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Abstract

There is an urgent need of adjuvants for cutaneous vaccination. Here we report that micro-sterile 

inflammation induced at inoculation sites can augment immune responses to influenza vaccines in 

animal models. The inoculation site is briefly illuminated with a handheld, non-ablative fractional 

laser before the vaccine is intradermally administered, which creates an array of self-healing 

microthermal zones (MTZs) in the skin. The dying cells in the MTZs send “danger” signals that 

attract a large number of antigen-presenting cells, in particular, plasmacytoid dendritic cells 

(pDCs) around each MTZ forming a micro-sterile inflammation array. A pivotal role for pDCs in 

the adjuvanticity is ascertained by significant abrogation of the immunity after systemic depletion 

of pDCs, local application of a TNF-α inhibitor, or null mutation of IFN regulatory factor7 (IRF7). 

In contrast to conventional adjuvants that cause persistent inflammation and skin lesions, micro-

sterile inflammation enhances efficacy of influenza vaccines, yet with diminished adverse effects.

Introduction

We have made tremendous progress in the past decade in understanding sterile 

inflammation, which is induced by danger signals released from dying cells as a natural 

response to invaders or injuries in order to protect our body 1. The danger signals, known as 

damage-associated molecular patterns (DAMPs), include uric acid, dsDNA, RNA, and 

others, and they can attract and activate antigen presenting cells (APCs). The sterile 

inflammation is one of the primary mechanisms behind aluminum salt, also called alum, and 

MF59 adjuvants, two licensed vaccine adjuvants, and forms the basis for today’s adjuvant 

development 2–6. The ability of sterile inflammation to augment immune responses against 

vaccines raises an intriguing possibility that skin injury can serve as an “adjuvant” for 

cutaneous vaccination, provided that the injury is well under control. Non-ablative fractional 
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laser (NAFL) can controllably injure the dermis at the site of vaccine inoculation. The laser 

treatment generates an array of self-renewable micro-thermo zones (MTZs) in a desirable 

number, size, and depth without damaging skin’s outer protective layer, so that skin barrier 

function can be well preserved 7. Each MTZ is so small that it can heal within days by fast-

growing epithelial cells surrounding each MTZ, resulting in younger-looking skin 7–10. 

NAFL technology is a mature industry for dermatologic treatment applications 7. The micro-

skin injury sharply contrasts with the injury induced by intradermal (ID) injection of 

adjuvants that often evokes severe and persistent inflammation and overt skin lesions, 

making them not acceptable for routine vaccination 11. However, whether this fast healing 

micro-injury in the skin is sufficient to strengthen immune responses has not been yet 

explored.

Skin is prone to adjuvant-induced inflammation, which causes severe local reactogenicity 

including erythema, swelling, and ulceration that can persist for weeks11. Because of these 

unwanted adverse events, most current adjuvants such as alum, oil-in-water emulsion 

adjuvants, and several agonists of Toll-like receptor (TLR) are not suitable for skin 

vaccination 11. If we are to take advantages of cutaneous vaccination as a more efficient 

route over conventional intramuscular (IM) immunization, effective adjuvants that do not 

cause overt skin inflammation are an urgent need 12–15.

We present here that NAFL induces sterile inflammation at a micro-scale that causes no 

overt skin lesions while greatly augmenting immune responses to influenza vaccines ID 

administered. The danger signals released by dying cells in laser-generated MTZs preferably 

attract plasmacytoid dendritic cells (pDCs) that are subsequently activated by topically 

applied imiquimod (IMIQ) cream, an agonist for TLR-716, leading to synergistic 

augmentation of the immune response against influenza vaccine in adult and old mice as 

well as in pigs.

Results

NAFL/IMIQ adjuvant augments immune responses provoked by influenza vaccines

An over-the-counter, handheld, cosmetic NAFL generated a 6×9 array of 54 MTZs, in a 7 

mm×10 mm rectangular area of the skin as illustrated in Supplementary Fig. 1 a, b. Each 

MTZ was a thermal injury about the size and shape of a hair, approximately 200 µm in 

diameter and 300 µm in depth. The MTZs heal quickly, giving rise to new and younger 

skin17. The sterile inflammation induced by laser-damage cells was restricted around each 

MTZ, leaving a majority of tissues unaffected, warranting a quick resolution of the 

inflammation. To test whether this transient, micro-scale inflammation was sufficient to 

augment immunity stimulated by various vaccines, a clinical H1N1 influenza vaccine (A/

California/7/2009) was ID inoculated into the site of laser illumination. As shown in Fig. 1a, 

hemagglutinin inhibition (HAI) antibody titers were significantly higher in the presence as 

compared to the absence of laser treatment (p<0.05, ANOVA/Bonferroni). There was a 

slightly greater immune response evoked with ID than IM immunization, similar to previous 

investigations (Fig. 1a) 12, 13, 18. Comparable results were also attained with the protein 

model antigen ovalbumin (OVA), hepatitis B surface antigen vaccine (HBsAg) or 

recombinant influenza HA protein (rHA), raising specific antibody titers by 6- (p<0.001, t-
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test), 10- (p<0.05, t-test) and 3- (p<0.01, t-test) fold, respectively (Supplementary Fig. 1c, d, 

e). The adjuvant effect of NAFL was primarily ascribed to laser-mediated cell damage. 

Hence, when influenza vaccine was mixed with a small number of heat (65°C or 95°C)-

damaged skin cells and ID administered, the heat-damaged cells enhanced immune 

responses against the co-injected influenza vaccine at a level comparable to that of laser 

treatment (p<0.01 for 65°C and p<0.05 for 95°C, ANOVA/Bonferroni, Supplementary Fig 

2). Moreover, the laser illumination conferred similar adjuvant effects as that of topic IMIQ 

cream (Aldara®, 3M Pharmaceuticals) which is a FDA approved topical drug for treatment 

of some skin diseases (Fig. 1a) 19. Strikingly, when laser-treated skin was inoculated with 

the influenza vaccine, followed by topical application of IMIQ cream, the combination 

synergistically enhanced HAI titers by 7-fold or 4-fold over IM or ID vaccination, 

respectively (Fig. 1a, p<0.001, ANOVA/Bonferroni). This robust response was greater than 

that induced by IM immunization of a 10× higher amount of the vaccine, suggesting at least 

10× dose-sparing over the current IM influenza vaccination (Fig. 1a). Similar trends were 

attained in total serum IgG and IgA levels (Fig. 1b, c). The adjuvant effect was also 

confirmed in outbred Swiss Webster mice in which IgG and HAI titers were greatly higher 

with laser pre-illumination than without the illumination (Supplementary Fig. 3).

