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Abstract

Human-computer interface systems whose input is based on eye movements can serve as

a means of communication for patients with locked-in syndrome. Eye-writing is one such

system; users can input characters by moving their eyes to follow the lines of the strokes

corresponding to characters. Although this input method makes it easy for patients to get

started because of their familiarity with handwriting, existing eye-writing systems suffer from

slow input rates because they require a pause between input characters to simplify the auto-

matic recognition process. In this paper, we propose a continuous eye-writing recognition

system that achieves a rapid input rate because it accepts characters eye-written continu-

ously, with no pauses. For recognition purposes, the proposed system first detects eye

movements using electrooculography (EOG), and then a hidden Markov model (HMM) is

applied to model the EOG signals and recognize the eye-written characters. Additionally,

this paper investigates an EOG adaptation that uses a deep neural network (DNN)-based

HMM. Experiments with six participants showed an average input speed of 27.9 character/

min using Japanese Katakana as the input target characters. A Katakana character-recog-

nition error rate of only 5.0% was achieved using 13.8 minutes of adaptation data.

Introduction

Eye movement-based communication is extremely important for people such as patients with

amyotrophic lateral sclerosis (ALS) who have lost nearly all their ability to control voluntary

movements, including loss of speech and handwriting but not eye movement [1, 2]. For these

patients, the most common means of communication is to have a caregiver face the patient

through a transparent character board and then identify which character the patient is looking

at [3]. Instead of using a caregiver, this study investigates human-computer interface systems

whose input is based on eye movements. Based on whether these systems require a computer

screen, they can be split into two groups. Among those that use a screen, Kate et al. [4] and

Majaranta et al. [5] designed an on-screen keyboard selection system in which a user could
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select a key by either stopping a moving cursor using a triggering eye movement or by gazing

continuously at a particular key for a fixed duration (this duration is termed “dwell time” [6]).

Urbina and Huckauf developed a two-level hierarchical menu selection method [7], in which

the user could select a character group from the bottom menu and then select a character from

a corresponding pop-up menu by simply glancing through the relevant menu items. Ward

and MacKay proposed a continuous selection method named Dasher [8, 9], in which a lan-

guage model was used to predict the next likely characters. The predicted characters were dis-

played near the current character and then the user could simply glance from character to

character without stopping for selection. The average text entry rate of the on-screen keyboard

system was slow- - -approximately 7.0 words/min [10]- - -but faster rates of 13.0 and 17.3

words/min were obtained for the hierarchical selection and Dasher, respectively, because those

systems did not require any dwell time. This suggests that rapid input rate is a primary concern

for these a ssistive communication systems and that it can be achieved without dwell time.

For systems that do not involve selecting characters from a screen, the characters are

instead represented by eye movements; a user inputs intended characters directly by perform-

ing the corresponding eye movements. Because this type of system does not require a screen, it

can be implemented in a small device, which gives this approach the advantage of portability.

Tsai et al. developed such a system termed “eye-writing” [11], in which the user could input a

character by moving the eyes along the pre-defined path of a corresponding character stroke.

Another reason this input procedure is called “eye-writing” is that it utilizes the user’s original

handwriting knowledge; therefore, it is quite easy for patients to get started. In this system, bio-

medical signal electrooculography (EOG) [12] was used to detect eye movements and artificial

neural network (ANN) [13] was applied for character recognition. To make automatic charac-

ter recognition easier, the eye-written characters were separated by a pause. The numbers of

changed eye movement directions between pauses were used as input for the ANN. Their

study showed a recognition error rate of 27.9% for 10 Arabic numerals and four arithmetic

operators input but the input rate was not reported. Lee et al. proposed a similar eye-writing

system [14], in which a designated writing time of eight seconds per character was set and the

user paused his/her gaze at the last point of the character stroke before the end of the desig-

nated time for character separation. In this system, the recognition was based on dynamic

time warping (DTW) [15]. They reported a recognition error rate of 12.6% and an input rate

of 7.5 characters/min using 26 alphabetic characters and three functional symbols (space,

backspace, and enter) as the input targets. Obviously, slow input rates are a problem for these

systems because they require a waiting period (which can be considered as the dwell time)

between input characters. We refer to systems that require character separation and recognize

each character in isolation as “isolated input systems.”

One way to improve the input rate is to continuously input characters without requiring

the dwell time. However, in continuous input, the eye motions are fused; consequently, the

boundaries between the motions are unclear and accurate recognition is difficult. We previ-

ously studied how to accurately recognize continuously input eye motions based on EOG for

our assistive communication system [16]. In this system, five types of eye motion (“up”,

“down”, “left”, “right”, and “center”) were combined to represent characters, and this repre-

sentation was defined as a code protocol. Hidden Markov model (HMM) [17]-based speech

recognition techniques were then applied to recognize and convert the eye motions into char-

acters. To better handle the fused eye motions, we developed a context-dependent EOG

model. When we combined this model with an N-gram language model [18], we achieved a

character-recognition error rate of 0.9% for Japanese Katakana character input. Although this

system has a very high input accuracy, it has a problem in that there is no intuitive connection
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between a motion sequence and the corresponding character; therefore, it is very difficult for

users to learn the protocol.

