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Abstract: A simple two-step electrochemical method for the fabrication of a new type of hierarchical
Sn/SnOx micro/nanostructures is proposed for the very first time. Firstly, porous metallic Sn foams
are grown on Sn foil via hydrogen bubble-assisted electrodeposition from an acidulated tin chloride
electrolyte. As-obtained metallic foams consist of randomly distributed dendrites grown uniformly
on the entire metal surface. The estimated value of pore diameter near the surface is ~35 µm,
while voids with a diameter of ~15 µm appear in a deeper part of the deposit. Secondly, a layer of
amorphous nanoporous tin oxide (with a pore diameter of ~60 nm) is generated on the metal surface
by its anodic oxidation in an alkaline electrolyte (1 M NaOH) at the potential of 4 V for various
durations. It is confirmed that if only optimal conditions are applied, the dendritic morphology
of the metal foam does not change significantly, and an open-porous structure is still preserved
after anodization. Such kinds of hierarchical nanoporous Sn/SnOx systems are superhydrophilic,
contrary to those obtained by thermal oxidation of metal foams which are hydrophobic. Finally, the
photoelectrochemical activity of the nanostructured metal/metal oxide electrodes is also presented.
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1. Introduction

Nanoporous metal foams (metal nanofoams) are a relatively new class of materials intensively
investigated by the research community [1,2]. These three-dimensional structures built by
interconnected nanoparticles and/or nanosized filaments represent a unique combination of properties
typical for nanostructured (e.g., ultralow density, high porosity, and surface area [3,4]) and bulk metals
(such as high thermal and electrical conductivity [1,5]).

Among techniques used for the preparation of metal nanofoams, electrodeposition seems to
be exceptionally encouraging [4,6–8]. The formation of metallic nanofoams by electrodeposition is
based on the electrochemical reduction of metal ions at high current densities accompanied by the
intensive formation of hydrogen bubbles playing a role of a dynamic template that is responsible
for the metal foaming [9]. The approach allows us to obtain deposits with much higher surface area
compared to a standard plain foil [10] and, in contrast to other reported methods, does not require
either sophisticated equipment or complex procedures. Another attractive feature of this process
is the formation of hierarchically organized micro/nanostructures [11] with higher accessibility of
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the inner surface to external agents compared to bulk particles of nanoporous solids (as additional
microstructuring should shorten the length of nanopores thus helping to mitigate possible diffusion
limitations within them). Moreover, electrodeposition leads to the formation of nanofoams as integral
coatings adhered to the surfaces of bulk supporting electrodes. The materials obtained in such a
way are considered as promising for a number of applications, in particular for a broad scope of
electrochemical ones [11,12]. Nanofoams of a set of metals (Cu, Ag, Pt, Pd, etc.) [11–14] and alloys [6]
were obtained by electrodeposition, in particular, successful fabrication of Sn nanofoams has been
reported [4,8,15].

The search for environmentally-friendly strategies of energy conversion and storage is nowadays
one of the most urgent needs of mankind. Thus, the range of materials currently being studied for
these applications is still extensively growing. Among them, tin oxides (mainly SnO2, but also Sn3O4

and SnO), attract great scientific attention due to their unique semiconducting, optical, and electronic
properties [16–18], which make them promising candidates for photoelectrochemical (PEC) [19] and
photovoltaic applications [20]. They also have been considered as favorable materials for various
energy storage systems, especially Li-ion and Na-ion batteries [21,22]. It is well known that precisely
designed nanomorphologies of such oxides can offer some enhanced features (e.g., electron mobility,
surface area) that make them even more attractive for the purposes mentioned above [23].