In humans, a majority of people are primed with influenza viral antigens either via 

vaccination or natural infections. To test if the NAFL or NAFL/IMIQ adjuvant could boost 

the immune response efficiently in antigen-primed subjects, mice were primed with H1N1 

influenza vaccine with or without NAFL or NAFL/IMIQ, followed by an immunization 

booster two weeks later. As expected, the adjuvant boosted the immune response in primed 

subjects as effectively as in naïve ones, regardless of whether the primary vaccination was 

given influenza vaccine alone or the vaccine in combination with NAFL or NAFL/IMIQ 

adjuvant (Supplementary Fig. 4).

Measurement of serum IgG1 and IgG2a antibody titers revealed Thl-skewed immune 

responses in the presence of NAFL/IMIQ adjuvant. The adjuvant elevated IgG2a production 

by 15-fold, and only a 5-fold increase was seen with IMIQ alone (Fig. 1d, p<0.001, 

ANOVA/Bonferroni). In contrast, NAFL alone stimulated mainly IgG1 production with 

barely detectable IgG2a, indicative of Th2 immune responses. Apparently, topical 

application of IMIQ cream on the NAFL-treated site is not simply a combination of Th2 and 

Th1 responses, rather converting it into a stronger Th1 immune response that is required for 

more effective protection against viral infection (Supplementary Fig. 5a, b).

The superior humoral immune response at a high HAI titer of more than 1:100 was sustained 

for at least 9 months without any sign of decline (Fig. 1e), a period of time longer than an 

influenza season which typically lasts for 6 months in the most part of the world. NAFL 

alone was also able to retain a HAI titer above the standard protective level (1:40) for more 

than 9 months (Fig. 1e). In comparison, topical IMIQ was not as strong as NAFL in 

sustaining HAI production, and the HAI titer started to decline after 3 months of 

immunization and reached similar levels as non-adjuvanted influenza vaccine 3 more 

months later (Fig. 1e). Alongside, the IgG level in NAFL/IMIQ group was also substantially 

higher than that of other groups throughout the entire experimental period (Supplementary 

Fig. 5c). Not only humoral, but cellular immune responses were also greatly improved by 
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NAFL/IMIQ adjuvant. The percentages of CD8+ and CD4+ T cells secreting IFN-γ in the 

periphery were vigorously increased only in the NAFL/IMIQ group among all groups tested 

after influenza viral stimulation (Fig. 1f, g, p<0.001 or 0.01 ANOVA/Dunnett’s).

Enhanced protection against viral infection

The immunized mice were challenged with a mouse-adapted A/California/7/2009 H1N1 

virus. The NAFL/IMIQ adjuvant greatly reduced lung viral titer to 2.2×101 PFU per 1 mg 

tissue (p<0.001, ANOVA/Bonferroni), which was 1,000 times lower than that attained in 

mice receiving the vaccine alone (Fig. 1h). Moreover, the body weight dropped by more 

than 17% in 8 days post-infection in all groups except for the NAFL/IMIQ group (Fig. 1i). 

The latter showed a decline in their body weight at the slowest pace, yet recovered at the 

fastest pace (Fig. 1i). All mice died within 8 days in non-immunized controls or mice 

immunized similarly without any adjuvant (Fig. 1j). Four out of 6 mice died in IMIQ group 

and 2 out of 8 died in the NAFL group, whereas all mice survived in the NAFL/IMIQ group 

(Fig. 1j). Similar results were obtained in Swiss Webster mice showing substantial reduction 

of influenza viral replication in the lung of animals immunized with H1N1 influenza vaccine 

in the presence of the NAFL/IMIQ adjuvant as compared to the vaccine alone (Supplement 

Fig. 3c, p<0.001, ANOVA/Bonferroni).

Comparisons between NAFL/IMIQ and a squalene-based adjuvant

NAFL/IMIQ adjuvant was further compared with AddaVax® (Invivogen), which has a 

similar formulation and physical/chemical feature as MF59 4. IM inoculation of influenza 

vaccine emulsified with an equal amount of AddaVax provoked immune responses slightly 

inferior to those of the NAFL/IMIQ adjuvant, as measured by IgG and HAI titers (Fig. 2a, 

b), suggesting that the laser-based adjuvant is equal to or somewhat better than this specific 

squalene-based adjuvant in augmentation of influenza vaccines. However, NAFL/IMIQ 

caused no overt skin lesions at the inoculation site, although mild inflammation was noticed 

in one day and disappeared within 3 days with histological examination (Fig. 2c right 
panel). Similar to previous investigation17, small-diameter, thermally coagulated columns 

were generated in dermis by the laser, with intact stratum corneum and epidermis in place 

(Fig. 2c right panel). In contrast, IM administration of AddaVax mixed with influenza 

vaccine caused inflammation that persisted for more than one week (Fig. 2c left panel). 
Moreover, NAFL/IMIQ induced a much lower level of pro-inflammatory cytokine responses 

systemically as manifested by a relatively lower level of circulating IL-6, an important 

mediator of fever (Fig. 2d). IL-6 concentration peaked after 8 hours of immunization and 

reached as high as 134 pg ml−1 in mice receiving the squalene-adjuvanted influenza vaccine, 

which was 4 times higher than the 32 pg ml−1 IL-6 seen in mice immunized by the same 

amount of vaccines with the NAFL/IMIQ adjuvant (Fig. 2d, p<0.01 t-test). Besides, the 

squalene-adjuvanted vaccine elevated the body temperature by 1°C that lasted for 9 hours, 

when compared with mice receiving the vaccine alone (Fig 2e). In sharp contrast, no fever 

was measurable over the influenza vaccine alone in the NAFL/IMIQ group (Fig 2e). The 

safety profile requires further confirmation with licensed MF59 in place of commercial 

AddaVax in future study.
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Safety and effectiveness in swine

Safety and potency of the adjuvant were further evaluated in swine because porcine skin 

resembles human skin in term of anatomy, skin reactogenicity, immune responses, and 

pharmacokinetics 20. Since the skin of pigs is thicker than mice, we used a higher power 

cosmetic NAFL, named Fraxel SR-1500 (Solta Medical) for pig studies. After one pass of 

the laser treatment, the pigs were ID vaccinated with 3 µg HA of 2009 H1N1 vaccine, 

equivalent to a full dose of ID influenza vaccine in humans on the basis of body weight. The 

immunization enhanced HAI titers by ~2-fold compared to ID vaccine alone (Fig. 3a). The 

laser treatment also increased the production of HBsAg-specific antibodies by more than 