In this paper, we propose an EOG-based continuous eye-writing recognition system. Com-

pared to the isolated eye-writing systems, the proposed system can continuously accept charac-

ters; therefore, a faster input rate is anticipated. Compared to our previously developed code-

protocol-based eye input assistive communication system described above, this proposed sys-

tem is more user-friendly because it utilizes the user’s original handwriting knowledge. The

recognition scheme of the proposed system is extended from the previous system. We use the

same idea as the previous system to recognize the eye-written characters; i.e., we encoded eye-

written characters into a sequence consisting of a set of basic eye motions and represented the

coding using an input protocol. Then, we modeled these motions using a context-dependent

model. Because recognizing continuous eye motions in eye-writing is more difficult than the

methods used in the previous system, we then improved the recognition system by introducing

a deep neural network (DNN) [13]. To address the user dependency, EOG adaptation based

on DNN is also investigated. Experiments demonstrated that the proposed system can achieve

a rapid input rate and a low error rate using 70 Japanese Katakana characters as input targets.

Materials and methods

Electrooculography (EOG)

An electrical potential exists between the cornea and retina of the human eye, called the cor-

neoretinal potential (CRP), as shown in Fig 1. The corneal side has a positive charge, and the

retinal side has a negative charge. The CRP can be observed as an EOG signal by attaching a

set of electrodes on the skin around the eyes. Because the EOG signal reflects the eye position,

it can be used to detect eye movements. The EOG signal typically shows signal amplitudes

ranging between 250 and 1,000 μV at a frequency of approximately 0 to 30 Hz [12]. The EOG

Fig 1. Corneoretinal potential (CRP).

https://doi.org/10.1371/journal.pone.0192684.g001
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amplitude range is larger than that of an electroencephalogram (EEG) [19], and EOG signals

are easier to detect than EEG signals. An EOG can be detected even when the eyes are closed.

Fig 2 shows examples of EOG signals obtained by attaching four electrodes at the left, right,

top, and bottom side of the left eye. The horizontal signal was obtained by calculating the sig-

nal difference between the electrodes on the left and right sides, and the vertical signal was

obtained by calculating the difference between the electrodes on the top and bottom sides. The

top two graphs correspond to raw observations with no pre-processing. The main noise

sources for EOG signals are electromagnetic noise from the powerline, internal noise from the

measurement device, the quality of the contact between the skin and the electrodes, and other

physiological sources such as electromyographic (EMG) [20] signals [21]. Among these,

powerline noise can be relatively easily removed by applying a low-pass filter with a cut-off fre-

quency below 50 Hz because the powerline frequency is generally either 50 or 60 Hz regardless

of country or region. Baseline drifts due to contact quality, etc. can be removed by cutting a

direct current (DC) component.

In this paper, we apply a finite impulse response (FIR) low pass filter with a cutoff frequency

of 20 Hz, which is high enough to capture most of the intentional eye movements but low

enough to remove undesirable high-frequency noise. To remove baseline drift, a DC blocker

[22] is used whose transfer function is defined as shown in Eq 1, where R = 0.999. The bottom

two graphs in Fig 2 correspond to the top two graphs after applying these pre-processing steps.

HðzÞ ¼
1 � z� 1

1 � Rz� 1
ð1Þ

Fig 2. An example of a raw EOG signal and the corresponding processed signal. The signal corresponds to an eye movement sequence of “up, down,

right, left, right, and down.” The top two graphs are the original signals and represent the horizontal and vertical movements, respectively. The bottom

two graphs show the pre-processed signals (after applying a DC blocker and a low pass filter), which have smaller noise components.

https://doi.org/10.1371/journal.pone.0192684.g002
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Basic statistical models

Gaussian mixture model (GMM). The Gaussian distribution, N ðxjm;ΣÞ, is one of the

most basic continuous probability distributions. It is defined by two parameters: a d-dimen-

sional mean vector (μ) and a covariance matrix (S) as shown in Eq 2.

PðxÞ ¼ N ðxjm;SÞ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞ
d
jSj

q exp �
1

2
ðx � mÞ

T
S� 1ðx � mÞ

� �

: ð2Þ

While the Gaussian distribution is useful, it can model only simple distributions with a single

peak. To improve modeling flexibility, the Gaussian mixture model (GMM) is widely used.

The GMM is a weighted sum of multiple Gaussian distributions, as shown in Eq 3.

PðxÞ ¼
XM

i¼1

wiN ðxjmi;ΣiÞ;

XM

i¼1

wi ¼ 1; and 0 � wi � 1;

ð3Þ

where wi is a mixture weight, and μi and Si are the mean and covariance of the i-th Gaussian

component, respectively. A diagonal covariance matrix is often used to balance the model

complexity and improve parameter estimation accuracy.

Deep neural network (DNN). A DNN consists of multiple layers of neuron units, each of

which takes multiple-inputs and provides a single-output. The input to a neuron unit can be

represented by a vector. The neuron unit applies an affine transformation plus a non-linear

transformation to the input, as shown in Eq 4,

y ¼ hðwT � x þ bÞ; ð4Þ

where x is the input vector, y is the output, w and b are a weight matrix and a bias of the affine

transformation, respectively, and h is the non-linear transformation function. The non-linear

function h is called an activation function. Several choices are available for h, including sig-

moid, rectified linear units (ReLU) [23], and softmax functions.