Among diverse methods of synthesis of nanostructured tin oxides, one of the most attractive is
electrochemical oxidation (anodization) of Sn because of its simplicity, low-cost, high effectiveness,
and possibility of controlling and tuning the morphology of nanostructures [24,25]. Despite extensive
studies on the influence of various anodizing conditions (e.g., applied potential, electrolyte composition,
process duration) on the growth and morphology of porous anodic SnOx layers, which have already
been performed [24–32], nanostructured anodic tin oxide films have been obtained mostly on tin
foils [24,26,28,30,32] or smooth Sn layers electrochemically deposited on conductive supports [25,27].
To the best of our knowledge, no researches concerning possibilities of fabrication of nanoporous
SnOx on micro/nano-structured metallic substrates have been reported, except the approach proposed
by Wu et al. [33] based on the oxidation of Sn nanowire arrays prepared using template-assisted
electrodeposition. In particular, the formation of porous tin oxide layers by anodization of Sn nanofoams
has not been studied so far, while it seems to be especially promising. Such a process is expected
to yield hierarchical Sn/SnOx systems consisting of thin films of nanoporous SnOx generated on
dendrites with preserved metal cores. On the one hand, the metal core can act as an effective current
collector when the Sn/SnOx system is used as a photoelectrode in photoelectrochemical systems [34].
On the other hand, when it is used in Li- or Na-ion batteries, a combination of the micro/nanoporous
structure of Sn dendrites and nanoporous morphology of the oxide film not only provides shorter
diffusion paths for lithium or sodium ions but also suppresses volume changes occurring during
intercalation/deintercalation that results in enhanced integrity of the electrode [35,36].

Another important property of such hierarchical Sn/SnOx systems is their wettability. Cao et al. [37]
reported that self-passivated electrochemically deposited nanoporous Sn foams exhibit hydrophobic or
even superhydrophobic behavior without any further surface modification. Such kind of conductive
superhydrophobic metal surfaces can exhibit enhanced corrosion resistance and offer potential use in,
e.g., microfluidic devices, and water-oil separation, etc. [38,39]. Nevertheless, for several applications,
including photoelectrochemical water splitting, good wettability of the nanostructured electrode
is strongly desirable. Since we recently confirmed the hydrophilic nature of nanoporous SnOx

electrochemically grown on the surface of Sn foil [40], it can be expected that the presence of such kind
of porous oxide film can strongly affect the wetting behavior of Sn foams. However, the factors which
govern the wetting behavior of these materials remain obscure.

Therefore, here we present, for the very first time, an effective strategy for the fabrication of
hierarchical Sn/SnOx micro/nanostructures by electrodeposition of Sn foams followed by their one-step
anodization in an alkaline electrolyte. We demonstrate that it is possible to obtain crack-free continuous
porous oxide layers on a nanoporous metal foam substrate. The wettability of the prepared composites
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was evaluated and compared with the Sn/SnOx composites obtained via aerial oxidation of the tin
nanofoams. Finally, the photoelectrochemical activity of the obtained material is also shown.

2. Materials and Methods

2.1. Substrate Preparation

Sn foil (99.99%, Goodfellow Cambridge Ltd., Huntingdon, UK, GB) was cut into coupons (c.a.
1 cm × 2 cm), washed in acetone and ethanol (both Chempur, Piekary Śląskie, Poland) to remove grease
and other surface impurities. After that, the samples were treated with 60, 220, and 800 grit sandpaper
in order to define a reproducible surface roughness (increased compared to the as-received foil) and
cleaned ultrasonically in isopropanol (Chempur, Piekary Śląskie, Poland). Before electrodeposition,
the working surface area was activated by immersing in 36–38% HCl (Sigma Aldrich, St. Louis, MO,
USA) for 5 min in order to remove the superficial oxide layer that could emerge from the aerial tin
oxidation. Finally, the samples were rinsed in isopropanol one more time.

2.2. Fabrication of Sn Foams

Tin foams were fabricated by cathodic electrodeposition in a typical two-electrode configuration
with a Sn plate and platinum mesh used as cathode and anode, respectively. Electrodeposition
was carried out at room temperature under the constant voltage of 6 V provided by a DC power
supply (Array 3646A, Array Electronic Co., Ltd., Taiwan) for 60 s in the electrolyte containing 20 mM
SnCl2·2H2O and 1.5 M H2SO4 (Sigma Aldrich). The distance between electrodes was fixed at 1 cm.
After deposition, the samples were carefully rinsed with isopropanol to remove residues of the
electrolyte. The working surface area of samples was defined by insulating the part of the surface
with paraffin.

2.3. Synthesis of SnOx Layers on Sn Foams

The anodization was also carried out at room temperature in a two-electrode system with the
prepared tin foams used as anodes and platinum mesh serving as a cathode. The process was performed
in 1 M NaOH (Sigma Aldrich) at the constant potential of 4 V for 10, 20, and 30 min. Then, as anodized
SnOx foams were rinsed in isopropanol and water, and dried in air. After that, some samples were
annealed at 200 ◦C for 2 h in air with a heating rate of 2 ◦C min−1 using a muffle furnace (FCF 5SHM Z,
Czylok, Poland).