5~7-fold in both primary and booster immunizations (Supplementary Fig. 6). Topical IMIQ 

further enhanced the immunogenicity in pigs, similarly as described in mice (Fig. 3a), but 

remarkably, concurred with diminished local skin reactogenicity. As shown in Fig. 3b, 1st 

column, ID influenza vaccine caused wheals with a diameter of 0.5–1 cm right after 

immunization, concomitant with significant erythema and swelling at the injection site, 

which peaked on day 3 and resolved by day 7 post-immunization, similar to what has been 

described in humans 21,22. In comparison with influenza vaccine alone, similar or less skin 

reaction was observed at the injection site immediately (day 0, < 30 minutes) or days 1 and 3 

after immunization at laser-treated site (Fig. 3b 2nd column). Diminished skin irritation was 

further appreciated on days 1 and 3 by combination of NAFL and IMIQ (Fig. 3b 4th 

column), in sharp contrast to the peaking skin irritation seen in the ID group during the 

same period of time (Fig. 3b 1th column). The milder skin reactogenicity was measured by 

50% reduction in the mean area of erythema at the inoculation site in the NAFL/IMIQ group 

as compared to the influenza vaccine alone group (Fig. 3c, 11 vs. 23 mm2, p<0.001, 

ANOVA/Bonferroni). In parallel, histology examination of the inoculation sites confirmed 

drastic diminishment of infiltrated inflammatory cells in pigs receiving influenza vaccine 

adjuvanted by NAFL/IMIQ as compared to the pigs receiving influenza vaccine alone (Fig. 

3d).

The mechanism of action of NAFL/IMIQ adjuvant

To determine the underlying mechanism, we tracked MHC II+ cells at the inoculation site 

with or without laser treatment in mice expressing MHC II infused with green fluorescent 

protein (GFP) 23. The MHC II+ cells in the skin are mainly DCs, Langerhans cells, and 

macrophages, broadly defined as APCs 24, 25. An increase in the motility of APCs was 

noticed soon after laser treatment and these cells were gradually recruited to the vicinity of 

MTZs. Their accumulation around individual MTZs became apparent as early as 3 hours 

and peaked 24 hours after laser illumination (Fig. 4a, upper panel). As expected, the MTZ 

induced recruitment of APCs was well separated spatially (Fig. 4a, left panel). To our 

surprise, IMIQ did not augment, but rather reduced NAFL-induced accumulation of APCs 

around the MTZs (Fig. 4a, lower panel), raising a possibility that IMIQ might promote 

migration of APCs. In an attempt to address this, whole mount histology of the inoculation 

site was performed to determine entrances of APCs into lymphatic vessels. It was found that 

the number of GFP+ cells in lymphatic vessels was significantly elevated by IMIQ and to a 

lesser extent, by NAFL, but it was the combination that led to the highest number of APCs 

entering into the lymphatic vessels among all the groups at all time points tested (Fig. 4b, c). 
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Consistent with the highest number of GFP+ cells in the lymphatic vessels was the lowest 

percentage of CD11c+ DCs in the skin, in parallel to a corresponding increase in the number 

of CD11c+ DCs in the draining lymph nodes (dLNs) in mice receiving the vaccine and 

NAFL/IMIQ adjuvant (Fig. 4d, e). Accelerated migration of APCs to dLNs may be crucial 

on two fronts: (1) augmentation of influenza vaccine-induced immunity and (2) reduction of 

local inflammation because a smaller number of mature APCs at the inoculation site can 

facilitate inflammation resolution, whereas a higher number of mature DCs in dLNs are 

pivotal for heightened immune responses.

We also found that CD11c+ cells only accumulated in ipsilateral, but not in contralateral, 

lymph nodes indicating that the adjuvant effects of NAFL/IMIQ impacts locally rather than 

systemically (Supplementary Fig. 7). Therefore we focused on local events to investigate 

synergistic adjuvant effects of NAFL and IMIQ. The active recruitment of APCs around 

each MTZ promoted us to study local chemokine production stimulated by NAFL treatment. 

Six out of nine chemokines examined were elevated 6 hours after NAFL treatment, peaked 

in 24 hours, and dwindled down thereafter (Fig. 5a), in agreement with resolving 

inflammation at the inoculation site in 2 days (Fig. 2c). Among these chemokines, CCL2, 

CCL20, CXCL9, CXCL10, CXCL12 and Chemerin are known to preferably attract 

pDCs 26–29. pDCs, characterized as CD11c+CD11b−B220+Ly6C+PDCA-1+ cells 

(Supplementary Fig. 8a), accumulated at the inoculation site at a level 4-time higher after 24 

hours of NAFL treatment when compared to non-laser-treated skin (Fig. 5b). The pDC 

recruitment was further enhanced by topic IMIQ leading to an 8-fold increase in the 

percentage of pDCs at the inoculation site (Fig. 5b and Supplementary Fig. 8b). The pDCs 

mainly accumulated in the vicinity of MTZs as evidenced by strong immunohistological 

staining around each MTZ with an antibody against a pDC-specific marker, Siglec H (Fig. 

5c, upper). NAFL/IMIQ might also attract other immune cells, but pDCs were preferable 

targets of IMIQ because of a high level of TLR7 expression on the cells 30. Preferable 

mobilization of pDCs explained a relatively high level of IFN-α/β, TNF-α, and IL-6 at the 

inoculation site 6 hours after the immunization in the presence of NAFL/IMIQ adjuvant 

(Fig. 5d), since pDCs, but not conventional DCs, produced high levels of these 

proinflammatory cytokines upon activation by IMIQ (Supplementary Fig. 9). In contrast, 

IMIQ alone failed to vigorously increase the expression of these cytokines under similar 

conditions, in agreement with previous investigation27.

Among these cytokines induced at the inoculation site, TNF-α has been demonstrated to 

promote migration of dermal DCs into dLNs 31. We thus ID injected a TNF-α inhibitor, 

soluble TNF-Receptor Type I (TNF RI) into the inoculation site following the 

immunization. The TNF-α inhibitor hampered adjuvant effects of NAFL/IMIQ, in 

particular, on IgG2a production (p<0.001, t-test), highlighting a critical role for TNF-α in 

NAFL/IMIQ- mediated adjuvanticity (Supplementary Fig. 10a). Moreover, Th1-biased 

adjuvanticity of NAFL/IMIQ was significantly impaired in mice deficient in interferon 

regulatory factor 7 (IRF7) (Supplementary Fig. 10b, p<0.05 t-test), suggesting contribution 

of IFN-α/β, two major activators of immature DCs, to the immune-enhancement of NAFL/

IMIQ as well 32. This Th1-predominant cytokine milieu at the inoculation site was pivotal 

for increasing percentages (Supplementary Fig. 11, 12a and 12b) and numbers (Fig. 5e, f) of 
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CD40+ and CD86+ mature CD11c+ DCs in dLNs in the presence of NAFL/IMIQ. The 

increase in mature DCs was also corroborated with a relatively high mean fluorescent 

intensity (MFI) of CD40 and CD86 staining on the cells (Supplementary Fig. 12a, b). 