The design of a DNN is specified by the number of layers, the number of neuron units in

each layer, and the connections between the layers. The layer at the bottom is called an input

layer, the ones in intermediate positions are called hidden layers, and the top layer is called the

output layer. For classification purposes, the activation function of the output layer is typically

a softmax function; consequently, it represents the posteriori distribution of the classes given

the input data.

Pattern recognition methods for sequential data

Dynamic time warping (DTW). DTW is a method to measure the dissimilarity between

two sequences of different lengths. It searches for an optimal alignment between the two

sequences that minimizes a matching cost and outputs the minimum cost as the dissimilarity

measure of the two sequences. For example, suppose X = {x1, x2, � � �, xM} and Y = {y1, y2, � � �,

yN} are two vector sequences whose lengths are M and N, respectively. An alignment is a

sequence of pairs of the sequence indices {(s1, t1), (s2, t2), � � �, (si, ti), � � �, (sL, tL)}, where s1 = t1 =

1, sL = M, tL = N, max{M, N}� L< M + N, and (si + 1, ti + 1) is either (si + 1, ti), (si, ti + 1), or

Continuous eye movement recognition based on electrooculography
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(si + 1, ti + 1). Given an alignment, the matching cost is given by Eq 5.

XL

i¼1

disðxsi
; yti
Þ ð5Þ

where dis(x, y) is the Euclidean distance between two vectors x and y. While the computational

cost of a direct enumeration of all possible alignments grows exponentially with the sequence

length, the DTW computes the minimum distance efficiently using dynamic programming

[15].

Hidden Markov model (HMM). The HMM models a probability distribution over a data

sequence. An HMM consists of a set of N states {1, 2, � � �, N} each of which is associated with

an output distribution and a set of directed edges assigned with state transition probabilities. It

models the joint probability of a data sequence X = {x1, � � �, xL} and an HMM state sequence

S = {s1, � � �, sL} of length L where si 2 {1, 2, � � �, N}, as shown in Eq 6,

PðS;XÞ ¼ Pðs1ÞPðx1js1Þ
YL

i¼2

Pðsijsi� 1ÞPðxijsiÞ; ð6Þ

where P(s1) is an initial state probability. When an HMM is applied to an observed data

sequence, X, the corresponding HMM state sequence S is usually unknown. The most likely

state sequence S� is obtained by maximizing the joint probability P(S, X) over S. While direct

enumeration of all possible values for S requires exponential computational cost for the

sequence length, it can be efficiently maximized using the Viterbi algorithm [24]. Before using

the HMM for pattern recognition, the output and transition probability distributions must be

estimated. These estimations are based on maximizing the likelihood of training data and per-

formed using the Baum-Welch algorithm [25].

HMM has been intensively used for speech recognition. In this field, GMM had been widely

used as the output distribution; however, DNN has recently become more popular than GMM

for the HMM output distribution because of its superior recognition performance. In this

paper, the HMM that uses the GMM as the output distribution is referred to as GMM-HMM,

and the one that uses DNN is termed DNN-HMM.

N-gram language model. An N-gram is a probability model for a discrete symbol

sequence such as a character or word sequence. Suppose W = {w1, w2, � � �, wL} is a symbol

sequence with length L. By recursively applying Bayes’ theorem, the probability of W is decom-

posed to a product of the conditional probabilities of each symbol in the sequence, as shown in

Eq 7. In N-gram modeling, symbol history older than N − 1 steps is ignored when calculating

the conditional probability of the current symbol P(wi|w1, w2, � � �, wi − 1), as shown in Eq 8,

PðWÞ ¼ Pðw1Þ
YL

i¼2

Pðwijw1;w2; � � � ;wi� 1Þ

� Pðw1ÞPðw2jw1Þ � � � PðwN� 1jw1;w2; � � � ;wN� 2Þ

ð7Þ

�
YL

i¼N

Pðwijwi� Nþ1;wi� Nþ2; � � � ;wi� 1Þ; ð8Þ

where N is the N-gram order. When N = 1, the history is not considered at all, and the calcula-

tion of P(W) is reduced to a simple product of the symbol probabilities,
QL

i¼1
PðwiÞ. In general,

the larger the N-gram order, N, the longer the symbol history is remembered and the more

flexible the model becomes. However, the number of model parameters grows exponentially

Continuous eye movement recognition based on electrooculography
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as N increases. To balance model flexibility against parameter estimation accuracy, relatively

small N values- - -approximately 1 to 5- - -are typically chosen based on the task.

The previously developed code-protocol-based eye input system

Fig 3 shows an overview of our previously developed code-protocol-based eye input system.

This system first detected the user’s EOG signals via six electrodes attached to the skin around

the eyes. Then it recognized a sequence of codes representing characters from the EOG signal

using an HMM-based recognition decoder. Finally, it synthesized and output speech sound

that corresponded to the recognized characters using a text-to-speech (TTS) synthesizer [26]

and a loudspeaker. Using this system, the users could combine the five motion types to contin-

uously input characters in accordance with a pre-defined code protocol. For Japanese input,

each of 48 basic Japanese Katakana characters was represented by a combination of four

motions, and another 22 derived Katakana characters were represented by combining a basic

Katakana character and one of two diacritical marks (also represented by four motions). To

represent the protocol, a weighted finite-state transducer (WFST) [27] was used, which can

provide a mapping between eye motions and characters.