2.4. Materials Characterization

The morphology of the materials was verified using an optical microscope (Delta Optical Evolution
100 Trino Plan with attached Delta Optical DLT-Cam PRO 3 MP digital USB camera as well as with
an external LED lamp for upper illumination, Delta Optical, Poland) and Field-Emission Scanning
Microscope (FE-SEM/EDS, Hitachi S-4700, Japan with Noran System 7). All geometrical parameters,
including the thickness of films and pore sizes, were verified right from FE-SEM images using WSxM
v.12.0 software [41].

X-ray diffraction (XRD) measurements were performed using the X-ray diffractometer Rigaku
Mini Flex II with monochromatic Cu Kα radiation (λ = 1.5418 Å) in the 2θ range of 20◦–80◦ with a scan
speed of 0.5◦ min−1 and a step size equaled to 0.02◦.

Photoelectrochemical (PEC) measurements were carried out using a photoelectric spectrometer
combined with a potentiostat (Instytut Fotonowy, Kraków, Poland) equipped with the 150 V Xe arc
lamp. PEC tests were performed in a three-electrode cell with a quartz window. An Sn/SnOx sample
serving as a working electrode was illuminated with a monochromatic light in the wavelength range
of 250–500 nm. A Pt wire and saturated calomel electrode (SCE) were used as a counter and reference
electrodes, respectively. Photocurrents were recorded in a borate buffer solution (pH ≈ 7.5) at the
potential of 0.9 V vs. SCE.
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The wettability of the tested samples was verified with the means of water contact angle (WCA)
measurements using an OCA25 goniometer (Data Physics, San Jose, CA, USA) with an automatic
dosing system. On each Sn/SnOx surface, three separate droplets were put, and 2 min-long movies
were recorded in order to monitor the changes in the wettability. Where possible, CA was calculated
based on the sessile drop method. The average CA is based on ten consecutive measurements on each
droplet. All of the measurements were conducted at room temperature and humidity.

3. Results

3.1. Electrodeposition of Sn Foams

During the metal electrodeposition in strongly acidic electrolytes at high current densities,
an intense hydrogen evolution reaction (HER) is typically observed on the electrode surface.
This phenomenon is firmly in line with the ragged current density vs. time curve recorded during
electrodeposition at the aforementioned conditions (see Figure S1 in the Supplementary Information).
As mentioned above, hydrogen bubbles arising from the reduction of H+ ions play a role of a “soft
template” during the process, and because of their periodic generation and detachment, the metal
foam featured with irregularly shaped voids is formed on the conductive substrate (here Sn foil)
due to deposition of tin into the gaps between the attached bubbles. Moreover, high potentials and,
consequently, current densities favor the intensive metal nucleation [42] followed, in particular for Sn, by
the formation of highly dendritic deposits [43], which, acting simultaneously with the above-mentioned
effect of bubble template, leads to the generation of the hierarchically structured material.

The procedure of substrate surface pre-treatment was first considered in order to achieve possibly
the most stable Sn foams that can be further electrochemically oxidized without being damaged or
delaminated from the underlying tin foil. Four different types of substrates were tested: as-received
(degreased) Sn foil, Sn foil roughed with 60, 220, and 800 grit sand-paper, Sn foil activated in HCl, and
Sn foil, both roughed and activated. The optical microscope images of particular substrates together
with Sn foams deposited on them are collected in Figure S2 (see the Supplementary Information). In
general, it was impossible to obtain the Sn foam fully covering the substrate when no pre-treatment
was applied before the electrodeposition. The resulting deposit only partially covers the Sn foil,
and most of the electrodeposited foam delaminated from the surface just during sample removal
from the electrolyte due to its extremely poor adhesion. After some preliminary experiments, it was
confirmed that adequate preparation of the substrate surface leads to obtaining nanoporous foams,
which uniformly covers the entire surface subjected to electrodeposition. For this reason, all foams used
in further studies have been electrodeposited on previously pre-textured and activated metal surfaces.

