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Chile, Santiago, Chile, 5Departamento de Bioquı́mica y Biologı́a Molecular, Facultad de Ciencias
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Autophagy is an intracellular degradation mechanism that allows recycling of

organelles and macromolecules. Autophagic function increases metabolite

availability modulating metabolic pathways, differentiation and cell survival.

The oral environment is composed of several structures, including mineralized

and soft tissues, which are formed by complex interactions between epithelial

and mesenchymal cells. With aging, increased prevalence of oral diseases such

as periodontitis, oral cancer and periapical lesions are observed in humans.

These aging-related oral diseases are chronic conditions that alter the

epithelial-mesenchymal homeostasis, disrupting the oral tissue architecture

affecting the quality of life of the patients. Given that autophagy levels are

reduced with age, the purpose of this review is to discuss the link between

autophagy and age-related oral diseases.
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Introduction

Macroautophagy (hereafter “autophagy”) is an intracellular degradation mechanism,

evolutionarily conserved from yeast to mammals and present in basal conditions in all cells of

the human body. During autophagy, intracellular organelles and macromolecules are

engulfed in double membrane vesicles known as “autophagosomes”, which then fuse with
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a lysosome, to allow the recycling of the engulfed material (1). Cells

undergo basal autophagy that recycles dysfunctional organelles and

proteins, thereby maintaining cell homeostasis (2, 3). However,

under stress conditions such as starvation or microorganism

infections, autophagy may be upregulated to produce energy by

catabolic degradation, or to remove the exogenous organisms (4, 5).

This is critical for oral tissues, given the continuous exposure to

bacteria and viruses in the oral cavity, the high metabolic

requirement that allows the turnover of the oral mucosa cells and

the constant physical stress that teeth are subjected to (6–8). Besides

these pro-survival effects, autophagy is also referred to as type II

programed cell death, meaning that when the pro-autophagic

stimulus is extremely harsh, autophagy targets the whole cell for

death (9). Therefore, the role of autophagy in oral diseases is very

complex, and in many cases, depends on its levels and on the

progression of the disease. An overview of autophagy is shown in

Figure 1.

Aging is an irreversible biological phenomenon, affected by

lifestyle, environment and genetics. The concept of aging goes

beyond the concept of “lifespan”; it represents the different

functional and anatomical changes in the tissues with time, which

ultimately decreases the capacity to respond to internal and external

stressors (10). As a homeostatic mechanism, autophagy is also

affected by aging (11). A decreased autophagic tone is observed with

age, while autophagy is enhanced during periodontitis, oral cancer,

chronic oral infections and dental senescence (12). Studies on the

physiological contribution of autophagy during aging of the oral

tissues are scarce, however it has been reported that the dentin-

secreting odontoblasts from old subjects (> 75 years old) show

impaired fusion between autophagosomes and lysosomes,

compared to those from young subjects (< 25 years old) (13).

Additionally, autophagy is reduced in aged odontoblasts, which

finally could affect cell homeostasis since odontoblasts are post-

mitotic cells, highly dependent on cell homeostasis to promote

tooth repair and healing (14). Similarly, autophagy is involved in

other oral physiological responses, including tooth development
Frontiers in Endocrinology 02
and bacteria-host interaction (15). In this regard, the following

question arises: Could the age-related decrease in autophagy explain

the initiation and/or progression of age-dependent oral diseases,

such as oral cancer, periodontitis and periapical lesions? Given that

autophagy may promote either a pro- or an anti-survival effect on

oral cells, and that autophagy has reciprocal control of over host

immunity and energy expenditure, the answer to this question may

not be as straightforward. Thus, the aim of this review is to discuss,

the role of autophagy in human oral diseases associated with aging.
Aging of the oral cavity

Aging is a natural process, in which the functional ability to

cope with external and internal stressors is progressively

reduced (10). Biological aging hallmarks include genome

alterations (i.e. cumulative DNA damage, decreased Histone

H3 methylation at Lys-9 and Lys-27, and increased Histone

H4 acetylation at Lys-16 and Lys-20); a stable cell cycle arrest,

also known as cellular senescence, caused by telomere attrition

and increased expression of the cyclin dependent kinase

inhibitor 2A CDKN2A/P16INK4A; and deregulated nutrient

sensing pathways, associated to higher expression of the

mechanistic Target of Rapamycin, MTOR, and augmented

reactive oxygen species, ROS, production (16). Indeed,

pharmacological inhibition of MTOR with rapamycin, which

is also a well-known autophagy activator, dramatically increases

lifespan in mice (17).