Notably, the percentages of CD40+ and CD86+ DCs arose significantly in the IMIQ group at 

6 or 18 hours or in the NAFL group at 6 hours after immunization, but the total number of 

mature DCs in dLNs were much more prominent in the NAFL/IMIQ group, which 

translated into a strong acquired immunity in the animals (Fig. 5e, f and Supplementary Fig. 

12). Strikingly, not all proinflammatory cytokines were synergistically elevated by NAFL/

IMIQ, and rather, IL-1 family (IL-1α/β, IL-18, IL-33) and thymic stromal lymphopoietin 

(TSLP) were diminished considerably as compared to mice immunized with the vaccine 

alone, or along with either topical IMIQ or NAFL (Fig. 5d). The selective decrease in these 

mediators may be another reason behind a limited local reaction in the presence of NAFL/

IMIQ, because both IL-1 family and TSLP are mediators of local inflammation and 

dermatitis as demonstrated by a number of studies 33, 34.

To directly address a pivotal role of pDCs in the synergistic adjuvant effect of NAFL and 

IMIQ, we depleted pDCs in Balb/c mice by injection of anti-mPDCA-1 antibody prior to 

immunization35. pDC depletion did not affect IgG1 levels, but profoundly impaired IgG2a 

production in the NAFL/IMIQ group (Fig. 5g upper panel, p<0.01 t-test). In addition to 

diminished production of IgG2a, pDC depletion compromised cell-mediated immune 

responses as well, reflected by significant decreases in the percentages of CD4+ and CD8+ T 

cells secreting IFN-γ (Fig. 5g middle and lower panels, p<0.01 t-test). Interestingly, the 

impairment was not evidenced in the IMIQ group indicating that the effect of topical IMIQ 

relied primarily on dermal resident APCs, because pDCs were almost undetectable in 

normal, non-laser-treated skin 36. In contrast to IMIQ, pDC depletion resulted in a 

significant decrease in the percentages of both CD4+ (p<0.01 t-test) and CD8+ T (p<0.05 t-

test) cells producing IFN-γ in mice immunized with NAFL-adjuvanted influenza vaccine 

(Fig. 5g). The results argue strongly that NAFL-mediated recruitment of pDCs into the 

inoculation site is key for the observed adjuvant effect of NAFL/IMIQ.

Increasing influenza vaccine-induced immune responses in aged mice

Given the strong cell-mediated immune response evoked by the new adjuvant, we extended 

our investigation to old mice, because elderly people respond poorly to current seasonal 

influenza vaccines. Unfortunately, the elderly suffer from a high level of morbidity and 

mortality after influenza viral infection and need the vaccine most. As shown in Fig. 6a and 

Supplementary Fig. 13, old BALB/c mice elicited a rather weak immune response compared 

with that of adult mice after IM immunization with H1N1 influenza vaccine alone. The 

weak immune response of the old mice was not improved by ID vaccination regardless of 

whether NAFL or IMIQ was employed. In contrast, the combination of NAFL/IMIQ 

adjuvant elicited vigorous humoral (p<0.001, ANOVA/Dunnett’s) and cellular (p<0.01, 

ANOVA/Dunnett’s) immune responses in these old animals (Fig. 6a–c and Supplementary 

Fig. 13a). The levels of humoral and cell- mediated responses were arguably greater than 

those provoked by AddaVax adjuvanted influenza vaccine or in adult mice IM immunized 

with the same amount of the influenza vaccine (Fig. 6a–c, p<0.01, ANOVA/Dunnett’s). 

Similar to what occurred in adult mice, the NAFL/IMIQ adjuvant increased pDCs in number 
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at the inoculation site and provoked primarily Th1 immune response in old mice as 

suggested by a higher ratio of IgG2a to IgG1 and greater percentages of IFN-γ-producing 

CD8+ and CD4+ T cells in the presence vs. the absence of NAFL/IMIQ adjuvant (Fig. 6b, c, 

Supplementary Fig. 13b, c). As a result, ~80% (10/13) of the old mice were protected from 

lethal H1N1 viral infection after ID immunization of the influenza vaccine with the NAFL/

IMIQ adjuvant, which was superior to the 17% (1/6) protection only in the mice IM 

immunized with squalene-adjuvanted influenza vaccine (Fig. 6d, e). There was no protection 

against the viral challenge if the animals were ID immunized with influenza vaccine alone 

or along with either adjuvant (Fig. 6d, e).

Discussion

Many vaccine adjuvants are being developed in preclinical studies or in various stages of 

clinical trials and the potency of these conventional adjuvants often comes at the expense of 

safety 37. The current investigation explores a novel adjuvant that limits adverse effects 

locally and systemically, while augmenting efficacy of influenza vaccines in both small and 

large animal models and in young and old mice. The hand-held, NAFL device we used is 

self-applicable and FDA approved for facial wrinkle removal at home, which requires a 

higher safety standard than laser illumination of a tiny spot on the upper arm used for 

vaccination in a medical office. The laser parameters in our swine study are well below 

those normally used in a clinical practice for skin resurfacing, and can be readily 

incorporated into the existing design of the small device. The 1410 nm light works in a 

stamp/scanning fashion and is equally effective regardless of skin color, in contrast to the 

532 nm laser adjuvant described previously 38,39. Its microprobe is tightly sealed by a thin 

plastic that prevents any skin materials from contaminating the probe, and the sealer is 

readily cleaned aseptically to prevent person-to-person contamination. The laser does not 

damage the stratum corneum, the skin’s most outlayer of epidermis, so that integrity of the 

skin barrier is preserved 17. Another advantage of this adjuvant is its standalone feature, like 

a topical adjuvant, which means there is no requirement for pre-mixture or re-formulation to 

use it with existing or new vaccines. The adjuvant can also be readily incorporated into 

portable and/or self-vaccination procedures with various needle-free, painless, microneedle-

array patches.

IMIQ cream (Aldara®) was initially approved by FDA more than 15 years ago as a topical 

treatment for genital/perianal warts at age 12 or older. The drug has also been approved for 

treatment of superficial basal cell carcinoma and actinic keratosis as of 2004. In those 

treatments, the cream is applied three times a week for up to 12 weeks or daily for several 

weeks, and in many cases a relatively large area of the skin is affected 19. In contrast, for use 

as an adjuvant along with NAFL, IMIQ is topically applied only once to a skin area of 

smaller than 1 cm2, so the systemic absorption or local reaction is extremely limited 40. In 

this preclinical study, we showed that a combination of NAFL and topical IMIQ apparently 

alleviates, rather than worsens, skin irritation provoked by influenza vaccine in pigs. NAFL/

IMIQ not only blunts local inflammation but also raises little circulating IL-6 or body fever 

over influenza vaccines. In contrast, a fever was clearly presented along with a significantly 

higher level of IL-6 in mice receiving IM vaccination of squalene-adjuvanted vaccines. 
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Whether or not this safer profile demonstrated in mice can translate into humans remains to 

be investigated.

