predict distinct
functionomes with GSR indices. The performance was evaluated with binary classification
and inspected by fivefold cross-validation. The cumulative performance results are listed in
Table 2 with the averages of ten continuous classifications and predictions. The accuracies
of binary classification (case vs. control) ranged from 99.77% to 100.00%. The classification
between the MBOT and normal control groups had the best results. The areas under the
curve (AUCs) of the test for each case group ranged from 0.9967 to 1.0000. These results
with high accuracies indicated that the functional regularity patterns quantified by the
GSR indices converted from the microarray gene expression profiles can provide adequate
informative data for the SVM to perform correct recognition and classification. The results
also revealed that the functional regularity patterns among all BOTs, SBOTs, and MBOTs
were distinct and could be utilized for the molecular classification of the gene expression
profiles among each case group.

Table 2. Accuracies of binary classification and prediction by machine learning.

Gene Set Classification Group Sensitivity (SD 1) Specificity (SD 1) Accuracy (SD 1) AUC 2

All BOTs 0.9944 (0.01757) 1.0000 (0.0000) 0.9978 (0.0069) 0.9974
GO term Binary SBOT 3 0.9933 (0.02108) 1.0000 (0.0000) 0.9977 (0.0074) 0.9967

MBOT 4 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000
1 SD, standard deviation; 2 AUC, area under curve; 3 SBOT, serous BOT; 4 MBOT, Mucinous BOT.

2.5. The Most Deregulated and Common Gene Ontology (GO) Terms of BOTs and Subtypes

There were 717, 655, and 792 GO terms among all BOT, SBOT, and MOBT groups,
respectively, summarized and ranked by cluster weight index (CWI), which was a measured
index of a weighed ratio based on the p-values for each clustered deregulated GO term
with statistical significance. CWI was defined as the ratio of that cluster weight divided
by the sum weight of total clusters to measure the weight and to represent the relevance
of each cluster in the GO tree, and we used CWI calculated to quantify and evaluate the
importance of each GO cluster in the pathogenesis of BOTs. A higher CWI indicates higher
relevance and importance. The 50 most deregulated GO terms ranked by CWI for all
BOTs, SBOTs, and MBOTs are displayed in Table 3. The first deregulated GO term for
each stage group was “regulation of immune system process (GO:0002682)” for all BOTs,
“regulation of immune system process (GO:0002682)” for SBOTs, and “small molecule
metabolic process (GO:0044281)” for MBOTs. Then, we summarized and rearranged the
top 41 GO terms in order that appeared repeatedly in the 50 most deregulated GO terms
among the three groups according to the weighted CWI proportions in each group, as
shown in Table 4 with their original ranking in each group. We then traced and compared
the trends of ranking order of the top 41 common deregulated GO terms for each group to
evaluate the importance of a given functionome among all BOTs, SBOTs, and MBOTs. The
ranking trend distributions of deregulated GO terms for all BOTs, SBOTs, and MBOTs are
shown in Figure 3 and the whole deregulated GO terms of all BOTs, SBOTs, and MBOTs
are listed in detail in Table S2. We found obviously that the ranking orders and trends of
these top 41 common deregulated GO terms of all BOTs and SBOTs were the same in the
majority, and the ranking trend distribution of the deregulated GO terms of MBOTs did not
go congruously with all BOTs and SBOTs. Next, all top 41 common deregulated GO terms
among the three case groups could be classified based on the functions they represent
and organized into the following categories: immune and inflammatory response-related
functions, cell membrane and transporter related functions, cell cycle and signaling related
functions, cell metabolism related functions, and others that are not classified into the
above four categories.
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Table 3. The 50 most deregulated GO terms for all BOTs, SBOTs, and MBOTs ranked by CWI (cluster weight index).

Category All BOTs Serous BOTs Mucinous BOTs

Ranking GO ID GO Term CWI GO ID GO Term CWI GO ID GO Term CWI

1 GO:0002682 Regulation of immune
system process 0.02426 GO:0002682 Regulation of immune

system process 0.0255 GO:0044281 Small molecule
metabolic process 0.01957

2 GO:0001775 Cell activation 0.01783 GO:0005215 Transporter activity 0.02032 GO:0002682 Regulation of immune
system process 0.01772

3 GO:0005215 Transporter activity 0.01737 GO:0001775 Cell activation 0.02015 GO:0051049 Regulation of
transport 0.01434

4 GO:0006811 Ion transport 0.01678 GO:0006811 Ion transport 0.01765 GO:0006811 Ion transport 0.01187

5 GO:0044281 Small molecule metabolic
process 0.01622 GO:0044281 Small molecule metabolic

process 0.01653 GO:0045595 Regulation of cell
differentiation 0.01145

6 GO:0051049 Regulation of transport 0.01345 GO:0051049 Regulation of transport 0.01324 GO:0006629 Lipid metabolic
process 0.01135

7 GO:0002252 Immune effector process 0.01313 GO:0002252 Immune effector process 0.0131 GO:0001775 Cell activation 0.01114

8 GO:0001816 Cytokine production 0.01255 GO:0002520 Immune system
development 0.01284 GO:0016070 RNA metabolic

process 0.01101

9 GO:0002520 Immune system
development 0.01219 GO:0001816 Cytokine production 0.01252 GO:0005215 Transporter activity 0.01008

10 GO:0045595 Regulation of cell
differentiation 0.01147 GO:0045595 Regulation of cell

differentiation 0.01129 GO:0001816 Cytokine production 0.00999

11 GO:0006629 Lipid metabolic process 0.01013 GO:0031399 Regulation of protein
modification process 0.01021 GO:0022008 Neurogenesis 0.00984

12 GO:0040011 Locomotion 0.0094 GO:0006629 Lipid metabolic process 0.01018 GO:0040011 Locomotion 0.00954

13 GO:0031399 Regulation of protein
modification process 0.00929 GO:0048585 Negative regulation of

response to stimulus 0.00945 GO:0002520 Immune system
development 0.00947

14 GO:0042592 Homeostatic process 0.00925 GO:0042592 Homeostatic process 0.00939 GO:0007267 Cell-cell signaling 0.00906
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Table 3. Cont.