To effectively model continuous eye motions while considering the influence of adjacent

motions, a context-dependent model was used. More precisely, this system utilized a tri-eye

motion model to model the five types of eye motions, which allowed the influences of the pre-

ceding and succeeding eye motions to be considered. Because the tri-eye motion model com-

bined three eye motions, it contained a large number of parameters and required a large

amount of training data. To train a robust model with limited available data, a decision-tree-

based state clustering [28] approach was used in which similar parameters were clustered into

a group, and their training data were shared.

Eye-writing input protocol

Basic input protocol design. When designing an eye-writing input protocol, one problem

that arises is how to model the eye movements that represent characters. The most straightfor-

ward method is to model each eye gesture that corresponds to a character using a separate

HMM. This approach is highly flexible in capturing character-dependent detailed motions;

however, the number of parameters is large, and parameter estimation becomes difficult when

data are limited. Another approach is to decompose the eye gestures into smaller basic units

shared between the characters. This reduces the modeling flexibility somewhat, but the model

set has a much smaller number of parameters. Consequently, an accurate model can be esti-

mated from a limited amount of training data. This situation is analogous to the word- and

phone-modeling approaches in speech recognition, where the phone-modeling approach is

widely adopted (except for small-vocabulary isolated-word recognition tasks). We adopted the

Fig 3. Overview of the previously developed code-protocol-based eye input system.

https://doi.org/10.1371/journal.pone.0192684.g003
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approach of decomposing the continuous eye gestures for recognition based on some prelimi-

nary experiments. Additionally, similar to the system described in Lee et al. [14], we introduce

a lightweight constraint in eye-writing characters to assist the recognition systems in recogniz-

ing the shape: that is, the nine eye motions shown in Fig 4 and a blinking motion are defined

as basic eye motions, and characters are written by combining these motions. For example, the

letter “A” is eye-written by combining the eye motions of “lower left, up, lower right, left, and

right.” In addition to these 10 unit eye motion models, we use “sil” model to indicate that the

eye is at the neutral position without a motion. Therefore, the total number of the basic units

of our system is 11. For the model training and decoding, the sil model is treated just the same

way as other eye motion models. Fig 5 shows an example how these models align to input

EOG signal.

The input protocol for Japanese Katakana characters. Our implemented system is

designed to input Japanese Katakana characters, which represent all Japanese syllables. Fig 6

shows the basic Katakana characters and their alphabet-based representations. Because Kata-

kana characters are complex, the characters are decomposed into strokes for the eye-writing.

Instead of directly eye-writing the entire character, the strokes are eye-written individually

Fig 4. Nine of the 11 basic eye motions used for model units.

https://doi.org/10.1371/journal.pone.0192684.g004

Fig 5. An example of alignment of the eye motion models to an EOG input. The input EOG feature is a two-dimensional vector representing

horizontal (left-right) and vertical (up-down) eye movements. Two Japanese Katakana characters “fu” and “he” are continuously eye-written. The “sil”

label indicates no motion is performed in the segment. The boundaries are automatically decided by the Viterbi decoding so as to maximize the

posterior probability of the alignment.

https://doi.org/10.1371/journal.pone.0192684.g005
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based on exaggerated eye movements corresponding to the 11 basic motions. The Katakana

strokes used in this study are shown in Fig 7. With these strokes, for example, /hi/ can be input

by eye-writing stroke No. 3 and 9. As an example of the stroke representation, stroke No. 11 is

approximately expressed by “left, up, right, down, left”. With this eye-writing input protocol,

there is a possibility that multiple characters correspond to the same input. The same problem

was existed in our previous code-protocol-based system [29]. As before, we use N-gram lan-

guage model to reduce the ambiguity utilizing the history of the input characters.

Fig 6. Japanese Katakana characters and their corresponding syllables.

https://doi.org/10.1371/journal.pone.0192684.g006

Fig 7. Basic Katakana strokes and the corresponding eye gestures. Stroke No. 12 is represented by a blinking motion.

https://doi.org/10.1371/journal.pone.0192684.g007

Continuous eye movement recognition based on electrooculography

PLOS ONE | https://doi.org/10.1371/journal.pone.0192684 February 9, 2018 9 / 20

https://doi.org/10.1371/journal.pone.0192684.g006
https://doi.org/10.1371/journal.pone.0192684.g007
https://doi.org/10.1371/journal.pone.0192684


HMM-based modeling of a continuous eye-writing EOG signal

The modeling method used in the proposed system is the same as the previous code-protocol-

based eye input system; that is, the basic eye motions are modeled using the tri-eye motion

model, and the decision-tree-based state clustering method is used to cluster similar parame-

ters. As the output distribution of an HMM state, the GMM was used in our previous code-

protocol-based system. In this study, we instead use a DNN as the output distribution in addi-

tion to GMM. The DNN-HMM model has been reported to achieve performances superior to

GMM-HMM in the latest speech recognition systems [30], and it is expected that DNN-HMM

will also yield improved performances in our eye motion recognition system.