Oral structures may be divided into two: the teeth and the

oral mucosa. Resembling an iceberg, the roots of the teeth are

inserted in the alveolar bone below the gingival lining, leaving

the dental crown visible at the surface (18). The structure of the

teeth is formed by layers; the outermost layer is the enamel, a

very hard mineral-based cover of hydroxyapatite of 2.5 mm wide

which covers the dental crown (19). Enamel is produced by cells

called ameloblasts during tooth development, after which they
FIGURE 1

Autophagic pathway. The autophagosome is a double membrane organelle which sequesters intracellular material. Then, the autophagosome
fuses with the lysosome to form the autolysosome where hydrolytic enzymes promote the degradation of the autolysosome cargo. The
catabolism of the cargo generates simple new metabolites that turn back to the cytosol to be used in different metabolic pathways.
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undergo apoptosis (19). The outermost layer under the gingival

lining is called cementum. Cementum is composed of

hydroxyapatite, collagen and proteoglycans, resulting in a

much thinner and less hard structure (20). The cementum

links the dental root to the alveolar bone by attaching the

periodontal ligaments (21). The central layer of teeth is the

dentin, a bone-like structure formed by projections of

differentiated odontoblasts, which senses external stimuli like

caries (22). Odontoblast bodies are concentrated in the inner

layer of the teeth, the dental pulp, where nerves and blood supply

are found (23). Finally, the oral mucosa is a stratified epithelium

covering all the structures in the oral cavity, including the

tongue. The cells that compose the oral mucosa are the

keratinocytes, which produce cytokeratin and form an

epithelial barrier that separates the oral cavity from the

environment (24).

During oral aging, increased ROS levels provokes a

reduction of organic matrix in the enamel, yielding a crystal

structure that is even harder than younger enamel (25). This

decreases the susceptibility to develop caries, but weakens the

tooth in case of physical insults, leading to increased incidence of

fractures and cracks (26). Thus, dentin undergoes sclerosis,

because senescent odontoblasts deposit secondary dentin,

thereby reducing the sensing capacity and dental pulp space

(27). Histological analysis of aged odontoblasts shows that they

also switch from a columnar to cuboidal arrangement while

exhibiting accumulation of lipofuscin, a brown-yellow pigment

that indicates decreased lysosomal digestion of lipids, as well as

diminished mitochondrial oxidative function (28). Gingival

retraction occurs during aging, therefore the cementum that

normally lies below the gingival lining is progressively exposed

(29). This implies that despite reduced susceptibility to caries,

observed in aged enamel, increased incidence of caries at the root

occurs with age, as the cementum has no resistance against the

acid in the oral cavity (30). Compared to young individuals, aged

dental pulp has decreased stem cell density and increased

cellular senescence, caused by secondary dentin deposition and

dystrophic calcification that blocks pulpal arteries (31). Besides

gingival retraction, aged oral mucosa undergoes epithelial

atrophy and increased subepithelial deposit of collagen, while

reducing elastin content (32). This is observed histologically by

decreased epithelial ridges, a wave-like epithelial arrangement in

contact with the connective tissue where proliferative

keratinocytes are found, which explains the slower

regeneration of the oral mucosa in older individuals (33, 34).
Aging-related oral diseases

Oral cancer

Oral cavity cancer is a highly lethal disease, with a mortality

rate of 50% after 5 years and an average of diagnosis of 62 years,
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affecting more men than women (2:1) (35). The prevalence of

oral cancer is over 300,000 cases per year worldwide; it is the

sixth most common type of cancer (36). The combination of

tobacco and alcohol is by far the main risk factor, while other

risk factors are vitamin deficiencies, particularly those of the B

complex, and the human papilloma virus, HPV (37, 38). The

main type of oral cancer is oral squamous cell carcinoma, OSCC,

and other types of oral cancers account for less than 5% (39).