Category All BOTs Serous BOTs Mucinous BOTs

Ranking GO ID GO Term CWI GO ID GO Term CWI GO ID GO Term CWI

15 GO:0046903 Secretion 0.00922 GO:0022610 Biological adhesion 0.00926 GO:0042592 Homeostatic process 0.00884

16 GO:0007267 Cell-cell signaling 0.00903 GO:0055085 Transmembrane transport 0.00913 GO:0051276 Chromosome
organization 0.0088

17 GO:0051240
Positive regulation of

multicellular organismal
process

0.00891 GO:0051240
Positive regulation of

multicellular organismal
process

0.00904 GO:0051240
Positive regulation of

multicellular
organismal process

0.00867

18 GO:0048585 Negative regulation of
response to stimulus 0.00886 GO:0006915 Apoptotic process 0.00902 GO:0019219

Regulation of
nucleobase-containing
compound metabolic

process

0.00864

19 GO:0022610 Biological adhesion 0.00873 GO:0046903 Secretion 0.00887 GO:0046903 Secretion 0.00858

20 GO:0016070 RNA metabolic process 0.00861 GO:0060429 Epithelium development 0.00875 GO:0060429 Epithelium
development 0.00854

21 GO:0006915 Apoptotic process 0.00859 GO:0051174 Regulation of phosphorus
metabolic process 0.00867 GO:0002252 Immune effector

process 0.00826

22 GO:0051276 Chromosome organization 0.00839 GO:0051276 Chromosome organization 0.00866 GO:0033043 Regulation of
organelle organization 0.00808

23 GO:0055085 Transmembrane transport 0.00818 GO:0007267 Cell-cell signaling 0.00846 GO:0006259 DNA metabolic
process 0.00774

24 GO:0060429 Epithelium development 0.00807 GO:0007049 Cell cycle 0.0082 GO:0031399 Regulation of protein
modification process 0.00767

25 GO:0007049 Cell cycle 0.00787 GO:0070727 Cellular macromolecule
localization 0.008 GO:0000003 Reproduction 0.00742

26 GO:0051174 Regulation of phosphorus
metabolic process 0.00779 GO:0016070 RNA metabolic process 0.00799 GO:0006915 Apoptotic process 0.00733
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Table 3. Cont.

Category All BOTs Serous BOTs Mucinous BOTs

Ranking GO ID GO Term CWI GO ID GO Term CWI GO ID GO Term CWI

27 GO:0033043 Regulation of organelle
organization 0.00771 GO:0040011 Locomotion 0.00776 GO:0007049 Cell cycle 0.00733

28 GO:0070727 Cellular macromolecule
localization 0.00768 GO:0033043 Regulation of organelle

organization 0.00766 GO:0048585 Negative regulation of
response to stimulus 0.00725

29 GO:0046907 Intracellular transport 0.00753 GO:0046907 Intracellular transport 0.0076 GO:0009719 Response to
endogenous stimulus 0.00719

30 GO:0019219

Regulation of
nucleobase-containing
compound metabolic

process

0.00738 GO:0023056 Positive regulation of
signaling 0.00728 GO:0019637 Organophosphate

metabolic process 0.00714

31 GO:0023056 Positive regulation of
signaling 0.00717 GO:0019219

Regulation of
nucleobase-containing
compound metabolic

process

0.00705 GO:0070727
Cellular

macromolecule
localization

0.00689

32 GO:0022008 Neurogenesis 0.00698 GO:0006468 Protein phosphorylation 0.00701 GO:0051174
Regulation of

phosphorus metabolic
process

0.00673

33 GO:0005102 Signaling receptor binding 0.00669 GO:0051241
Negative regulation of

multicellular organismal
process

0.00661 GO:0030030 Cell projection
organization 0.00646

34 GO:0006468 Protein phosphorylation 0.00668 GO:0006259 DNA metabolic process 0.00652 GO:0007010 Cytoskeleton
organization 0.00642

35 GO:0006259 DNA metabolic process 0.00661 GO:0005102 Signaling receptor binding 0.00643 GO:0023056 Positive regulation of
signaling 0.0064

36 GO:0051241
Negative regulation of

multicellular organismal
process

0.00635 GO:0098772 Molecular function
regulator 0.00618 GO:0065003 Protein-containing

complex assembly 0.00637
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Table 3. Cont.

Category All BOTs Serous BOTs Mucinous BOTs

Ranking GO ID GO Term CWI GO ID GO Term CWI GO ID GO Term CWI

37 GO:0044419 Interspecies interaction
between organisms 0.00635 GO:0080134 Regulation of response to

stress 0.00617 GO:0007417 Central nervous
system development 0.00628

38 GO:0098772 Molecular function
regulator 0.00617 GO:0022008 Neurogenesis 0.00604 GO:0051241

Negative regulation of
multicellular

organismal process
0.00625

39 GO:0015849 Organic acid transport 0.00597 GO:0015849 Organic acid transport 0.00597 GO:0046907 Intracellular transport 0.00607

40 GO:0080134 Regulation of response to
stress 0.00592 GO:0044419 Interspecies interaction

between organisms 0.00593 GO:0018193 Peptidyl-amino acid
modification 0.00591

41 GO:0009719 Response to endogenous
stimulus 0.00578 GO:0023057 Negative regulation of

signaling 0.00589 GO:0055085 Transmembrane
transport 0.00572

42 GO:0002250 Adaptive immune response 0.00577 GO:0010941 Regulation of cell death 0.00588 GO:0080134 Regulation of response
to stress 0.00564

43 GO:0000003 Reproduction 0.00571 GO:0042127 Regulation of cell
proliferation 0.00583 GO:0005102 Signaling receptor

binding 0.00558

44 GO:0018193 Peptidyl-amino acid
modification 0.0057 GO:0009790 Embryo development 0.0058 GO:0051094 Positive regulation of

developmental process 0.00555

45 GO:0023057 Negative regulation of
signaling 0.00564 GO:0002250 Adaptive immune response 0.00579 GO:0022610 Biological adhesion 0.00552

46 GO:0030030 Cell projection organization 0.00557 GO:0019637 Organophosphate
metabolic process 0.00557 GO:0044419 Interspecies interaction

between organisms 0.00543

47 GO:0042127 Regulation of cell
proliferation 0.00556 GO:0018193 Peptidyl-amino acid

modification 0.00552 GO:0006468 Protein
phosphorylation 0.0054

48 GO:0019637 Organophosphate metabolic
process 0.00554 GO:0009628 Response to abiotic

stimulus 0.00545 GO:0016788 Hydrolase activity,
acting on ester bonds 0.00525

50 GO:0065003 Protein-containing complex
assembly 0.00544 GO:0000003 Reproduction 0.00539 GO:0009790 Embryo development 0.0052
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Table 4. The top 41 common deregulated GO terms among the three case groups (all BOTs, SBOTs, and MBOTs).