The mechanisms underlying the ability of NAFL/IMIQ adjuvant to augment influenza 

vaccine while reducing adverse events are likely to be multifaceted. As depicted in 

Supplementary Fig. 14, laser-damaged cells in each MTZ release danger signals that 

stimulate the production of a number of chemokines and preferably attract pDCs from 

circulation leading to their increased presence around each MTZ. These pDCs are then 

activated by IMIQ penetrating from the skin surface because the cells express a high level of 

TLR7. Upon activation pDCs secrete TNF-α, IFN-α/β and the like, and these cytokines 

direct maturation and differentiation of APCs in situ, and accelerate trafficking of these 

mature APCs into dLNs via lymphatic vessels31, 32. Therefore, NAFL-induced recruitment 

and IMIQ-mediated activation are likely to be the primary mechanisms for the observed 

synergy of these two adjuvants, resulting in a high level of TNF-α secretion at the 

inoculation site. An essential part of TNF-α in maturation and migration of dermal DCs into 

dLNs was clearly demonstrated by the ability of TNF-α inhibitor to impede immune 

enhancement of NAFL/IMIQ. Moreover, Cumberbatch et al. showed that ID injection of 

TNF-α evoked a concentration and time- dependent maturation and trafficking of dermal 

DCs into dLNs 41. On the contrary, mice deficient in TNF-α receptor had impaired DC 

maturation after bacterial infection 42. Besides TNF-α, IFN-α/β produced by pDCs also 

contributed to a high level of Th1 immunity evoked by NAFL/IMIQ. In IRF7 deficient mice 

whose pDCs could not produce IFN-α/β efficiently 43, IgG2a production was diminished 

significantly, in agreement with a recent investigation44. Moreover, depletion of pDCs 

almost completely blunted the adjuvant effect of NAFL/IMIQ on IgG2a production and on 

cell-mediated immune responses.

Another major finding of this investigation is that micro sterile inflammation induced by 

NAFL occurs only briefly, peaking at 24 hours and subsiding in 48 hours, but this short 

period of local sterile inflammation appears enough to “educate” DCs in bridging an innate 

to adaptive immune response. These findings are consistent with previous investigations 

demonstrating that prolonged inflammation induced by alum was dispensable for its 

adjuvanticity 45. Surgical removal of the inoculation site containing alum 2 hours after 

vaccination did not affect the adjvuanticity of alum45, an argument strongly supported by the 

current investigation. Besides a shortened period of local inflammation, infiltration of pDCs 

may also contribute to the reduced skin irradiation, as Gregorio et al reported that pDCs 

could rapidly infiltrate into skin in response to skin injury, and improve the skin recovery 36. 

Finally, a combination of laser and IMIQ selectively reduces the production of the cytokines 

of the IL-1 family and TSLP that are well known to contribute to the local skin 

irritation 33,34, which may be another mechanism for reducing local and systemic adverse 

events of this topical adjuvant.

Inflammatory effects of an ideal adjuvant should be localized and transient, which is 

particularly important for cutaneous vaccination46. The finding that a strong immune 

response can be provoked by transient micro-sterile inflammation at the inoculation site is of 

highly clinical significance for cutaneous vaccination. A growing body of evidence has 

shown that cutaneous vaccination is more effective than IM vaccination, as the skin is 

Ji et al. Page 9

Nat Commun. Author manuscript; available in PMC 2015 April 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



enriched in APCs and in networks of lymphatic vessels, in contrast to the muscle where few 

APCs reside. However, severe skin lesions caused by various adjuvants, hamper a broad 

application of this route of immunization, apart from inconvenience. Therefore, this micro-

sterile inflammation based adjuvant merits clinical investigations for dose-sparing or 

augmenting the efficacy of influenza vaccines in certain high-risk groups like the elderly. 

Furthermore, this approach may raise fewer concerns of long-term safety, because only 

vaccine itself is injected into the body.

Methods

Animals

Inbred BALB/c mice and outbred Swiss Webster mice at 6~8 weeks of age were purchased 

from Charles River Laboratories. Mice of both genders were used randomly with no notable 

difference. Eighteen-month-old BALB/c mice (old mice) were purchased from National 

Institute of Aging (NIA). Irf7−/− mice on C57BL/6J background were a kindly gift of Dr T. 

Taniguchi, Tokyo University 43 and C57BL/6J control mice were obtained from Jackson 

Laboratories. MHC II-EGFP mice expressing MHC class II molecule infused into enhanced 

green fluorescent protein (GFP) were a kindly gift of Drs. Boes and Ploegh, Harvard 

Medical School 23. Male Yorkshire pigs at 4 months of age were obtained from the 

Teaching and Research Resources at Tufts University. The animals were housed in the 

specific pathogen free animal facilities of Massachusetts General Hospital (MGH) in 

compliance with institutional, hospital, and NIH guidelines. All studies were reviewed and 

approved by the MGH Institutional Animal Care and Use Committee.

Laser adjuvant

A FDA-approved, home-use NAFL laser was used in mice (PaloVia® Skin Renewing Laser, 

Palomar Medical Technologies). The hand-held device emits a 1410-nm laser light and two 

passes at the medium power were used to generate overlapped MTZs at the inoculation site. 

Pigs were treated with one pass of Fraxel SR-1500 laser (Solta Medical). This clinical 

device emitted an array of laser with 17% coverage, 93 MTZs cm−2 per pass, and 35mJ per 

microbeam.

Influenza virus and vaccine

Pandemic A/California/7/2009 H1N1 influenza virus was obtained from American Type 

Culture Collection (ATCC, #FR-201). The virus was expanded in 10-day-old embryonated 

chicken eggs at 35°C for 3 days, harvested by ultracentrifugation, and frozen at −80°C until 

use. Its quantity was determined with a 50% tissue culture infectious dose (TCID50) in 

Madin-Darby canine kidney cells (MDCK, ATCC, #CCL-34). To challenge mice, the virus 

was adapted in mice for three cycles of intranasal instillation-lung homogenate preparation 

and infectivity of the resultant virus was assayed by a 50% lethal dose (LD50) in adult 

BALB/c mice following a standard protocol. Monovalent A/California/7/2009 H1N1 

influenza vaccine (Sanofi Pasteur, Inc.) was obtained from MGH pharmacy and BEI 

Resources, used at 0.06 µg HA per mouse or 3 µg HA per pig unless otherwise indicated.
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Immunizations and challenges