OSCC is commonly located at the mobile tongue, in 20% of the

cases, and the floor of the mouth in 30% of the cases (40). The

proportion of oral cancers that proceed from leukoplakias ranges

between 17% and 35%, highlighting the fact that dental

consultation is crucial for early cancer detection (41). Indeed,

precancerous lesions, defined by the WHO as “morphologically

altered tissue in which cancer occurs more often than in normal

autologous tissue”, also known as oral dysplasia, precede

initiation of OSCC (41, 42). The clinical presentation is highly

variable; ulcerated lesions are the most frequent, but in some

cases bleeding, pain, or numbness may also be present (43).
Periodontitis

Periodontitis is an extremely frequent disease, affecting

nearly 70% of the global population (44). Periodontitis is a

consequence of gingivitis, where a bacterial biofilm (dental

plaque) forms on the gingival tissue, leading to inflammation

and gingival retraction of the gum surrounding the tooth (45).

In periodontitis, chronic inflammation and gingival retraction

cause the migration of anaerobic gram negative bacteria

such as Porphyromonas gingivalis and Aggregatibacter

actinomycetemcomitans into the subgingival space (46). Since

this continuous inflammation produces periodontal damage and

alveolar bone resorption, diagnosis of periodontitis is commonly

established when the probe depth of the gingival sulcus is over

3 mm (47, 48), which in severe cases can reach 6 mm (49).

Prevalence of severe periodontitis is around 20% in adults

between 35 and 44 years, while it is around 40% in adults over

60 years (50). Risk factors for periodontitis include smoking,

diabetes mellitus, obesity, alcoholism, osteoporosis and stress

(51). Infection with P. gingivalis disrupts oral epithelium

arrangement and barrier function as proteolytic enzymes such

as gingipains and collagenases are released (52). Also, during

periodontal infections the antioxidant transcription factor NFE2

like bZIP transcription factor 2, NFE2L2/NRF-2, is severely

downregulated, showing that oxidative stress is a key feature

during periodontitis (53). Periodontal tissues show higher

activation of nicotinamide adenine dinucleotide phosphate

NADPH oxidase 4, NOX4, which catalyzes the production of

superoxide anion after exposure with lipopolysaccharide, LPS,

obtained from P. gingivalis (54). ROS like superoxide anion

exhaust antioxidant catalase reserves, increasing progression of

periodontal inflammation (55).
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Periapical lesions

Susceptibility to enamel fractures and secondary dentination

increases with age, leading to pulp exposure to external stressors

(26). Periapical lesions are necrosis of the dental pulp tissue

associated with an exacerbated inflammatory response due to

infections, also known as periapical granuloma (56). Periapical

granuloma is characterized by the persistence of microorganisms

in the radicular system of the dental pulp, most of them bacteria

like Acinetobacter johnsonii and Propionibacterium acnes, or

fungi such as Candida albicans (57, 58). Infiltration of

macrophages, lymphocytes and plasmatic cells is followed by

the production of a neutrophil-rich exudate, resulting in an acute

oral inflammation (59). Chronic inflammation is established

after the organism attempts to repair the damaged tissue by

production of new odontoblasts, mesenchymal cells and matrix

proteins, but being compromised by the presence of the

microorganisms, forming a granuloma tissue (60). As a

consequence of periapical granuloma, radicular cysts appear,

spaces filled with extracellular liquid derived from epithelial

fragments of the periodontal ligament after necrosis of the dental

pulp (61).
Mechanism of autophagy

Autophagy is a process in which cellular organelles called

autophagosomes are formed to sequester and degrade

intracellular material and macromolecules. Autophagy can be

divided into five stages: initiation, nucleation, elongation, closure

and fusion (62). The proteins that participate in the formation of

autophagosomes are known as autophagy-related proteins or

ATGs (63). In the initiation stage, signaling pathways like

starvation, pathogen invasion, oxidative stress, among others,

inhibit MTOR and/or activate AMP-dependent protein kinase,

AMPK (64, 65). While AMPK-dependent phosphorylation

activates unc-51 like autophagy activating kinase 1, ULK1/

ATG1, MTOR-dependent phosphorylation of ULK1 inhibits it

(66). Active ULK1 traffics to endomembrane domains, where it

phosphorylates the protein Beclin 1 (BECN1) at Ser-14 (67).