Order GO ID GO Term B 1 S 2 M 3 Order GO ID GO Term B 1 S 2 M 3

1 GO:0002682 Regulation of immune system process 1 1 2 21 GO:0060429 Epithelium development 24 20 20

2 GO:0044281 Small molecule metabolic process 5 5 1 22 GO:0006915 Apoptotic process 21 18 26

3 GO:0001775 Cell activation 2 3 7 23 GO:0007049 Cell cycle 25 24 27

4 GO:0006811 Ion transport 4 4 4 24 GO:0033043 Regulation of organelle organization 27 28 22

5 GO:0005215 Transporter activity 3 2 9 25 GO:0022610 Biological adhesion 19 15 45

6 GO:0051049 Regulation of transport 6 6 3 26 GO:0051174 Regulation of phosphorus metabolic process 26 21 32

7 GO:0045595 Regulation of cell differentiation 10 10 5 27 GO:0019219 Regulation of nucleobase-containing
compound metabolic process 30 31 18

8 GO:0001816 Cytokine production 9 9 10 28 GO:0055085 Transmembrane transport 23 16 41

9 GO:0002520 Immune system development 8 8 13 29 GO:0022008 Neurogenesis 32 38 11

10 GO:0006629 Lipid metabolic process 11 12 6 30 GO:0070727 Cellular macromolecule localization 28 25 31

11 GO:0002252 Immune effector process 7 7 21 31 GO:0006259 DNA metabolic process 35 34 23

12 GO:0042592 Homeostatic process 14 14 15 32 GO:0023056 Positive regulation of signaling 31 30 35

13 GO:0031399 Regulation of protein modification process 13 11 24 33 GO:0046907 Intracellular transport 29 29 39

14 GO:0040011 Locomotion 12 27 12 34 GO:0051241 Negative regulation of multicellular
organismal process 36 33 38

15 GO:0051240 Positive regulation of multicellular
organismal process 17 17 17 35 GO:0005102 Signaling receptor binding 33 35 43

16 GO:0046903 Secretion 15 19 19 36 GO:0006468 Protein phosphorylation 34 32 47

17 GO:0007267 Cell-cell signaling 16 23 14 37 GO:0000003 Reproduction 43 49 25

18 GO:0016070 RNA metabolic process 20 26 8 38 GO:0080134 Regulation of response to stress 40 37 42

19 GO:0048585 Negative regulation of response to stimulus 18 13 28 39 GO:0009719 Response to endogenous stimulus 41 50 29

20 GO:0051276 Chromosome organization 22 22 16 40 GO:0044419 Interspecies interaction between organisms 37 40 46

41 GO:0018193 Peptidyl-amino acid modification 44 47 40

1 B, Ranking in all BOTs; 2 S, Ranking in SBOTs; 3 M, Ranking in MBOTs.
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Figure 3. (A) The ranking trend distributions of deregulated GO terms for all BOTs, SBOTs, and MBOTs. The top 41 common deregulated GO terms among the three case groups are
displayed in a variety of different colors, and each GO term has its corresponding ranking order. (B) The orders of these deregulated GO terms in SBOTs are similar to those in all BOTs, but
the orders in MBOTs are very inconsistent with those of all BOTs and SBOTs.
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2.6. Immune and Inflammatory Response-Related Functions and Relevant DEGs

There were three GO terms among all BOT, SBOT, and MBOT groups classified into
immune and inflammatory response-related functions: “regulation of immune system
process (GO:0002682)”, “immune system development (GO:0002520)”, and “immune
effector process (GO:0002252)”; the rankings of these immune-related GO terms in all
groups were very much in front order. Each GO term, whether its representative cellular
component, molecular function, or biological process, has a corresponding genome that
annotates genes and gene products to enable functional interpretation of experimental
data [52]. We utilized statistical methods to discover the potential genes from the genes
with the definition of GO gene sets (http://geneontology.org/, accessed on 15 April 2021)
annotated for the above three GO terms and then intersected the DEGs calculated separately
to find the relevant DEGs with the highest repetition. We found that the two DEGs:
IL6 (interleukin 6) and CCR2 (C-C motif chemokine receptor 2) had the most frequent
occurrence. The trends of ranking orders for each categorized GO term are shown in
Figure 4 with detailed information.
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2.7. Cell Membrane- and Transporter-Related Functions and Relevant DEGs

Similarly, based on the annotated biological functions, nine GO terms among three dis-
ease groups were categorized as cell membrane- and transporter response-related functions:
“ion transport (GO:0006811)”, “transporter activity (GO:0005215)”, “regulation of transport
(GO:0051049)”, “locomotion (GO:0040011)”, “secretion (GO:0046903)”, “biological adhe-
sion (GO:0022610)”, “transmembrane transport (GO:0055085)”, “cellular macromolecule
localization (GO:0070727)”, and “intracellular transport (GO:0046907)”; the ranking orders
and trends of these clustered GO terms are revealed in Figure 5 in detail. We also used the
calculation method to identify the potential genes from the previously mentioned available
database, and four relevant DEGs were identified with the highest repetition: IFNG (inter-
feron gamma), ATP1B1 (sodium/potassium-transporting ATPase subunit beta-1), GAS6
(growth arrest specific 6), and PSEN1 (presenilin 1).
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2.8. Cell Cycle- and Signaling-Related Functions and Relevant DEGs

We categorized 16 of the top 41 common deregulated GO terms into cell cycle- and
signaling response-related functions according to their assigned functions, and the 16 GO
terms were “cell activation (GO:0001775)”, “regulation of cell differentiation (GO:0045595)”,
“cytokine production (GO:0001816)”, “homeostatic process (GO:0042592)”, “positive regula-
tion of multicellular organismal process (GO:0051240)”, “cell-cell signaling (GO:0007267)”,
“negative regulation of response to stimulus (GO:0048585)”, “chromosome organization
(GO:0051276)”, “apoptotic process (GO:0006915)”, “cell cycle (GO:0007049)”, “regulation
of organelle organization (GO:0033043)”, “positive regulation of signaling (GO:0023056)”,
“negative regulation of multicellular organismal process (GO:0051241)”, “signaling receptor
binding (GO:0005102)”, “regulation of response to stress (GO:0080134)”, and “response
to endogenous stimulus (GO:0009719).” Using the same calculation method as above, we
selected three relevant DEGs with the most statistically frequent occurrence among all
genes annotating the 16 classified GO terms: CTNNB1 (catenin beta 1), GATA3, and IL1B
(interleukin 1 beta). The results described in this section with ranking orders for each GO
term among the three disease groups are presented fully in Figure 6.