FE-SEM images of the metallic tin foam obtained by electrodeposition for 60 s in acidulated
20 mM SnCl2·2H2O at the potential of 6 V are shown in Figure 1. It can be seen that the porous foam
consists of randomly distributed dendrites grown uniformly on the entire metal surface (see also the
optical microscope image in Figure S2H in the Supplementary Information). The estimated average
value of pore diameter near the surface is ~35 µm. However, a closer inspection reveals that the voids
with a diameter of ~15 µm appeared in a deeper part of the deposit. This is in excellent agreement
with the results obtained by other authors showing that the pore size of the foam increases with the
distance from the substrate due to the coalescence of hydrogen bubbles [9]. A typical individual
dendrite consists of a stem with a diameter of ~1.5 µm and side branches with a thickness of ~200 nm
(see Figure 1c). The XRD pattern of electrodeposited foam shown in Figure 2a confirms that tetragonal
Sn (ICDD card no. 00-004-673) is the main component of the obtained foam.
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on the particular surface.
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Figure 2. (a) X-ray diffraction (XRD) patterns of the as-received Sn foam (black line), Sn foam after
20 min of anodization (red line), and Sn-foam after anodization and annealing in air at 200 ◦C for 2 h
(blue line); (b) current density vs. time curves recorded during the anodization process conducted on
the Sn foil (red line) and Sn foam (black line) in 1 M NaOH at the potential of 4 V.

As-obtained Sn foams were superhydrophilic with a CA < 10◦ (the image of water droplet just
after the contact with the surface is shown as an inset in Figure 1a). Completely opposite wetting
behavior of Sn foams was observed by Cao et al. [37], who found them either hydrophobic or even
superhydrophobic (with the CA range of 120–165◦), depending on electrodeposition conditions.
The authors attributed this phenomenon mainly to the self-passivation of the Sn surface resulting in
Sn/SnOx foams. However, since in both cases, Sn foams were stored at ambient conditions enabling
the self-passivation of the electrodeposit, the opposite wetting behavior of as-received tin foams must
be explained in terms of their different morphology caused by different electrodeposition conditions
(mainly applied potential and concentration of Sn2+ ions). Indeed, layers obtained by Cao et al. are
composed of more uniform dendrites with a stem and branches having a quite similar size, and an
average pore diameter near the surface which is much larger (>100 µm) than in our case (see above) [37].
Taking the above into consideration, it can be stated that the self-passivation of Sn foam is not always
enough to achieve surface superhydrophobicity.

Since an oxide film can be generated on the Sn surface by its annealing in air at 200 ◦C, we decided
to check if such a thermal treatment will affect the wettability of Sn foams. As can be seen in Figure 1d,
after annealing the foam became superhydrophobic with the average CA of 150 ± 4◦. Moreover, low
adhesion between the surface and the water droplet was observed, since the droplet could hardly
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be transferred from the syringe tip to the surface. This indicates that the water at the thermally
passivated Sn/SnOx foam was in the Cassie–Baxter state, i.e., the droplet is not able to effectively wet
the microstructure due to the air trapped underneath.

Such a dramatic change in wettability caused by annealing could be attributed to two factors.
Firstly, a thin layer of oxide is formed on the metal surface during thermal treatment. Secondly,
some changes in the morphology occurred during annealing, as can be seen in Figure 1d–f. It should
be mentioned that the annealing temperature of 200 ◦C is only slightly lower from the melting
point of bulk tin (~230 ◦C) therefore, some metal softening leading to changes in the morphology
of dendrites can be expected. It is clear that after annealing, the foam structure became denser, and
individual branches within the dendrites are melted or bonded together by thermally generated
oxide (especially visible in Figure 1e,f). However, taking into account that in case of the plain Sn foil,
a thermally generated oxide layer significantly increases hydrophilicity of the surface (CA for the
bare Sn foil is 88 ± 1◦ and decreases to 57 ± 2◦ after annealing—see Figure S3 in the Supplementary
Information), the morphological changes occurring during thermal treatment are mainly responsible
for the superhydrophobic nature of annealed Sn foams.

As prepared Sn foams were then used as starting materials for anodization in order to verify if the
formation of nanoporous oxide layer without damage of the foam structure is possible, and if so, what
is the effect of such kind of the porous shell on properties of Sn/SnOx foams.