Mice to be immunized were hair removed on the lower dorsal skin and ID inoculated on the 

next day with influenza vaccine or illuminated with laser before the vaccine was ID 

administered. After ID immunization, the inoculation site was either left alone or topically 

applied with imiquimod cream (IMIQ) (Aldara®, 3M Pharmaceuticals). The inoculation site 

was then covered with a 3M Tegaderm film to protect it. For IM injection of adjuvanted 

influenza vaccine, AddaVax®, a squalene based nano-emulsion adjuvant (Invivogen) with a 

formulation similar to licensed MF59 adjuvant, was mixed with influenza vaccine at 1:1 

ratio and IM injected in a total volume of 20 µl. Body temperature was monitored hourly in 

some of the mice by a temperature control device (FHC). Blood cytokines were measured by 

enzyme- linked immunosorbent assay (ELISA) kit (eBiosciences). The immunized and 

control mice were challenged by intranasal instillation of 10× LD50 mouse-adapted 2009 

H1N1 viruses. Body weight and survival were monitored daily for 14 days unless otherwise 

specified. In some infection experiments, lungs were harvested 4 days after challenge to 

measure lung viral titers by TCID50 assays. To immunize pigs, the animals were 

anesthetized by IM injection of telazol (2.2 mg kg−1)/xylazine (2.2 mg kg−1)/atropine 

(0.04mg kg−1) and maintained under isoflurane (2–3%) inhalation during hair removal and 

immunization. Immunization procedure was similar as described in mice with 100 µl 

influenza vaccine (3 µg HA content) inoculated into the exterior hind leg skin either alone or 

in the presence of NAFL, IMIQ, or NAFL/IMIQ adjuvant. To quantify local skin reactions, 

the inoculation sites were photographed and the erythema area at each inoculation site was 

circled and analyzed by Image Pro Premier software (Media Cybernetics, Inc) for 3 times 

with which mean erythema area of each inoculation site was calculated.

HAI assay

HAI titers were assayed according to a published protocol (PMID: 19274084). Serum 

samples were incubated with receptor-destroying enzyme (RDE) (Denka Seiken) at 37°C 

overnight followed by heat inactivation at 56°C for 30 minutes. The resultant serum samples 

were incubated with 4 hemagglutination (HA) units of influenza virus at 37°C for 1 hour 

after serial dilutions, and then with 0.5% chicken red blood cells (Charles River 

Laboratories) at room temperature for 30 minutes. The HAI titer was defined as the 

reciprocal of the highest dilution that inhibited hemagglutination.

ELISA

Vaccine-specific IgG, IgG1, IgG2a and IgA antibody titers were measured by ELISA. In 

brief, 1 µg ml−1 recombinant HA was coated onto ELISA plates in NaHCO3 buffer, pH9.6. 

After incubation with serially diluted serum samples, HRP-conjugated goat anti-mouse IgG 

(NA931V, GE healthcare, dilution 1:6000), IgG1 (A90-105P, Bethyl, dilution 1:10000), 

IgG2a (61-0220, Life Technologies, dilution 1:2000) or IgA (A90-103P, Bethyl, 1:10000) 

antibody was added to measure specific subtypes. For C57BL/6 mice, anti-mouse IgG2c 

(1079-05, Southern Biotech, 1:5000) antibody was used in place of anti-IgG2a antibody.
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Cell-mediated immune responses

One week after immunization, blood samples were collected from immunized and control 

mice in a heparinized tube by tail vein bleeding. Peripheral blood mononuclear cells 

(PBMCs) were isolated after red blood cell lysis. PBMCs (106 cells per ml) were incubated 

with influenza vaccine (1 µg ml−1 HA content) and anti-CD28 (clone 37.51, BD 

Pharmingen, 4 µg ml−1) antibody overnight. Golgi-Plug (BD Pharmingen) was added to 

prevent cytokine secretion in the final 5 hours of the incubation. The stimulated cells were 

stained with fluorescence-conjugated antibodies against CD4 (clone RM4–5, Biolegend, 

dilution 1:100), CD8 (clone 53-6.7, Biolegend, dilution 1:200), and IFNγ (clone XMG1.2, 

Biolegend, 1:100), followed by flow cytometric analysis as previously reported 47.

Histological examination

Mice were ID immunized with influenza vaccine in the presence of NAFL/IMIQ adjuvant or 

IM with the vaccine mixed with AddaVax. The tissues at the inoculation site were dissected 

at indicated days, fixed and stained by a standard H&E procedure. Similar histological 

examination was also carried out in pigs after 3 days of immunization. The slides were 

scanned and analyzed by NanoZoomer (Hamamatsu).

Intravital confocal imaging

The ear of MHC II-EGFP transgenic mice was treated by NAFL or NAFL/IMIQ. GFP+ cells 

in the epidermis and dermis were imaged by intravital two-photon confocal microscopy 

(Olympus FV-1000). Three-D reconstruction was used to visualize accumulation of GFP+ 

cells around individual MTZs by Image J software.

Whole mount immune histology

The ear of MHC II-EGFP transgenic mice was inoculated with influenza vaccine in the 

presence of the indicated adjuvants. The outer ear flaps were prepared at indicated times 

post-immunization, fixed by 4% formaldehyde at 4 °C overnight, and blocked by 2% 

FBS/PBS for 2 hours at room temperature. The fixed samples were reacted with rat anti- 

LYVE-1 (clone 223322, R&D systems, 8 µg ml−1) antibody to identify lymphatic vessels 

and rabbit anti-Collagen IV (ab6586, Abcam, 10µg ml−1) antibody at 4°C overnight to label 

both lymphatic and blood vessels, after which the samples were stained with Cy3-

conjugated anti-rat (A10522, Life Technology, dilution 1:100) and NL637-conjugated anti-

rabbit (NL005, R&D systems, dilution 1:100) antibodies at 4°C overnight. The stained 

samples were mounted and imaged by two-photon confocal microscopy (Olympus 

FV-1000).

Immunohistological analysis of pDCs

The lower dorsal skin of mice was exposed to NAFL/IMIQ adjuvant. Twenty four hours 

later, full thickness of the skin at the site of laser illumination was excised, and frozen tissue 

sections were prepared and labeled by anti-mouse Siglec H (clone 440c, eBioscience, 10µg 

ml−1) or isotype control antibody followed by staining with DL594-conjugated goat anti-rat 

IgG (SA5–10081, Thermo Pierce, dilution 1:100) antibody. The slides were mounted with a 
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mount medium containing a nuclear staining fluorescence dye of DAPI and imaged by 

confocal microscopy.