2.9. Cell Metabolism Related Functions and Relevant DEGs

Based on the same principle, nine deregulated GO terms among three disease groups
were classified into cell metabolism response-related functions: “small molecule metabolic
process (GO:0044281)”, “lipid metabolic process (GO:0006629)”, “regulation of protein
modification process (GO:0031399)”, “RNA metabolic process (GO:0016070)”, “regulation
of phosphorus metabolic process (GO:0051174)”, “regulation of nucleobase-containing com-
pound metabolic process (GO:0019219)”, “DNA metabolic process (GO:0006259)”, “protein
phosphorylation (GO:0006468)”, and “peptidyl-amino acid modification (GO:0018193).”
Likewise, by utilizing statistics and calculations, ten relevant DEGs with the highest
repetition in this group were selected and noted as follows: AKT1, SIRT1 (sirtuin 1), IL4 (in-
terleukin 4), PDGFB (platelet-derived growth factor subunit B), MAPK3 (mitogen-activated
protein kinase 3), SRC, TWIST1 (Twist-related protein 1), TGFB1 (transforming growth
factor beta 1), ADIPOQ (adiponectin), and PPARGC1A (peroxisome proliferator-activated
receptor gamma coactivator 1-alpha). All findings mentioned in this paragraph and the
ranking orders with trends of the nine GO terms for each disease group are completely
disclosed in Figure 7.

2.10. The Most Significantly Dysfunctional Canonical Pathways and Representative DEGs

We found 4833, 4065, and 5305 canonical pathways among all BOT, SBOT, and MBOT
groups and arranged them in the order of relevance according to their p-values to discover
the most dysfunctional pathway in each group. In Table 5, the top 20 most dysfunctional
canonical pathways ranked by p-value are listed, and all p-values were statistically sig-
nificant. “REACTOME galactose catabolism” ranked first in all BOT and SBOT groups,
and “REACTOME glucuronidation” ranked first in the MBOT group. In addition, the
top 20 pathways in the three disease groups had only one common dysfunctional path-
way, “REACTOME galactose catabolism”, which was also ranked fourth in the MBOT
group. In addition, according to the gene set data downloaded from the GESA (Gene
Set Enrichment Analysis) website (https://www.gsea-msigdb.org/gsea/msigdb/cards/
REACTOME_GALACTOSE_CATABOLISM.html, accessed on 15 April 2021), we found
five genes related to this dysfunctional pathway and their corresponding proteins (GALE,
GALK1, GALT, PGM2, and PGM2 L1). Next, we used functional protein association net-
works (https://string-db.org/, accessed on 15 April 2021) to compare these five proteins for
the correlation of interactions with each other and found that GALT (galactose-1-phosphate
uridylyltransferase) was the most promising gene and protein.

https://www.gsea-msigdb.org/gsea/msigdb/cards/REACTOME_GALACTOSE_CATABOLISM.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/REACTOME_GALACTOSE_CATABOLISM.html
https://string-db.org/
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Table 5. The top 20 most dysfunctional canonical pathways among all BOT, SBOT, and MBOT groups ranked by p-values.

Category All BOTs Serous BOT Mucinous BOT

Ranking Geneset Name p-Values Geneset Name p-Values Geneset Name p-Values

1 REACTOME galactose catabolism 1.9273 × 10−34 REACTOME galactose catabolism 8.1608 × 10−32 REACTOME glucuronidation 6.7592 × 10−10

2 BIOCARTA Th1Th2 pathway 3.6094 × 10−33 BAKER hematopoiesis STAT1
targets 5.6450 × 10−29 Reactome NOSTRIN mediated

eNOS trafficking 1.9891 × 10−9

3 RODRIGUES thyroid carcinoma
upregulation 3.6094 × 10−33 BIOCARTA Antigen dependent B

Cell activation pathway 5.6450 × 10−29 CASTELLANO HRAS and NRAS
targets downregulation 2.8989 × 10−9

4 ZHAN multiple myeloma
downregulation 3.6094 × 10−33 BIOCARTA stem pathway 5.6450 × 10−29 REACTOME galactose catabolism 5.0812 × 10−9

5 BIOCARTA stem pathway 6.7888 × 10−33 KANG cisplatin resistance
upregulation 5.6450 × 10−29 NADELLA PRKAR1A targets

downregulation 5.3670 × 10−9

6 KANG cisplatin resistance
upregulation 6.7888 × 10−33 REACTOME HATs acetylate

histones 5.6450 × 10−29 REACTOME molybdenum
cofactor biosynthesis 5.3670 × 10−9

7 TERAO AOX4 targets skin
downregulation 6.7888 × 10−33 REACTOME interleukin 2 signaling 5.6450 × 10−29 REACTOME RUNX3 regulates

BCL2 L11 (BIM) transcription 5.3670 × 10−9

8 WANG response to androgen
upregulation 9.0067 × 10−33

REACTOME RUNX1 and FOXP3
control the development of
regulatory T lymphocytes

5.6450 × 10−29 REACTOME synthesis of ketone
bodies 5.3670 × 10−9

9 REACTOME HATs acetylate
histones 9.6321 × 10−33 STAMBOLSKY targets of mutated

TP53 upregulation 5.6450 × 10−29
GARGALOVIC response to

oxidized phospholipids green
module downregulation

1.5393 × 10−8

10 REACTOME interleukin 2 signaling 9.6321 × 10−33 TERAO AOX4 targets skin
downregulation 5.6450 × 10−29

GAUSSMANN MLL-AF4 fusion
proteins targets set B

downregulation
1.5393 × 10−8

11 STAMBOLSKY targets of mutated
TP53 upregulation 9.9179 × 10−33 WANG response to androgen

upregulation 7.5300 × 10−29 KANG cisplatin resistance
downregulation 1.5393 × 10−8
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Table 5. Cont.