BECN1 allows the formation of the class III phosphatidylinositol

3-phosphate kinase, PtdIns3KC3, which phosphorylates the

phosphatidylinositol lipids, creating “nucleation” signals for

the recruitment of other ATGs (68, 69). Elongation of the

autophagosome requires the incorporation of the Microtubule

Associated Protein 1 Light Chain 3, MAP1LC3, (or just LC3)

into the autophagosome membrane (70), which is previously

cleaved by the ATG4 protease and conjugated with

phosphatidylethanolamine by the ATG5-ATG12-ATG16

complex to forming LC3-II (71, 72). Measurement of the LC3-

I to LC3-II conversion or quantification of LC3-II levels are

common strategies to study autophagy (73). Other ATGs

proteins such as ATG2 and ATG9 are involved in the
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trafficking of lipids allowing expansion of the autophagosome

(74). Finally, the autophagosome membrane encloses and fuses

with a lysosome that contains hydrolytic enzymes and low pH,

to allow cargo degradation (75). Therefore, autophagic flux,

known as the comp l e t e p roce s s beg inn ing w i th

autophagosome formation and degradation of the enclosed

material, is usually evaluated by the use of autophagosome-

lysosome fusion inhibitors (i.e. chloroquine or bafilomycin-A1)

or by the tracking of the adaptor protein SQSTM1/p62, which

targets poly-ubiquit inated proteins to LC3 on the

autophagosome, allowing their degradation (76). Indeed, lower

levels of SQSTM1/p62, reflect higher autophagic flux (77, 78).

The mechanism of autophagy is depicted in Figure 2.
Autophagy and age-related
oral diseases

Reduced autophagy is observed in almost all tissues during

aging, including oral cells. For instance, odontoblasts from 75

year-old individuals show accumulation of autophagic vesicles

compared to odontoblasts from 25 year-old individuals (13). In

contrast to younger odontoblasts, older odontoblasts display

higher co-localization of mitochondria and lysosomes,

accompanied by accumulation of lypofusin, suggesting

lysosomal dysfunction (13). Thus, autophagic vesicles

accumulation in older individuals is a result of decreased

autophagy flux. In fact, reestablishing autophagy with

rapamycin, attenuates aged-induced periodontal bone loss and

gingival inflammation in mice, suggesting that autophagy-based

pharmacological treatment could delay oral aging (79). In the

next sections, we will describe the contribution of autophagy in

age-related oral diseases.
Oral cancer

The role of autophagy in most cancers is complex and

controversial. Indeed, autophagy has been extensively

described as a “double-edged sword”, with different roles

during carcinogenesis and cancer progression (80). Despite

oral cancer has been proposed to follow this double-edged

sword behavior (81), some considerations need to be

addressed when oral and non-oral cancers are compared.

Previous work shows that both heterozygous deletion of

ATG5 and specific homozygous deletion of hepatic ATG7 in

mice, result in hepatomegaly and liver tumor formation,

respectively, in 6-month-old mice (82). These tumors

accumulate SQSTM1/p62 and ubiquitin aggregates, as well as

8-hydroxydeoxyguanosine, 8-OHdG, suggesting that reduced

autophagic degradation is associated with oxidative stress (82).

Similarly, spontaneous neoplastic formations in lung and liver
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have been found in mice with a heterologous deletion of BECN1

(83, 84), implying that impaired autophagy promotes

carcinogenesis in non-oral tissues. In oral carcinogenesis,

tumor xenografts in mice obtained by subcutaneous injection

of TSCC (human tongue squamous cell carcinoma) cells

downregulated for BECN1 display significant increase in

volume and weight, compared to control TSCC xenografts

(85). Additionally, in mice treated for 16 weeks with 4-

nitroquinoline N-oxide, 4-NQO, a cigarette-smoke compound

(86), progression of the oral mucosa from normal to dysplastic,

and then from dysplastic to cancerous positively correlates with

the increase in LC3 and SQSTM1/p62 levels, suggesting that the

malignant transformation of normal oral cells is associated with

decreased autophagy (87). Altogether these studies indicate that

both in oral and non-oral tissues, inhibition of autophagy is

involved in cancer initiation.