User-dependent and user-independent modeling. HMMs are trained using a set of

training data. The training data can be collected either only from a target user or collected

from many different people. If the HMM is trained using data from a specific user, it is a user-

dependent model. Conversely, if the HMM is trained using data from many different users, it

is a user-independent model. Between these two model types, user-dependent models typically

provide higher recognition accuracy because they represent only the target user’s characteris-

tics and, therefore, tend to match well with the signal to be recognized. In contrast, while user-

independent models generally provide lower accuracy, they have the advantage that any user

can use the model after it is trained. Therefore, once the model has been created, new users do

not need to record sample data before they can use the system.

User adaptation. To achieve high recognition accuracy given only a small amount of

user-dependent data, applying user adaptation techniques to a user-independent model is use-

ful. The data used for adaptation are called adaptation data. To adapt the GMM-HMM, the

maximum likelihood linear regression (MLLR) [31] and maximum a posteriori (MAP) [32,

33] can be used. Both the MLLR and MAP transform mean vectors of the Gaussians to better

match the adapted model to the adaptation data. To efficiently perform adaptation using a lim-

ited adaptation data, MLLR first estimates an affine transformation and then uses it to trans-

form a set of mean vectors rather than directly estimating them, which reduces the number of

free parameters that must be estimated from the adaptation data. Similarly, MAP introduces a

prior distribution of the mean vectors so that the update is constrained, thus reducing the

effective freedom in the parameter estimation. To adapt the DNN-HMM, we simply re-train

the DNN.

Power analysis

We did not perform the power analysis to calculate the sample size in our experimental design.

None of the related researches on eye motion recognition had performed the power analysis,

and the effect size was unknown. In our experiment comparing DTW and HMM, we report

the effect size and power as a post hoc power analysis.

Ethics

This research was approved by the Ethics Review Committee of Tokyo Institute of Technology

(approval number: 2014083). To record EOG data, participants were recruited through a pub-

lic advertisement published on this project’s web page in late July of 2016. Only healthy adult

applicants were subject to recruitment. We explained the process to the applicants both ver-

bally and in written form, including the recording method and the equipment, the uses of the

recorded data (for our experiments and for building an open EOG database after removing

user identification), the remuneration of 1,000 Japanese yen per hour, and the planned 10

hours of total working time for every applicant. The recording had no risk of electric shock

because the recording device was completely separated from the powerline and used batteries.
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If injuries were to occur, insurance was available for medical treatment. The participants

joined the recording of their own free will, and they had the option to quit without restriction

at any time. We accepted the first six applicants, all of whom consented to participate in the

recording process after the explanation. The consent of each participant was obtained in writ-

ten form.

Results and discussion

Data recording

To evaluate the proposed system, we constructed an EOG database using data from the six

healthy participants. One of the participants was female; the others were males. Their ages ran-

ged from 21 to 31. Additionally, one participant was an eye-writing expert, but all the other

participants were new to the task. The EOG recording device was a commercial biomedical

amplifier, BlueGain (Cambridge Research Systems Ltd.), which was powered by a pair of dou-

ble-A batteries. The recorded data was transferred to a personal computer via a Bluetooth.

Four measurement electrodes were attached to the left, right, upper, and lower sides of the left

eye, respectively. Additionally, one reference electrode was attached between the left and right

eyebrows. The distances between the center of the eye and the left, right, upper, lower, and ref-

erence electrodes were approximately two, two, four, four, and three centimeters, respectively.

The electrodes were medical Ag/AgCl surface electrodes. A two-channel (horizontal and verti-

cal) EOG signal was obtained by taking the differences of the signals between the electrodes on

the left and right sides and those between the upper and lower sides, respectively. Therefore,

the EOG signal from the recording device was a sequence of two-dimensional EOG vectors.

The sampling rate was 1.0 KHz.

The participants were instructed to sit on a chair during the recording. Then, two types of

EOG data were recorded: isolated data and continuous data. The isolated data were recorded

by eye-writing the 12 kinds of Katakana strokes in isolation in accordance with the input pro-

cedure of the isolated eye-writing system by Lee et al. [14]. These data were collected to make

comparisons possible between the recognition performance of a DTW-based baseline system

(our implementation of Lee et al.’s system) and our HMM-based system during the evaluation.

The continuous data were recorded to evaluate the input rate and accuracy of the continuous

eye-writing system. These data are available from the S1, S2 and S3 Databases. The details of

the two types of datasets are described below.

Isolated data. In general, each of the 12 types of strokes was recorded 10 times for each

participant, but a few strokes were recorded nine or 11 times. In total, 724 strokes were

recorded from all the participants. For the baseline system, a set of calibration data is required

to calibrate eye rotation angle due to distortions from the electrode attachment positions [14].

The calibration data were acquired from nine gaze positions where the eye rotation angles

were known. In our experiment, calibration data were recorded for each participant before

recording the isolated data.

Continuous data. The continuous data consisted of both training data and test data. The

training data were recorded by asking the participants to write a selected set of 150 words

repeatedly using Katakana characters. These words were selected from the Corpus of Sponta-

neous Japanese (CSJ) [34] and intended to maximize the number of triple eye motions con-

tained in the words. The lengths of the words were between one and three Katakana characters

(2.8 on average). In general, each word was repeatedly recorded five times, but a few words

were recorded between three and eight times. To record these data, the recording period was

split into two or three separate sessions for a participant and approximately 250 to 500 words

were recorded during each session. All the electrodes were attached and removed for each
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session. In total, the recorded training data consisted of 587.2 minutes (9.8 hours) for all the

participants.