Category All BOTs Serous BOT Mucinous BOT

Ranking Geneset Name p-Values Geneset Name p-Values Geneset Name p-Values

12
REACTOME RUNX1 and FOXP3

control the development of
regulatory T lymphocytes

1.7040 × 10−32
HASEGAWA tumorigenesis by RET

allele with the MEN2A mutation
(C634R)

8.1498 × 10−29
REACTOME formyl peptide

receptors bind formyl peptides
and many other ligands

1.5393 × 10−8

13 JU aging TERC targets upregulation 4.1179 × 10−32
SCHWAB targets of BMYB

polymorphic variants
downregulation

8.1498 × 10−29 REACTOME mRNA editing 1.5393 × 10−8

14 BIOCARTA Antigen dependent B
Cell activation pathway 5.6577 × 10−32 KREPPEL CD99 targets

downregulation 1.1090 × 10−28

ABRAHAM amyloidosis plasma
cells (ALPC) compared to

multiple myeloma (MM) cells
upregulation

1.6662 × 10−8

15 BIOCARTA 4-1BB (CD137) pathway 1.0825 × 10−31 NAGY STAGA complex
components in human 1.5310 × 10−28 ACEVEDO liver cancer with

H3K27 me3 upregulation 1.6662 × 10−8

16 LOPEZ mesothelioma survival
downregulation 2.4323 × 10−31 WANG response to forskolin

upregulation 2.1622 × 10−28 AMIT EGF response 20 min after
stimulation of MCF10A cells 1.6662 × 10−8

17 BAKER hematopoiesis STAT1
targets 3.2802 × 10−31 PID JNK signaling in the CD4+ TCR

pathway 3.1635 × 10−28 AMIT serum response 120 min
after stimulation of MCF10A cells 1.6662 × 10−8

18 PID JNK signaling in the CD4+ TCR
pathway 5.6082 × 10−31 REACTOME reversible hydration of

carbon dioxide 5.8648 × 10−28 AMIT serum response 480 min
after stimulation of MCF10A cells 1.6662 × 10−8

19 NAGY STAGA complex
components in human 7.9222 × 10−31 BIOCARTA 4-1BB (CD137) pathway 7.8095 × 10−28 AMUNDSON response to sodium

arsenite 1.6662 × 10−8

20 IKEDA miR-30 microRNA targets
downregulation 1.0328 × 10−30 BIOCARTA Complement pathway 8.5975 × 10−28 AUNG gastric cancer 1.6662 × 10−8
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2.11. Verification with Immunohistochemical Analysis of Anti-IL6 and Anti-GALT Expression
between BOTs and Normal Ovarian Tissues

To verify the abovementioned related pathogenic mechanisms and to explore clinical
manifestations specifically of the identified DEGs involved in the tumorigenesis process
of BOTs, we collected related clinical samples from a cohort (BOTs, n = 9; normal control
group, n = 9) and then performed immunostaining with anti-IL6 and anti-GALT antibodies
separately. Among all deregulated GO terms and classified categories, the general ranking
and order occupied by the immune and inflammatory response-related functions was the
highest overall; as a result, we picked up the IL6 gene selected from the immune and
inflammatory response-related functions for the representative gene among 19 DEGs due
to its close relationship with ovarian tumors [53–56]. Together with the anti-GALT antibody,
we used immunohistochemical analysis of the anti-IL6 antibody between the BOT and
control groups to assess the clinically meaningful significance of IL6 and GALT. During
the entire process, the pathologists interpreted and verified to obtain the following results
on average repeatedly. The results revealed higher expression levels of IL6 and GALT in
BOT samples than in normal samples (Figure 8A). Pathologists and quantification of the
immunostaining scores of IL6 and GALT levels were performed using SPSS software (IBM
Corp., Released 2013, IBM SPSS Statistics for Windows, Version 22.0, Armonk, NY, USA:
IBM Corp.). A higher mean value with statistical significance of IL6 and GALT expression
in samples of BOTs was clearly shown compared with the control group (Figure 8B).
These results supported the above deductions, indicating that many deregulated functions
inferred from integrative GO enrichment analysis, including immune and inflammatory
response-related, cell membrane-related and transporter-related, cell cycle- and signaling-
related, and cell metabolism-related functions, indeed contributed to the pathogenesis of
BOTs. Likewise, these results also proved that the dysfunctional pathway of galactose
catabolism played a role in the tumorigenesis of BOTs. All results provide preliminary
clinical evidence to support the previously proposed pathogenic tumorigenesis of BOTs.
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Figure 8. Immunohistochemical analysis of clinical samples between patients with BOTs and the control group. (A) Clinical
samples from patients with BOTs (n = 9) and from the normal group (n = 9) were immunostained with anti-IL6 antibody
(brown color, left straight row) and anti-GALT antibody (brown color, right straight row), and the parts shown in the
horizontal row are the immunostaining results of serous BOTs, mucinous BOTs, and control groups from top to bottom.
(B) Box plots for expressed IL6 and GALT between BOT patients and the control group. The expression levels of IL6 and
GALT in all clinical samples are presented with quantification, and the statistically meaningful mean values of IL6 and
GALT expression in the BOT group were higher than those in the normal group.
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3. Discussion

In this study, we utilized an integrated polygenic analytical model with the concept
of GO (gene ontology) and GSR (gene set regularity) indices computed based on gene
expression ranking to further explore the complex and diverse biomolecular and genetic
functions of BOTs and their two most common subtypes (SBOT and MBOT) and obtained
statistically meaningful results. Although both subtypes belong to BOTs, serous and
mucinous are different in clinical features, histopathology, and pathogenesis, although
there are many commonalities found in this research. For example, in serous BOTs, clinically,
there are sometimes multiple intra-abdominal metastasis-like lesions similar to ovarian
cancer. In contrast to the serous subtype, mucinous BOTs usually form a single large tumor
shape. In recent years, in tumorigenesis research, the epithelial-to-mesenchymal transition
(EMT) has been a key concept in research on ovarian neoplasms and is a reversible process
in cell differentiation, morphogenesis, growth, and change of function in which epithelial
cells obtain mesenchymal cell characteristics by losing polarity and adhesion of cells and
increasing cellular migratory motility [57,58]. Although BOTs are not entirely recognized
as malignant tumors and are not seen as a necessary process of transformation into ovarian
cancer, in this study, we found some biomarkers related to EMTs, such as IL6, AKT1,
MAPK3, SRC, TWIST1, and TGFB1 [59–61]. These additional findings may be worthy of
further investigation in the future [62]. Next, we discuss and explain the major categories
mentioned in this research.