During progression of non-oral cancers, cancer cells increase

their autophagic tone to overcome the stress of crowding, hypoxia

and nutrient deprivation. For instance, it has been demonstrated

that deletion of scribble/scrib (the ortholog of human scribble
Frontiers in Endocrinology 05
planar cell polarity protein, SCRIB) in Drosophila melanogaster

(scrib KO flies), a well-known model of eye tumor that invades the

central nervous system, reduces lipid droplet content in the adipose

tissue and increases muscle atrophy measured by micro-

computerized tomography, as well as increases LC3 processing in

all the aforementioned tissues, suggesting that scrib-deficient tumor

cells obtain nutrients by wasting host organs (88). Autophagy is

required for this systemic organ wasting, as scrib KO flies that do

not express ATG13, part of the ULK1 kinase complex, show

reduced muscle atrophy and increased lipid droplet content,

compared to scrib KO flies (88). Similarly, treatment of

pancreatic adenocarcinoma xenografts in vitro with the inhibitor

of the autophagic flux chloroquine, a chemical compound that

blocks the fusion between lysosome and autophagosome, decreases

oxygen consumption and impairs tumor growth (89). Consistently,

treatment of MCF7 breast cancer xenografts with chloroquine

reduces tumor viability (90). Given that these cells display higher

levels of LC3-II and autophagosome vesicles under serum

deprivation, authors conclude that autophagy is induced to

support tumor growth in conditions of starvation (90).
FIGURE 2

The autophagic machinery. Different types of stressors can be sensed by MTOR and AMPK. MTOR inhibits the ULK1 complex kinase activity
phosphorylating its Ser757. Under stress conditions, AMPK activates ULK1 by phosphorylation on Ser317, Ser555, and Ser777, leading to the
activation of the class III phosphatidylinositol 3-phosphate kinase complex (PtdIns3KC3). Then, active PtdIns3KC3 increases the levels of
phosphatidylinositol 3-phosphate (PtdIns3P) in specific membrane micro domains, allowing the recruitment of proteins like the WD repeat
domain, phosphoinositide interacting (WIPI). Thus, elongation of the phagophore membrane is mediated by two ubiquitination-like systems:
the complex ATG12-ATG5-ATG16 and the conjugate LC3-phosphatidylethanolamine (PE), known as LC3-II. Additionally, both ATG2 and
ATG9 participate in the elongation of the autophagosome through the trafficking of lipids from the endoplasmic reticulum or the Golgi
apparatus. Once that the autophagosome membrane engulf intracellular components it encloses itself and then fuses with lysosomes to
form the autolysosome. Chloroquine (CQ) or bafilomycin A1 (BafA1) can be used to block autophagosome-to-lysosome fusion, allowing the
accumulation of autophagosomes.
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On the other hand, progression of oral cancer should be

interpreted with caution, or at least better dissected in a specific

time frame. Indeed, the treatment of Cal 27, a human OSCC cell

line, with up to 2 mM melatonin, increases LC3-I to LC3-II

conversion and reduces SQSTM1/p62 levels, while increasing

Caspase 3 cleavage, indicating that melatonin treatment induces

both autophagy and apoptosis (91). Additionally, Cal 27

subcutaneous tumor xenografts in mice reduce their weight

after treatment with 100 mg/kg of melatonin, suggesting that

induction of autophagy promotes apoptosis in OSCC cells (91).

In this model, autophagy is induced through the transcription

factor binding to IGHM enhancer 3, TFE3, which upregulates

the expression of autophagy-related genes, such as atg7 and

lamp1 (92). Similarly, treatment of Cal 27 cells with

sepantronium bromide, a chemical inhibitor of Survivin, not

only leads to apoptosis, but also triggers autophagy, as it has

been observed by the increase in LC3 lipidation and SQSTM1/

p62 degradation (93, 94). Autophagy is upregulated in this

model due to decreased MTOR activity, as reduced of MTOR

auto-activating phosphorylation at Ser-2448, as well as

diminished phosphorylation of ribosomal protein S6, RPS6, at

Ser-235 and Ser-236, a downstream target of MTOR (93). Most

importantly, tamoxifen-induced double knock-out mice for

transforming growth factor b1 receptor, TGFBR1, and

phosphatase and tensin homolog, PTEN, display a reduction

in tumor growth, as well as a weak immunohistochemical

staining for MTOR phosphorylation at Ser-2448 and

SQSTM1/p62, after exposure with 5 mg/kg sepantronium

bromide (93). All together, these findings indicate that

induction of autophagy during oral cancer progression

negatively affects tumor growth.