The test data was recorded by eye-writing 25 sentences, which were selected from the

CSJ to maximize the number of required triple eye motions. The sentences ranged in length

from five to 20 Katakana characters; the average length was 15.4 characters. To record the test

data, each participant eye-wrote each of the sentences one time during a single session. In

total, the recorded test data consisted of 94.8 minutes (1.6 hours) for all the participants.

Because it was not possible to read the text instructions during eye-writing, the participants

were asked to memorize each word or sentence before eye-writing it. To become accustomed

to using the eye-writing system, all participants practiced using a subset of the words and sen-

tences for around 5 times.

Experimental setup

We first compare the recognition performance of the baseline DTW-based and the proposed

HMM-based recognition systems in isolated recognition conditions. We did this because

while the input rate of the baseline isolated input system is fixed, its recognition performance

depends on the task. Then we evaluated our system in the continuous recognition condition.

A two-tailed t-test was used to perform statistical comparisons. The setups used for eye-writing

recognition are described below.

EOG features for recognition. As explained in the data recording section, the EOG signal

is stored as a sequence of 2-dimensional vectors with the sampling frequency of 1.0 KHz. For

isolated recognition conditions, the raw EOG signal was downsampled to 125 Hz after the

median filtering following the procedure in [14]. For continuous recognition, the raw EOG

signal was downsampled to 50 Hz after applying the DC blocker and the low pass filter. We

refer to these filtered 2-dimensional EOG signals as baseform EOG features.

To improve the recognition performance, we expanded the baseform EOG features by add-

ing delta and delta-delta features corresponding to the speed and acceleration of the change of

the signal, respectively. Further, every two vectors were joined and the data rate was halved.

The resulting vector has 12 (= (2 + 2 + 2) × 2) dimensions. We refer to these features as

expanded EOG features. The sampling rate of the expanded EOG features for the isolated rec-

ognition was 62.5 Hz, whereas it was 25 Hz for the continuous recognition.

HMM training. For GMM-HMM training, two steps were conducted: parameter initiali-

zation and parameter learning. In the parameter initialization stage, the state transition proba-

bilities were initialized to 0.5, and the output distribution of each state was initialized with a

single Gaussian whose mean vector and covariance matrix were set to equal to the global mean

vector and diagonal covariance matrix of the entire training dataset. In the parameter learning

stage, the initialized HMMs were trained by the Baum-Welch algorithm with five iterations;

then, each Gaussian was split into two to create the GMM, and the training and splitting pro-

cesses were performed iteratively until the required number of Gaussian components was

obtained in the GMM. Finally, the training was applied again.

The DNN-HMMs were made from the GMM-HMM, replacing GMM with DNN as the

output distribution. The DNN was initialized by the Xavier initialization method [35], and a

back-propagation algorithm [36] was used to train the DNN. The initial learning rate for the

back-propagation was set to 0.05. The momentum, mini-batch size and number of training

epochs were set to 0.9, 128, and 20, respectively. To evaluate the recognition performance of

the DNN during the training iterations, 1% of the training data were randomly held out. If the

recognition performance on the held-out data decreased at the end of an epoch, the learning
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rate was halved for the next epoch. For adaptation, the learning rate and epoch size were set to

0.01 and 15, respectively.

Setup for isolated eye-writing recognition. The baseform and expanded EOG features

were used as the input to DTW and HMM and compared. We used 10-fold cross-validation

for performance evaluation. Each stroke was represented by a template for the DTW approach

and modeled by a unit HMM for the HMM approach. For the DTW, no constraint was intro-

duced to the search scope: a full search was performed.

The unit HMM had four states and a left-to-right structure. For the output distribution of

the HMM, we used a GMM with 16 Gaussian components. The Hidden Markov Model

Toolkit (HTK) [37] was used to estimate the parameters of the HMM. Both the DTW template

and HMM were user-dependent. Precision, recall, and F1 scores averaged over all strokes and

all participants were used as recognition performance measurement criteria. The definitions of

precision, recall, and F1 scores are as follows:

Precision ¼
TP

TPþ FP
; ð9Þ

Recall ¼
TP

TPþ FN
; ð10Þ

and F1 ¼ 2 �
Precision � Recall

Precisionþ Recall
; ð11Þ

where TP, FP, and FN are the number of true positives, false positives, and false negatives,

respectively.

Setup for continuous eye-writing recognition. The basic eye motions were modeled as

tri-eye motion models and the decision-tree-based state clustering method was used in the

training process. All the HMMs had a left-to-right structure and contained four states. For the

GMM-HMM, a Gaussian mixture distribution with 16 components was used as the state out-

put distribution with the expanded EOG features. For the DNN-HMM, a DNN consisting of

four layers was used to model the state output distribution in which the input layer had 132

units, the first and second hidden layers had 200 and 100 units, respectively, and the number

of units in the output layer was equal to the number of HMM states. The activation functions

of the hidden and output layer were ReLU and softmax, respectively. The input to the DNN

was created from the expanded EOG feature vector by applying splicing and principal compo-

nent analysis (PCA) [38]. The splicing was intended to augment the feature vector by attaching

five preceding and succeeding vectors to the current vector in each time frame to better model

the context effect. The PCA was applied to reduce the correlation between dimensions.