Regarding immunity- and inflammation-related functions, whether modulating or
regulating the immune system process (GO:0002682), progressing to the development
of the immune system against internal and invasive threats (GO:0002520) or any pro-
cess of the immune system potentially contributing to immune responses (GO:0002252),
the rankings of GO terms among the three disease groups were very high, and we also
found that the most significant DEGs selected by repeated comparisons were IL6 and
CCR2. In addition, the cell cycle, an important biological periodic function, is involved
in the process of tumorigenesis, and it is worth studying further. In addition, message
transmission, whether biogenetic signal transduction occurs inside the cell, across the cell
membranes, or between cells, also takes a specific place in the pathogenesis of BOTs. In
this study, we sorted out that transportive movement of ions (GO:0006811), active abil-
ity of transporters (GO:0005215), modulation of movement of substances (GO:0051049),
self-propelled movement of a cell or organism (GO:0040011), controlled biological emanci-
pation (GO:0046903), attachment of a cell or organism to another cell or other organism
(GO:0022610), transport of a solute across a lipid bilayer (GO:0055085), macromolecule
transported forward to any specific location of a cell (GO:0070727), and the directed
movement of substances within a cell (GO:0046907) as cell membrane- and transporter-
related functions and assembled four associated relevant DEGs (IFNG, ATP1B1, GAS6,
PSEN1). In addition, we also sorted out 16 clearly defined GO terms (“Cell activation
(GO:0001775)”, “Regulation of cell differentiation (GO:0045595)”, “Cytokine production
(GO:0001816)”, “Homeostatic process (GO:0042592)”, “Positive regulation of multicellular
organismal process (GO:0051240)”, “Cell-cell signaling (GO:0007267)”, “Negative regula-
tion of response to stimulus (GO:0048585)”, “Chromosome organization (GO:0051276)”,
“Apoptotic process (GO:0006915)”, “Cell cycle (GO:0007049)”, “Regulation of organelle
organization (GO:0033043)”, “Positive regulation of signaling (GO:0023056)”, “Negative
regulation of multicellular organismal process (GO:0051241)”, “Signaling receptor binding
(GO:0005102)”, “Regulation of response to stress (GO:0080134)”, and “Response to endoge-
nous stimulus (GO:0009719)”) as mentioned earlier that were classified as cell cycle- and
signaling-related functions and used statistical methods to find three highly related DEGs
(CTNNB1, GATA3, and IL1B). We also confirmed the role of cell metabolism in the patho-
genetic process of BOTs. Deregulated genetic expression and dysfunctional reprogramming
pathways of cell metabolism accompanied by both direct and indirect consequences of
tumorigenic mutations cause tumorigenesis. Gene expression, cellular differentiation, and
the tumor microenvironment are all influenced by associated metabolic reprogramming
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and intracellular and extracellular metabolites to acquire necessary nutrients [63]. In this
study, we sorted out that cellular metabolic processes involving deoxyribonucleic acid
(GO:0006259), ribonucleic acid (GO:0016070), regulation of nucleobase-containing com-
pounds (GO:0019219), lipids (GO:0006629), and small molecules (GO:0044281), as well as
alteration and modification of peptidyl-amino acid (GO:0018193), protein phosphorylation
(GO:0006468), regulation of protein modification (GO:0031399), and phosphorus metabolic
process (GO:0051174) are very meaningful and the selected ten DEGs do have roles in cell
metabolism and tumorigenesis of BOTs.

This article also analyzed and investigated related DEGs, and the following is a
brief description of each DEG. In addition to utilizing an immunohistochemical method
to verify that IL6, a potential regulatory biomarker, in BOTs does have a significantly
higher performance than controls, IL6 has certain accessorial functions associated with
nearby immune-related cells in the microenvironment for the enhancement of benign or
malignant ovarian tumors [53–56,64,65]. CCR2 can bind with chemokine ligand 2 (CCL2)
on macrophages and monocytes to promote the expression and differentiation of T cells
and to regulate related inflammatory cytokines by activating the PI3K cascade and small
G protein GTPases. CCR2 plays a certain role in the tumorigenesis of ovarian tumors
through immune cells and related regulatory responses in the microenvironment, which
is also worthwhile to explore in the future [17,56,66–69]. IFNG (IFNγ), the only type II
interferon, is an important signal activator of macrophages and inducer of innate and
adaptive immunity in accordance with other immune-related cells or cytokines to exert
antiproliferative and antitumor effects [66,70,71]. ATP1B1 is mainly responsible for estab-
lishing and maintaining the electrochemical gradients of Na and K ions across the plasma
membrane, and the expression of ATP1B1 may have a suppressive effect that needs further
validation [72,73]. GAS6 is usually thought to be related to cell proliferation, chemotaxis
and survival, and stronger expression in BOTs implies associated epithelial-mesenchymal
transition in the tumor microenvironment [74,75]. PSEN1 (Presenilin-1, PS-1) is considered
to regulate amyloid precursor protein (APP) catalysis and is thought to be involved in
Notch and Wnt signaling cascades; however, the role of PSEN1 in BOTs is rarely known and
needs to be further validated [76,77]. CTNNB1 (β-catenin) is a crucial component of the
Wnt signaling pathway for the coordination and regulation of gene transcription and cell–
cell adhesion through phosphorylation and mutation of the CTNNB1 gene, and alteration of
the β-catenin pathway is thought to participate in the pathogenic process of BOTs [78–81].
GATA3 is considered a transcriptional activator for the regulation of T-cell development
and several inflammatory and allergic responses and was suggested as a regulator in benign
ovarian Brenner tumors and serous tumors with prognostic value [4,82,83]. IL1B (inter-
leukin 1 beta, IL-1β) is a potent proinflammatory mediator of the inflammatory response,
as well as having a relationship in cell proliferation, differentiation, and apoptosis, whereas
IL1B can promote tumorigenesis through the inflammatory response, which still needs fur-
ther verification among BOTs [84–86]. AKT1, also known as Akt/PKB, participates in the
PTEN/PI3K/Akt signaling pathway to mediate apoptosis, metabolism, cell proliferation,
and growth and is frequently dysregulated during tumorigenesis [81,87]. SIRT1 (Sirtuin1),
a class III histone deacetyltransferase and a nicotinamide adenine dinucleotide-dependent
deacetylase, exerts protective effects against oxidative stress, genomic instability, and DNA
damage, and SIRT1 overexpression may play a crucial role in the tumorigenesis of BOTs and
the carcinogenesis of early-stage ovarian cancer [88–90]. IL4 (interleukin 4), as a key regula-
tor in humoral and adaptive immunity, could induce Th2 cell differentiation and may have
a significant effect on the pathogenesis of BOTs [56,91]. PDGFB (platelet-derived growth
factor B) regulates cell growth and division and plays an important role in neoangiogenesis,
particularly in tumorigenesis among both BOTs and EOCs [92–95]. MAPK3 (mitogen-
activated protein kinase 3), also known as ERK1 (extracellular signal-regulated kinases 1),
acts in the mitogenic Ras/Raf/MEK/ERK signaling cascades to regulate cell proliferation,
differentiation, and cell cycle progression, and MAPK3 is a key factor for the pathogenesis
of BOTs accompanied by a high prevalence of KRAS and BRAF mutations [33,81,96,97].