Other studies have shown that biopsies from patients with

poorly differentiated OSCC show higher immunohistochemical

staining against LC3, BECN1 and SQSTM1/p62, indicative of an

impaired autophagy (95–97). However, given that increased

levels of ATG5 and ATG9, and therefore higher autophagy,

correlates to unfavorable overall survival of cancer patients (98),

it is possible that oral cancer progression promoted by

autophagy inhibition occurs only during advanced stages of

OSCC, while in the early stages of oral cancer development

autophagy is upregulated to support tumor progression. Wound

healing and transwell assays in TSCC cells treated with

rapamycin show reduced cell migration and invasion when

compared to control cells, suggesting autophagy inhibition in

the later stages of cancer progression promotes cell migration

and invasion (99).

The change in the “autophagic behavior” of OSCC may be

explained by the cancer microenvironment, particularly by the

carcinoma-associated fibroblasts, CAFs (100). CAFs release

interleukin-33, IL33, and chemokine (C-C motif) ligand 7,

CCL7 inhibiting autophagy in OSCC cells and promoting

proliferation and epithelial-mesenchymal transition, EMT

(101, 102). CAFs also transfer their mitochondria to the OSCC
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cells and inhibit AMPK, explaining the metabolic switch of the

OSCC cells to lactate production, their resistance to metformin

treatment and the impairment of autophagy (103, 104). This is

interesting because, given that oral autophagic status is

decreased with age, OSCC cells may be more prone to acquire

malignant traits on their own than from interacting with the oral

mesenchymal cells. This also suggests that autophagy-based

treatments for oral cancer should consider the age of

the patients.
Periodontitis

During periodontitis, pathogens like P. gingivalis use the

autophagic machinery of oral keratinocytes, dendritic cells and

macrophages to survive and disseminate (105). After entering

myeloid dendritic cells, P. gingivalis is transported within early

endosomes, as indicated by co-localization between RAB5A

positive vesicles and P. gingivalis (106). Inside the eukaryotic

cell, several virulence factors of P. gingivalis increase LC3-II and

BECN1 levels, while reducing caspase activation and annexin V

staining, indicating that periodontal pathogens induce

autophagosome formation and suppress apoptosis (107). For

instance, the penta-acylated form of LPS from P. gingivalis not

only increases LC3 vesicle formation, but also quadruples

autophagosomes diameter, compared to the tetra-acylated form

(108). Given that, contrary to the tetra-acylated LPS from P.

gingivalis, the penta-acylated form is recognized by the toll-like

receptor 4, TLR4, interaction of pathogen associated molecular

patters, PAMP, with TLR molecules is crucial for P. gingivalis-

dependent autophagosome formation (108). In addition, this

penta-acylated LPS from P. gingivalis reduced melanoregulin,

MREG, levels, a protein required for lysosomal hydrolase

activity of Cathepsin D and b-N-Acetylglucosaminidase,

suggesting that P. gingivalis PAMPs diminish lysosomal activity

(108, 109). Similarly, the mannose content of the fimbria major

subunit Mfa1, mfa1, of P. gingivalis is recognized by the C-type

lectin receptor CD209/DC-SIGN inside the oral mucosa cells,

ultimately downregulating the expression of lysosomal associated

membrane protein 1, Lamp1 (106). P. gingivalis remains hidden

inside the autophagosomes, from where it obtains the nutrients to

its replication, but blocks the fusion with the lysosome, avoiding

degradation (106, 110). This is relevant since, in the literature,

increased autophagosome formation by P. gingivalis is commonly

confused with reduced autophagy flux. In fact, recovering

autophagy in P. gingivalis-infected macrophages with calcitriol,

1a, 25-dihydroxyvitamin D3, decreases the survival of bacteria

while increasing lysosomal function (111). Similar results are

observed after stimulation of P. gingivalis-infected myeloid

dendritic cells with rapamycin (106). Nevertheless, butyrate, a

short chain fatty acid produced by anaerobic bacteria of the dental

plaque, induces autophagy, promoting caspase-independent cell

death in oral keratinocytes (112). This suggests that some
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metabolic byproducts of the periodontal pathogens may increase