Analysis of dermal DCs or pDCs by flow cytometry

Skin at the inoculation site was excised, minced, and digested with Dispase II (Life 

Technologies) and Collagenase D (Roche) for 2 hour at 37°C. The digested skin tissues were 

passed through a 100 µm cell strainer to prepare single cell suspensions. The resultant cells 

were treated with anti-CD16/CD32 antibody (clone 93, Biolegend, dilution 1:50) for 20 

minutes, followed by staining with the following fluorescence-conjugated antibodies for 30 

minutes on ice: APC-anti–PDCA-1(clone 927, dilution 1:300), PE-anti- CD11c (clone 

N418, eBiocience, dilution 1:100), BV421-anti-CD11b (clone M1/70, dilution 1:100), 

FITC-anti-MHCII (clone M5/114.15.2, dilution 1:200), FITC- anti-Ly6C (clone HK1.4, 

dilution 1:200), and APC/Cy7-anti-B220 (clone RA3–6B2, dilution 1:100). All antibodies 

were purchased from Biolegend unless otherwise stated. The stained cells were acquired on 

a FACSAria (BD) and analyzed using FlowJo software (Tree Star).

In vivo depletion of pDCs

Balb/c mice were intraperitoneally (IP) injected with two doses of anti-mPDCA-1 antibody 

(clone JF05-1C2.4.1, Miltenyi Biotec) at 400 µg per dose at 24 and 0 hours, respectively, 

before immunization35. Depletion efficiency was confirmed by flow cytometry of pDCs in 

the blood samples. Effects of pDC depletion on cellular immune responses were evaluated 

one week later, and humoral immune responses were analyzed two weeks after the 

immunization.

Quantification of DCs in dLNs

dLNs were collected and single-cell suspensions were prepared, counted, stained with FITC-

anti-CD11c (clone N418, eBiociences, dilution 1:100), APC-anti-CD40 (clone 3/23, 

Biolegend, dilution 1:100) and PerCp-Cy5.5-anti-CD86 (clone GL-1, Biolegend, dilution 

1:100) antibodies, followed by flow cytometry. Total numbers of CD11c+cells, 

CD40+CD11c+ cells or CD86+ CD11c+ cells per lymph node were calculated in the basis of 

the total number of cells and percentages of each cell subset in the lymph node.

Quantitative real-time PCR

To analyze chemokine and inflammatory cytokine expression at the inoculation site, the full 

thickness of the skin area about 7×10 mm2 was excised, and total RNA was extracted, 

reverse-transcribed, and amplified by qPCR using a SYBR Green PCR kit (Roche). GAPDH 

was used as an internal control. All genes and their primers were listed in Supplementary 

Table 1.

Statistical analysis

Two tailed t-test (t-test) was used to analyze a difference between two groups, and one way 

ANOVA was used among multiple groups. ANOVA followed by Bonferroni correction 

(ANOVA/Bonferroni) was used to compare selected pairs, and ANOVA followed by 

Dunnett’s test (ANOVA/Dunnett’s) was for comparing all groups with a control group. p 
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value was calculated by PRISM software (GraphPad) and a difference was regarded 

significant if p value was less than 0.05. Sample sizes were designed based on preliminary 

experiments to give statistical power. No animals were excluded from the analysis. The 

investigators were not blinded to the experiments which were carried out under highly 

standardized and predefined conditions, except for photo analysis and H&E slide 

examination that were performed in an investigator-blind fashion.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. NAFL/IMIQ strengthens immunogenicity of ID influenza vaccine
BALB/c mice were ID immunized with 0.06 µg (HA content) H1N1 influenza vaccine alone 

(no adjuvant) or in the presence of NAFL, IMIQ, or NAFL/IMIQ adjuvant or IM immunized 

with a same dose (IM) or a 10× higher dose (0.6 µg) of the vaccine. Humoral immune 

responses were measured 4 weeks later including HAI titer (a), IgG (b), IgA (c) or IgG2a 

(d). HAI titers were further monitored at 4, 12, 24, and 36 weeks post immunization (e). A 

horizontal gray line indicates a standard protective titer of HAI. n=8, except for NAFL and 

NAFL/IMIQ groups (n=10). (f, g) Cell-mediated immune responses. PBMCs were isolated 

one week after immunization, stimulated with the vaccine and anti-CD28 antibody and 

analyzed for the percentages of IFNγ-secreting CD8+ (f) and CD4+ (g) T cells by flow 

cytometry. n=6, except for NAFL and NAFL/IMIQ groups (n=8). (h-j) Challenge studies. 

The immunized mice and non-immunized controls were intranasally challenged with 10× 

LD50 of A/California/7/2009 H1N1 virus 5 weeks post-immunization. The infected mice 

were euthanized 4 days post-infection to determine lung viral titers by TCID50 assays using 

MDCK cells (h). n=6. Body weight (i) and survival (j) were monitored daily for 14 days. 

Percentages of body weight dropped relative to a pre-infection level and percentages of 

survivals were compared between NAFL/IMIQ and NAFL or IMIQ groups by t-test or 
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Logrank test respectively. n=6, except for NAFL and NAFL/IMIQ groups (n=8). Data are 

presented as mean ± s.e.m. Statistical significance was analyzed by ANOVA/Bonferroni 

unless noted otherwise. *, p<0.05; **, p< 0.01 or ***, p<0.001, respectively. All 

experiments were repeated twice with similar results.
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Figure 2. Comparison of NAFL/IMIQ with a squalene-based adjuvant
BALB/c mice were ID immunized with influenza vaccine alone (no adjuvant) or in the 

presence of NAFL/IMIQ adjuvant, or IM immunized with a same dose of the vaccine mixed 

with squalene-based adjuvant (AddaVax). Serum IgG (a) and HAI (b) levels were measured 

in 2 weeks. n=8. (c) H&E staining of inoculation sites. Muscle and skin tissues of the 

inoculation sites were collected on days 1, 3, and 7, and shown are representative results of 4 

similar experiments performed. Arrows and black dash lines indicate part of a MTZ, scale 

bar, 100 µm. Note: stratum corneum (SC) and epidermis (Epi) are in place after laser 

treatment. Serum IL-6 was measured at 0, 1, 4, 8, 24, and 48 hours after immunization by 

ELISA (d) and body temperature was monitored hourly for 10 hours (e). All temperatures 

were normalized to non-immunized mice. n=4. Data are presented as mean ± s.e.m. 