Int. J. Mol. Sci. 2021, 22, 4105 25 of 34

SRC, a nonreceptor protein tyrosine kinase, participates in the regulation of cell growth and
embryonic development and promotes survival, angiogenesis, proliferation and invasion
pathways while being activated or overexpressed during tumor development [43,98,99].
TWIST1, acting as an epithelial-mesenchymal transition transcriptional regulator, plays an
important role in escaping apoptosis and metastasis, with increased expression stepwise
from benign, borderline, to malignant ovarian tumors [100–102]. TGFB1 could conduct
several cellular functions, such as cell proliferation, differentiation, growth, and apoptosis,
and TGFB1 could also work with other immune-related cells in the microenvironment to
show proangiogenic and prometastatic features in addition to the dual role of being an
enemy and friend in tumorigenesis [56,103,104]. ADIPOQ (adiponectin), mainly produced
and associated with adipose tissue, modulates numerous metabolic processes consisting of
regulation of glucose level, metabolism of fatty acids, and insulin sensitivity and may take
some part in cell growth, angiogenesis, and tissue remodeling during tumorigenesis with
significantly lower levels in cancerous ovarian samples [105–108]. PPARGC1A (PGC-1α)
participates essentially in metabolic reprogramming involved in gluconeogenesis, fatty
acid metabolism, and mitochondrial biogenesis and facilitates a flexible metabolic pro-
file to benefit tumor cells overexpressing PPARGC1A in human epithelial ovarian cancer
cells [109–112]. Furthermore, we found the most common and meaningful dysfunctional
canonical pathways among the three disease groups, galactose metabolism (REACTOME
GALACTOSE CATABOLISM), and discovered a representative DEG, GALT. In the hu-
man liver, galactose is converted into glucose-6-phosphate through the biophysiological
reaction galactose metabolism for rapid conversion from galactose to glucose, and GALT
participates in a prominent position for catalyzing the second step of the Leloir pathway of
galactose metabolism [113]. Galactosaemia caused by mutation of GALT or GALT deficiency
could induce ovarian toxicity, and polymorphism of GALT with galactose consumption and
metabolism may be associated with the development of BOTs and the risk of EOCs [114–119].
However, the roles of all DEGs and concomitant influences mentioned above in the tu-
morigenesis of BOTs require additional research data to explore further and to confirm
definitively.

The limitations of this study are as follows. The first limitation is the distribution of
case groups. The numbers of SBOTs and MBOTs are very different, and SBOTs are more
common because most of the populations sampled by the database in this experiment
are patients from Western countries and most of the patients with BOTs from Western
countries are SBOTs; therefore, the presentative consequence would cause the results of
the SBOT group to be similar to those of the All-BOTs group but very different from
those of the MBOT group. Perhaps in the future, a more complete gene expression profile
database could be established to reduce individual differences between ethnic groups in a
prospective or retrospective cohort study on a larger scale globally or in parts of Eastern
Asian countries. Second, some limitations of the integrative analysis model used in this
research are observed including that not all human functions were concluded or defined
from the gene set databases of the GO terms and the canonical pathway. The probable
detectability of the GSR model was noted owing to unchanged GSR indices and missed
errors during the process of converting levels to the ordering of gene expression if the
expression levels were undetectable, false positivity was made from the indistinguishable
elements of disparate gene sets, and the heterogenicity of different cellular histopathological
compositions in tumor and control samples was utilized. Although coupled with the
statistically significant high sensitivity, specificity, and accuracy of this experiment, these
deficiencies may not be apparent in the performance of the overall results. As a result,
more accurate programming syntax design and more specific screening of samples could
be requested to avoid these problems in the future. Finally, our study mainly explored
the common pathogenic mechanisms among BOTs; however, it was slightly hindered by
the extracted data collected from the GO database due to insufficient research at present
and the gathered clinical specimens with fewer numbers and limited funds. However,
the results were statistically significant and distinctly clear in terms of clinical verification
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by immunostaining. More extensive BOT specimens, more worldwide academic research
databases of various subtypes, and more detailed in-depth comparisons of the differences
in pathogenic mechanisms of different subtypes with large-scale funding and experimental
tests may be required to continue in the future.

4. Materials and Methods
4.1. Computing the GSR Indices and Reconstructing the Functionome

The GSR index was computed and extracted from the gene expression datasets by
modifying the differential rank conservation (DIRAC) algorithm [120], which measures the
changes of the ordering among the gene elements in a gene set between the gene expression
datasets of all BOTs, SBOTs, MBOTs, and the most common gene expression ordering in the
normal control samples. The details of the GSR model and the computing procedures are
described in our previous studies [45–50]. Microarray gene expression datasets for BOTs
and normal ovarian samples were downloaded from the GEO database. The corresponding
gene expression levels were extracted and built according to the gene elements in the GO
gene set and converted to ordinal data based on their expression levels. The GSR index is
the ratio of gene expression ordering in a gene set between the case and the most common
gene expression ordering among the normal ovarian tissue samples that ranges from 0 to 1,
where 0 indicates the most dysregulated state of a function, i.e., oppositely ordered gene set
regularities between BOT cases and the normal state; while 1 indicates that the regularity
in a gene set remains the same between the case and the most common gene expression
orderings in the normal controls. The measurement of GSR indices was carried out in
the R programming language. A functionome is defined as the complete set of biological
functions, and the definition for comprehensive biological functions is not yet available
at present; as such, we annotated and pronounced the human functionome by using the
10,271 GO gene set defined functions. As a result, the functionome utilized in this study is
defined as the assembly of 10,271 GSR indices for each sample.

4.2. Microarray Dataset Collection

The selection criteria for the microarray gene expression datasets from the GEO
database were as follows: (1) the BOT disease samples and normal control samples should
originate from ovarian tissue; (2) the datasets should provide sufficient information about
the diagnosis and clinical histopathological subtypes of BOTs; and (3) any gene expression
profile in a dataset was abandoned if it contained missing data.