autophagy in oral gingival tissues, while other structural

components of periodontitis-related pathogens are important

for increasing autophagosome formation but then impair the

autophagic flux. Despite the contribution of the autophagosome

to P. gingivalis survival within the intracellular eukaryotic

microenvironment, not all P. gingivalis that enter through early

endosomes are targeted by the autophagic system, as some

bacteria will be routed to the recycling endosome pathway to

allow exocytosis. Indeed, gingival epithelial cells knocked-down

for recycling endosome marker RAB11, the small GTPase

required for interaction with the exocyst components RAS like

proto-oncogene A, RALA, or the exocyst complex components 2/

3/84, EXOC2/3/84 and then infected with P. gingivalis, display

decreased colony formation units, cfu, in agar when the

extracellular culture medium of the cells is plated (113).

Consistently, in the same experimental conditions, increased

bacterial cfu is observed when plating the intracellular content

of the infected gingival cells, suggesting impaired exocytosis (113).

Given that RALB participates during starvation-induced

formation of the autophagosome by assembling BECN1

components (114), it is possible that P. gingivalis proliferates

within the autophagosome and then escapes to infect neighboring

gingival cells using the exocyst pathway. However, this has not

been proven yet.

On the other hand, the interaction between oral pathogens

and oral host cells is modulated by aging. A study where the 16S

rRNA of the oral microbiome from “clinically healthy” old (> 40

years) or young subjects (around 23 years), as well as from

“clinically confirmed periodontitis” patients, was isolated and

sequenced, showed that the oral microbiome from old (but

healthy) individuals is an intermediate condition between

healthy young subjects and periodontitis patients (115).

Indeed, higher levels of P. gingivalis, Tannerella forsythia and

Treponema denticola, together known as the “red complex

pathogens,” involved in the development of chronic

periodontitis, increased 48, 25 and 55 fold, respectively in old

healthy subjects when compared to young healthy persons (115).

It has been previously suggested that this increased prevalence in

red complex pathogens with age is due to a low-grade pro-

inflammatory condition or “inflammaging” (116). In fact,

assessment of the gingival fluid from aged individuals (> 65

years) and young individuals (< 25 years), both groups without

periodontitis, show augmented B cell infiltration and IgG3 levels,

suggesting an immune shift towards chronic inflammation

(117). The relation between autophagy and inflammaging has

been comprehensively reviewed elsewhere (118). Briefly,

autophagy recycles aged mitochondria, thus preventing the

rise of ROS levels and blunting the activation of the danger

sensor NLR family pyrin domain containing 3, NLRP3, a protein

that mediates IL1B release through caspase 1 activation (118).

Whether autophagy predisposes the development of chronic
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periodontitis in old subjects by reducing inflammaging is not

known yet.

It is important to understand that increased ROS levels does

not necessarily leads to periodontitis, since the physiologic

response following bacterial infection of the oral mucosa and

periodontal tissue is by oxidative stress-driven autophagy (119).

Indeed, neutrophils contribute to ROS formation upon pathogen

infection in a mechanism that is associated with higher

expression of ATG12 and LC3 (120). Because treatment of

periodontitis-related neutrophils with N-acetylcysteine avoids

the gene expression of ATG12 and LC3, autophagy is actually

induced by ROS in these cells, possibly aiding cell survival (120).

This could be important to overcome the downregulation of

NFE2L2 observed in periodontitis (53). As oral autophagy is

decreased with age, increased periodontal toxicity by oxidative

stress is observed, resulting in elevated periodontitis-induced

bone resorption (121, 122).
Periapical lesions

Autophagy is crucial for odontogenesis, since it provides

energy and removal of wasted intracellular components in

enamel and oral epithelial cells (123). Compared to dental

pulp cells from young rats, senescent dental pulp cells

obtained from old rats display increased immunohistochemical

staining of LC3 and BECN1, accompanied by decreased levels of

peroxisome proliferator activated receptor gamma PPARg (124),
a transcriptional factor required to induce the expression of

autophagy related proteins (125, 126). In this model, stimulation

with LPS exhausts autophagy related proteins, suggesting that

accumulation of LC3 and BECN1 is a consequence of an

impaired autophagy flux (124). Indeed, adenoviral

upregulation of PPARg recovers autophagosome formation to

cope with LPS stimulation (124). Additionally, dental pulp stem

cells obtained from canine and human tooth root treated with C-

X-C motif chemokine ligand 12, CXCL12, show increased levels

of LC3-II and ATG5-ATG12 complex, as well as inhibition of

the MTOR signaling, indicating that CXCL12 promotes

autophagy in dental pulp stem cells (127). Authors

demonstrated that CXCL12-dependent autophagy is required

for stem cell migration as CXCL12 increased pore migration in

transwell assay, but the phenomenon was prevented by

treatment with the autophagic inhibitor chloroquine (127).