Statistical significance was analyzed by ANOVA/Bonferroni for (a) and (b), or t-test for (d) 

and (e). *, p<0.05; **, p< 0.01 or ***, p<0.001, respectively. The experiments were 

repeated twice with similar results, unless noted otherwise.
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Figure 3. NAFL/IMIQ adjuvant in swine study
The exterior hind legs of yorkshire pigs were shaved, cleaned and ID vaccinated with 100 µl 

of the influenza vaccine (3 µg HA content) only (no adjuvant) or following one pass of laser 

illumination with Fraxel SR-1500 (NAFL), after which IMIQ was applied to the 

immunization site (NAFL/IMIQ). Alternatively, the immunization site receiving the vaccine 

alone was topically applied with IMIQ directly (IMIQ). HAI titers were measured in 2 

weeks (a). Each symbol represents data from individual animals, horizontal bars indicate 

mean, and a dish line marks the standard protective titer of HAI. n=4. (b) Photos were taken 

right (day 0) and 1, 3, and 7 days after immunization and representative results were shown 

with 4 pigs in each group. Scale bar, 5 mm. (c) The erythema areas of injection sites were 

analyzed by Image Pro Premier software 3 days after immunization. Each symbol represents 

a mean value of one injection site analyzed for 3 times. Horizontal bars indicate the mean. 

From left to right, n=11, 8, 8, and 12, respectively. (d) H&E slides showing infiltrated cells 

at the inoculation site, representative of 6 similar results in two separate experiments. Scale 

bar, 200 µm. Statistical significance was analyzed by ANOVA/Bonferroni. *, p<0.05; **, p< 

0.01 or ***, p<0.001, respectively.
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Figure 4. Accelerated migration of APCs into dLNs in the presence of NAFL/IMIQ
MHC II-EGFP transgenic mice were ID inoculated in one ear with influenza vaccine 

adjuvantated with NAFL or NAFL/IMIQ. Accumulation of MHC II+ APCs around 

individual MTZs was visualized by intravital confocal microscopy at varying times after 

immunization and the one captured at 8 hours post-immunization was shown in (a), left 

panel. A representative MTZ was tracked at 0, 3, 8, and 24 hours after immunization of 

influenza vaccine with NAFL treatment (upper panel) or NAFL/IMIQ (lower panel) in (a), 

representative of 6 similar results in two separate experiments. White dash circles highlight 

MTZs. Scale bar, 200 µm. (b) Monitoring APCs within lymphatic vesseles. Ears were 

prepared and stained by whole mount immunohistology 8 hours post-immunization. APCs 

(green), lymphatic vessels (blue and/or red), and blood vessels (red) were visualized by 

confocal microscopy, representative of 6 similar results in two separate experiments. Scale 

Bar, 100 µm. Average numbers of APCs within each lymphatic vessel were determined by 

manual counting GFP+ cells inside the lymphatic vessels in 20 randomly selected fields with 

a total of more than 40 lymphatic vessels counted (c) during which three-D scanning was 

performed to confirm the intra-vessel localization of each APC (b). (d, e) Proportions of 

CD11+ DCs in the skin (d) and a total number of DCs in each dLN (e). CD11c+ DCs in the 

dorsal skin and dLNs were quantified by flow cytometry at indicated times after immunizing 

with the influenza vaccine alone or in the presence of indicated adjuvants as Fig. 1. n=6, 

except for NAFL/IMIQ group (n=8). Data are presented as mean ± s.e.m. Statistical 
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significance was analyzed by ANOVA/Bonferroni. *, p<0.05; **, p< 0.01 or ***, p<0.001, 

respectively. All experiments were repeated twice with similar results.
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Figure 5. NAFL/IMIQ preferably recruits pDCs
(a) Chemokine production at the inoculation site. The levels of indicated chemokines were 

measured in BALB/c mice after varying times of laser treatment by quantitative real-time 

PCR (qPCR), normalized to GAPDH, and expressed as fold increases relatively to time 

zero. Each square represents the mean value of 4 mice and color indicates a fold increase 

from low (blue) to high (red). (b) Recruitment of pDCs into the inoculation site. pDCs were 

identified by B220+CD11b−PCDA-1+Ly6C+ cells by flow cytometry as described in 

Supplementary Fig. 6 and the percentages of pDCs in total skin cells were determined 6 and 

24 hours after vaccination with influenza vaccine alone or in the presence of indicated 

adjuvants. n=4. (c) The inoculation sites were also stained with siglec H-specific antibody 

(upper panel) or isotype control antibody (lower panel) 24 hours after NAFL/IMIQ 

treatment. Note: Siglec H staining (red) was concentrated around MTZ (white dish lines). 

Representative results of 6 similar samples in two separate experiments. Blue, DAPI 

staining of cell nuclei. Scale bar, 100 µm. Insets in (c) show a MTZ (white dish line), part of 

which is outlined by a white square and enlarged in C. (d) Cytokine expression at the 

inoculation sites 6 hours after immunization. The expression levels of indicated cytokines 

were measured by qPCR and expressed as fold increases relative to those in the mice 

receiving no adjuvant. Each square represents a mean of 4 mice. (e, f) Increases in the 

number numbers of mature DCs in dLNs in mice receiving influenza vaccine and NAFL/

IMIQ. dLNs were collected at indicated times after immunization and mature DCs were 

identified as CD86+CD11c+ cells (e) or CD40+CD11c+ cells (f). n=6, except for the NAFL/
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IMIQ group (n=8). (g) Effects of pDC depletion on NAFL/IMIQ-mediated adjuvanticity. 

Mice were IP injected with 400 µg anti-mPDCA-1 antibody or control antibodies (control) at 

24 and 0 hour before immunization. One week later cellular immune responses were 

measured (middle and lower panel), and humoral immune responses were measured two 

weeks later (upper panel). n=8. Data are presented as mean ± s.e.m. Statistical significance 

was analyzed by ANOVA/Bonferroni. *, p<0.05; **, p<0.01 or ***, p<0.001, respectively. 

All experiments were repeated twice with similar results.
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Figure 6. NAFL/IMIQ augments protective immunity in old mice
Old BALB/c mice were ID immunized with 0.6 µg (HA content) H1N1 influenza vaccine 

alone or in the presence of NAFL, IMIQ, or NAFL/IMIQ adjuvant. IM immunizations with 

a same dose of the vaccine mixed with AddaVax adjuvant in old mice or without AddaVax 

(AddaVax) in both old (IM) and adult (adult IM) mice were used as controls. (a) HAI 

antibody titers were measured 4 weeks later. Percentages of IFNγ-secreting CD4+ (b) and 

CD8+ (c) T cells were analyzed in vaccine-stimulated PBMCs one week after the 

immunizations. Mice were challenged in 5 weeks with 5× LD50 of mouse-adapted A/

California/7/2009 H1N1 viruses. Body weight (d) and survival (e) were monitored daily for 

16 days after challenge. n= 6, except for the NAFL/IMIQ group (n=13). Data are presented 

as mean ± s.e.m. Statistical significance was analyzed by ANOVA/Dunnett’s. *, p<0.05; **, 

p< 0.01 or ***, p< 0.001, respectively. All experiments were repeated twice with similar 

results.
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