For the user-independent recognition experiments, user-independent models were trained

by user based cross-validation which employed all the training data except that from the par-

ticipant being tested. The tri-eye motion model initially had 592 states. These were reduced to

63.6 on average after applying the state clustering. For the user-dependent model, we ran-

domly selected 100 words from the target participant as training data to investigate the recog-

nition accuracy possible when only a small amount of user-specific data is available. The user-

dependent model initially had 146 states, but these were reduced to 44 after the decision state

clustering. Due to the smaller amount of training data compared to the user-independent

model, a smaller number of states was selected. For user adaptation, a portion of the target par-

ticipant’s training data was used as adaptation data.

For the language modeling, we used a character N-gram with a vocabulary size of 70 that

were trained from CSJ. Unless explicitly mentioned, an N-gram order of 5 was used. The 25
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sentences used as the test sentences were excluded from the training data. The recognition

experiments were conducted offline using an Intel Xeon CPU running at 2.67 GHz; the real-

time factor (RTF) was less than 0.85. To measure the input accuracy of the continuous eye-

writing recognition system, we used the Katakana character error rate (CER) [16], in which

substitution, deletion and insertion errors were considered. A substitution error means that an

output differs from the corresponding input character. A deletion error means that an input

character was not output. An insertion error means that no character was input but a character

was output.

HTK was used for the GMM-HMM training and adaptation, while the training and adapta-

tion of DNN was conducted using our developed tool (see the S1 Source Code). The SRILM

[39] toolkit was used for N-gram training. The decoder for the continuous recognition was

developed by us and the code is available from the S2 Source code. The tools, S1 and S2 Source

Codes, are designed and implemented aiming to evaluate and confirm the effectiveness of the

proposed continuous eye-writing method.

Recognition performance of DTW and HMM in isolated recognition

Table 1 shows precision, recall, and F1 score of the DTW and HMM averaged over the six par-

ticipants. As shown, the HMM achieved significantly better scores than the DTW-based recog-

nition on all measures. The F1 score obtained with HMM was more than 7% above that of

DTW when either the baseform or expanded EOG features were used, and the differences

were statistically significant with p = 0.017 and 0.031, respectively, by the two-tailed paired t-

test with the sample size 6. The Cohen’s d effect sizes were 1.43 and 1.21, the Pearson’s correla-

tions were 0.934 and 0.928, and the powers were 0.80 and 0.66 when the significance level was

5%. The superiority of HMM is because HMM models the gestures using a probability distri-

bution while DTW simply computes the Euclidean distance between a template and the obser-

vation. Therefore, HMM can model the degree of variance of the signals while DTW cannot.

When the baseform and the expanded EOG features are compared, the expanded features

yielded similar or better performance. In particular, the expanded features always resulted in

a better performance than did the baseform features when HMM was used. This result proba-

bly occurred because HMM is more robust to noise than DTW and, therefore, more able to

take advantage of the delta and delta-delta features, which are susceptible to noises in the

observations.

Evaluation of the continuous eye-writing recognition system

Input rate. Table 2 shows the Katakana input rate of the six participants using the pro-

posed continuous eye-writing system. On average, the participants achieved an input rate of

27.9 Katakana character/min. Compared to the baseline isolated eye-writing system where the

input rate was approximately 1 character every 8 seconds or 7.5 character/min, the proposed

system improved the input rate by 3.7 times. Obviously, eye-writing continuously without

Table 1. Average precision, recall, and F1 score of the DTW- and HMM-based Katakana strokes recognition sys-

tems. The scores were evaluated using the baseform and the expanded EOG features.

EOG feature Baseform Expanded

Method DTW HMM DTW HMM

Precision 0.782 0.850 0.781 0.872

Recall 0.768 0.842 0.771 0.859

F1 0.775 0.846 0.776 0.865

https://doi.org/10.1371/journal.pone.0192684.t001
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requiring a waiting time between characters greatly improves the input rate. In addition,

although the expert (001) achieved the highest rate, there was little difference between the

expert and some participants (such as participants 002 and 004). This suggests that users can

quickly become proficient and reach high input rates relatively easily. Participant 005 had the

slowest input rate of 19.9 character/min because this participant eye-wrote slowly and deliber-

ately. Nevertheless, the slowest input rate of the continuous eye-writing system was 2.7 times

faster than the baseline isolated eye-writing system. Additionally, the input rate varied from

participant to participant, revealing an advantage of the continuous eye-writing recognition

system: users can input characters at their own pace.

Recognition performance by user-independent and user-dependent systems. Table 3

shows the average Katakana CERs of the continuous eye-writing system. When tested with the

user-independent model, both GMM-HMM and DNN-HMM yielded large error rates. How-

ever, when tested with the user-dependent model, the Katakana CERs were greatly reduced

and high recognition performance was achieved. This result occurred because of the large indi-

vidual differences that existed among the participants, which involved both EOG signal-level

differences and the shapes the participants used in eye-writing the Katakana strokes. However,

compared to the GMM-HMM, the DNN-HMM improved the recognition performance

regardless of whether the user-independent or user-dependent model was used, showing that

DNN-HMM is more accurate than GMM-HMM for EOG-based eye motion recognition.