4.3. Statistical Analysis

The Mann–Whitney U-test was used to test the differences among all BOTs, the major
two BOT subtype groups and the controls and then corrected by multiple hypotheses using
the false discovery rate (Benjamini–Hochberg procedure). The p-value was set at p < 0.05.

4.4. Classification and Prediction by Machine Learning

The function “kvsm” provided by the “kernlab” (version 0.9–27; Comprehensive R
Archive Network; https://cran.r-project.org/, accessed on 15 April 2021), an R package
for kernel-based machine-learning methods, was used to classify and predict the patterns
of the GSR indices. The accuracies of the classification and predictions by SVM were
measured by k-fold cross-validation. The results of ten repeated predictions were used to
assess the performance of binary classification. AUC was computed using the R package
“pROC” [121]. The performance of multiclass classification was assessed using the ten
repeated prediction accuracies for each of the BOT and the two BOT subtype groups (all
BOTs, SBOTs, and MBOTs).

4.5. Set Analysis

All possible logical relationship among the dysregulated gene sets of the categorized
BOT subtype groups (all BOTs, SBOTs, and MBOTs) are displayed using the R package
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programming (version 1.6.16; Comprehensive R Archive Network; https://cran.r-project.
org/, accessed on 15 April 2021).

4.6. Clinical Samples and Immunohistochemistry (IHC) Analysis

The clinical samples for the present study contained nine gathered BOT cases (BOTs,
n = 9, including three serous BOTs, five mucinous BOTs and one seromucinous BOT) and
nine controlled cases (normal, n = 9). All tissues from the cases of BOTs were collected from
women who underwent surgical treatment as their therapeutic guideline. The source of all
clinical normal tissues was taken from the patients after menopause or in perimenopausal
status and agreed to remove the uterus and remove bilateral ovaries and fallopian tubes
because of myoma or female genital organ prolapse after explaining and signing the
informed consent. The patients were diagnosed and treated, and their tissues were placed
in a bank at the Tri-Service General Hospital, Taipei, Taiwan. The Institutional Review
Board of the Tri-Service General Hospital, National Defense Medical Center approved the
study (2-107-05-043, approved on 26 October 2018; 2-108-05-091, approved on 20 May 2019).
Informed consent was acquired from all patients and control subjects. All clinical tissue
samples were confirmed under quantitative histopathology diagnosed by pathologists,
and the assessment of the results of the immunohistochemical staining with quantitative
scoring methods was scored by multiplying the intensity (I) by the percentage of positive
cells (P) for all biomarkers used in this study (formula is shown as IHC score (Q) = I × P;
maximum = 300) [122,123]. The detailed results of all scores for GALT and IL among
clinical samples are listed in Table S3.

5. Conclusions

Borderline ovarian tumor (BOT) is a peculiar subtype of epithelial tumors of the ovary
with intermediate features between benign ovarian neoplasms and invasive ovarian carci-
nomas. In this study, we properly made use of integrative gene ontology-based analysis to
investigate the most likely biomolecular and pathogenetic mechanisms among tumorigene-
sis of BOTs arising from normal ovarian tissues. With the assistance of machine learning,
we applied a genome-wide expression profile to evaluate the various global functionomes
and related pathogenic pathways of all BOTs, SBOTs, and MBOTs compared with controls
and first found that there were obvious deviations in terms of the GSR index between all
case samples and the control group, especially the MBOT subtype. Interestingly, we next
utilized this integrated method systematically to draw 41 significantly common GO terms
from the consolidated functionome that could be classified into four crucial categories con-
sisting of three immune and inflammatory response-related functions, nine cell membrane-
and transporter-related functions, 16 cell cycle- and signaling-related functions, nine cell
metabolism-related functions, and four GO terms not belonging to the first four categories.
Then, 19 genes corresponding to the above biological functions with high possibility were
cross-checked and sorted. Moreover, we also discovered that the dysfunctional galactose
catabolism pathway played a role during the formation of all BOTs, SBOTs, and MBOTs
with the top few rankings. Finally, verification by using immunohistochemistry demon-
strated elevated expression of IL6 and GALT in BOTs compared with normal ovarian tissue,
which supported that dysregulated immunological function and dysfunctional metabolic
pathways definitely participated in the tumorigenesis of BOTs. All results of this study are
statistically significant, mainly because of the high sensitivity, specificity, and accuracy of
the integrative polygenic analysis; and these contributions are of considerable importance
in the pathogenesis of BOTs (Figure 9). Conclusively, these findings could provide a clearer
direction for understanding the pathogenic mechanisms of BOTs and contribute more
potential targets for treatment, monitoring, and prevention of recurrence combined with
precision medicine in the future.

https://cran.r-project.org/
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Figure 9. The proposed pathogenetic mechanisms involved in the pathogenesis of BOTs.
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ADIPOQ Adiponectin
APP Amyloid precursor protein
ATP1B1 Sodium/potassium-transporting ATPase subunit beta-1
AUCs The areas under the curve
BOTs Borderline ovarian tumors
CCR2 C-C motif chemokine receptor 2
CTNNB1 Catenin Beta 1
DEGs Differentially expressed genes
DIRAC The differential rank conservation
EMT Epithelial-to-mesenchymal transition
EOCs Epithelial ovarian cancers
ERK Extracellular signal-regulated kinases
ERK1 Extracellular signal-regulated kinases 1
FIGO The International Federation of Obstetrics and Gynecology
GALT Galactose-1-phosphate uridylyltransferase
GAS6 Growth arrest specific 6
GESA Gene set enrichment analysis
GO Gene ontology
GSR Gene set regularity
IFNG Interferon gamma, IFNγ

IL1B Interleukin 1 beta
IL4 Interleukin 4
IL6 Interleukin 6
LMP Low malignant potential
MAPK Mitogen-activated protein kinase
MAPK3 Mitogen-activated protein kinase 3
MBOT Mucinous borderline ovarian tumors
MEKi MEK inhibitor
MSigDB Molecular signatures database
PDGFB Platelet derived growth factor subunit B
PPARGC1A Peroxisome proliferator-activated receptor gamma coactivator 1-alpha, PGC-1α
PSEN1 Presenilin 1, PS-1
SBOT Serous borderline ovarian tumors
SIRT1 Sirtuin 1
SVM Support vector machine
TFF3 Trefoil factor-3
TGFB1 Transforming growth factor beta 1
TWIST1 Twist-related protein 1
WHO World Health Organization
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