Thus, in this model, high expression of ATG5-ATG12

complex and LC3, indicative of increased autophagy, is critical

for development and regeneration of the dental pulp (128).

Therefore, in old mice, autophagosomes are accumulated as a

result of decreased autophagy flux, reducing periapical lesion

repair. For instance, a rapid rise in LC3-II/LC3-I ratio, ATG12

levels and activating phosphorylations of ULK1 occur in murine

odontoblasts after treatment with hydrogen peroxide, showing
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that increased autophagy is required for early dental repair

(129). In the same model, treatment with simvastatin, an

MTOR inhibitor of the statin-family drug for treatment of

obesity, reduced dental destruction (129). Increased expression

of ATG5-ATG12 and activating phosphorylation of AMPK,

accompanied by augmented levels of hypoxia inducible factor

1 subunit alpha, HIF1a, has been observed in periapical

granulomas (130). Given that the treatment of pre-odontoblast

cell line mDPC6T with chloroquine reduces cell viability in

presence of LPS, we can conclude that autophagy in periapical

lesions promotes survival of odontoblasts under harmful

stimulus (131). Therefore, as autophagy flux is reduced with

age, dental repair capacity will be progressively limited, shifting

the focus towards the search for novel polymers with better

repair capacity and integration in older individuals (132).

Interestingly, eukaryotic pathogens like C. albicans

associated with periapical lesions require autophagy for

infection and virulence. Fungal expression of ATG9 has been

shown to allow intracellular trafficking (133). Thus, VPS34, the

fungal homologue of PIK3C3, forms a complex with the Vma7

subunit of H+-ATPase, contributing to vacuolar acidification

and thereby increased autophagy-lysosome pathway activation

(134). Additionally, C. albicans strains with deletion of VPS34

undergo cell death in stress conditions, such as during nitrogen

starvation (134). Indeed, their survival is severely impaired in

this condition, indicating that fungal autophagy is key for C.

albicans virulence (134). This means that autophagy is increased

in C. albicans during periapical lesions, but decreased in older
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individuals that are being infected. The role of autophagy in age-

related oral diseases is summarized in Figure 3.
Concluding remarks

Aging is a natural and irreversible process that all of us are

experiencing. The complex interplay of the molecular mechanisms

that are altered during aging finally leads to reduced sensitivity and

adjustment capacity against external and internal changes in the

cells. One of the main tools that cells have to control energy balance

and recycling of wasted molecules is autophagy. Autophagy, as a

manifestation of this reduced homeostatic capacity, begins to

diminish with age. Susceptibility to certain pathologies also

increases, especially those associated with the oral cavity, which is

in constant stress by interaction with the environment, like oral

cancer, periodontitis and periapical lesions. What is important to

note is that age-dependent autophagic decrease is in most cases a

result of impaired fusion between autophagosomes and lysosomes;

this implies that autophagosome formation may actually occur,

which for example favors the survival of P. gingivalis andC. albicans

during periodontitis and periapical lesions. It seems that

progression of aged-associated oral diseases is explained both by

reduced lysosomal activity and by the accumulation of

autophagosomes that protect foreign pathogens. The role of

autophagy in oral cancer is difficult to establish, as it depends on

whether we are observing the initiation, the progression, or the late

development of the cancer. The orchestrated shift in autophagy in
FIGURE 3

Autophagy and age-related oral diseases. Aging is a physiological process in which different cellular mechanism decline, leading in most of
cases age-related diseases. “Autophagy”, which is impaired during aging, has been shown be critical to the control of age-related oral diseases
such as oral cancer, periodontitis and periapical lesions.
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oral cancer cells may be defined by the tumor microenvironment in

a specific temporal manner.
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