To analyze the effect of using character N-gram in the recognition, Fig 8 shows the relation-

ship between N-gram order and the Katakana CERs. The recognition is based on the user-

dependent GMM-HMM. As Fig 8 shows, the error rate was reduced by increasing the N-gram

order from 1 to 5. The CER when using a 1-gram was 28.3%, while it was 6.5% when a 5-gram

was used.

User adaptation. Fig 9 shows the average, maximum and minimum Katakana CERs of

user-adapted EOG models with varying amounts of adaptation data. The horizontal axis indi-

cates the amount of adaptation data. In this experiment, 5, 10, 20, 50, and 100 words were ran-

domly selected from the training data of each participant to recognize. The duration of these

data corresponded to 0.7, 1.4, 2.7, 6.9, and 13.8 minutes, respectively. A duration of 0.0 min-

utes means that the user-independent model was used. Because the MLLR and MAP used the

same user-independent GMM-HMM as the initial model, their initial error rates were the

same. As the figure shows, the error rate was reduced using adaptation compared to the user-

independent model. Furthermore, larger amounts of adaptation data progressively reduced

the error rate. Compared to GMM-HMM-based adaptation, the DNN-HMM-based adapta-

tion achieved a smaller error rate regardless of the amount of adaptation data used. In particu-

lar, DNN-HMM achieved an error rate of only 5.0% using 13.8 minutes of adaptation data- - -a

Table 2. Katakana input rate of six participants using the continuous eye-writing system.

Participant ID Average

001 002 003 004 005 006

Input speed (Katakana/min) 34.0 31.0 24.4 29.9 19.9 28.1 27.9

https://doi.org/10.1371/journal.pone.0192684.t002

Table 3. Katakana character-recognition error rates (%) of the continuous eye-writing system.

GMM-HMM DNN-HMM

User-independent 19.1 18.8

User-dependent 6.5 6.2

https://doi.org/10.1371/journal.pone.0192684.t003
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rate smaller than the performance of the user-dependent model trained using the same 13.8

minutes of data (see Table 3). This suggests that a user-dependent model cannot be trained to

a high level of accuracy using a small amount of data, but an adapted model obtained from a

well-trained user-independent model can reach a high level of accuracy with only a small

amount of user-specific data.

When 13.8 minutes of adaptation data was used, the average error rate was reduced from

19.1% to 8.7% by MLLR (p = 0.063), from 19.1% to 7.4% by MAP (p = 0.046), and from

18.8% to 5.0% by DNN-HMM adaptation (p = 0.046). The corresponding relative error

reduction rates of MLLR, MAP, and DNN-HMM adaptation were 54.5%, 61.3%, and 73.4%,

respectively.

Limitations

Although the RTF of our system is less than 1.0, there is a delay before the decoding output is

obtained after the input is given. This is because some future input must be known to uniquely

identify the current input: we make use of the context information using the character N-

gram. The amount of delay depends on the input data, the N-gram order, and the decoding

Fig 8. N-gram order and the Katakana recognition error rate.

https://doi.org/10.1371/journal.pone.0192684.g008
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algorithm. In our decoder implementation that supports progressive output based on Viterbi

beam search, the character is output after all competing recognition hypotheses having smaller

posterior probability than a threshold are removed. Consequently, the delay is short when

there are few competing hypotheses but can be long when many competing hypotheses exist.

Because the long delay reduces the interactivity even though the input speed is fast, some

mechanism to reduce the maximum delay should be introduced.

Conclusion

In this paper, we proposed a continuous eye-writing recognition system for patients with

locked-in syndrome. People using this system can input eye-written characters continuously.

Because this system requires no waiting time between characters, it achieves input rates higher

than conventional isolated eye-writing systems in which input characters must be separated by

a pause to simplify the automatic recognition process.

The experiments in this study used Japanese Katakana as input characters. An EOG data-

base was recorded from six healthy participants. The proposed system achieved an average

input rate of 27.9 Katakana character/min- - -a rate 3.7 times faster than the baseline isolated

eye-writing system. The proposed DNN-HMM outperformed the GMM-HMM system on all

user-dependent, user-independent and user-adapted models. The DNN-HMM achieved the

best Katakana character-recognition error rate of 5.0% using 13.8 minutes of adaptation data.

Our future work includes further improving the input rate and recognition performance of

eye-writing systems. One approach for improving the recognition performance might be to

utilize a convolutional neural network (CNN) [40]. We expect that a CNN can capture the var-

iance in eye-written characters and reduce the amount of adaptation data required. A long

Fig 9. Average, maximum and minimum Katakana recognition error rate of user-independent and user-adapted models.

https://doi.org/10.1371/journal.pone.0192684.g009
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short-term memory (LSTM) [41]-based language model could also be considered. To reduce

the maximum delay, the search algorithm should be improved by introducing an active mech-

anism to control the output delay. Finally, the system should also be evaluated using EOG sig-

nals from ALS patients.

Supporting information

S1 Database. Isolated data. All the original isolated EOG data used in the experiments are

contained in this database.
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S2 Database. Continuous dataset 1. All the original continuous EOG data of participant 001,
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(ZIP)
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