3.2. Anodic Oxidation of Sn Foams

After electrodeposition, Sn foams were subjected to potentiostatic anodic oxidation in the alkaline
electrolyte. All anodization conditions were developed in our previous works [24,32]; however, due to
the micro/nanostructured character of foams, the process duration needs to be carefully reconsidered.
In order to investigate this parameter, a series of anodizations were carried out with three different
anodizing times ranging from 10 to 30 min. Anodization of the plain Sn foil was also performed for
comparison. Figure 2b shows the current density vs. time plots recorded during anodic oxidation
of the tin foam (black line) and foil (red line). Significant differences between processes carried out
using the Sn foil and foam can be easily recognized. Firstly, in the case of foam anodization, the
current values are significantly higher, which indicates a much higher working surface area of metal
foams in comparison to the plain surface (as in both cases current densities were calculated with
respect to the plain surface of the electrode). Secondly, the curve recorded during anodization of the
Sn foam exhibits a significantly different and unusual shape. For both types of substrates, a current
density drop caused by the formation of the compact passive oxide layer is observed immediately after
applying the potential and it is followed by the current rise, being an indication of the pore formation
(for detailed discussion of current density shapes and particular stages of anodization, please refer
to our previous works [24,32,44,45]). After about 100 s of anodization of the Sn foil, a steady-state
current is reached, and no significant changes are noticeable until the end of the process. Contrary to
this, when the Sn foam was anodically oxidized, current stabilization is reached much faster (after
c.a. 50 s of anodization) but after c.a. 500 s it starts to drop significantly. This phenomenon can be
attributed to the complete anodization of thinnest parts of Sn dendrites within the foam. After about
1000 s of anodization, the current density reached a stable value indicating that most of the dendrites
were successfully oxidized, and there are no significant changes in the active surface of the metallic Sn
substrate on which oxide formation can occur.

The FE-SEM images of as obtained nanostructured layers are presented in Figure 3. It can be
seen that for samples anodized for 600 and 1200 s, the morphology of metal foam did not change
significantly, and an open-porous structure is still preserved; likewise, a porous anodic oxide layer
uniformly covers the whole metal surface. On the contrary, when the process is conducted for 1800 s,
most of the foam delaminates from the substrate (see Figure S4 in the Supplementary Information) due
to a significant drop in mechanical resistance of the material caused by the complete anodization of
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metallic dendrites. It is visible in Figure S4B that dendrites are crumbled and distorted. Therefore,
only samples anodized for 600 and 1200 s were taken for further studies.Nanomaterials 2020, 10, 410 7 of 12 
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In all cases, the average diameter of nanochannels within the anodic film was estimated to be
~60 nm what is in accordance with values previously observed for anodic SnOx formed on the Sn foil
(for details see our previous works [24,44]). As can be seen in Figure 2a, no significant changes in XRD
patterns of Sn foams were caused by anodization that indicates the amorphous or poorly crystalline
nature of the anodic film and is consistent with our previous findings [44].

The wettability of anodized samples was also studied. As we recently proved, the generation
of nanoporous SnOx film on a flat Sn foil significantly improves hydrophilicity of the surface [40].
As shown in insets in Figure 4a,d, the presence of porous oxide did not change the wettability of Sn
foams, i.e., even after anodic oxidation, such layers remain superhydrophilic (CA < 10◦).
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The as-obtained Sn/SnOx foams were then subjected to annealing in air at 200 ◦C and SEM images
of obtained materials are collected in Figure 4. Contrary to the annealed “bare” Sn foam, no significant
changes in the microstructure of the foam were caused by thermal treatment. Dendrites are still
preserved, and their branches remain separated (see especially Figure 4c).

The XRD pattern of annealed sample exhibits, except apparent diffraction peaks corresponding to
metallic tin, two additional low-intensity peaks located at c.a. 30◦ and 33◦, which give the evidence for
the presence of the SnO crystalline phase after thermal treatment. This can be, on the one hand, the
result of thermal oxidation of the remaining Sn (especially significant in case of micro/nanostructured
substrate), and on the other hand, the crystallization of Sn2+-rich domains within the as-anodized
non-stoichiometric anodic SnOx structure [29,40].

Moreover, for the samples anodized for 1200 s, a noticeable degradation of oxidized dendrites
occurs during annealing resulting in a gradual disintegration of the thinnest parts of branches
(see Figure 4f). Therefore, at this point, it can be stated that in order to maintain integrity of dendrites,
careful optimization of the anodizing duration together with conditions applied during thermal
treatment (if needed for a particular application) is strongly required.

What is interesting, contrary to the “bare” Sn foam, those anodically oxidized remain
superhydrophilic even after annealing (see insets in Figure 4a,d). It means that the presence
of a nanoporous SnOx shell efficiently suppresses significant morphological changes during
thermal treatment.

3.3. Photoelectrochemical Tests of Sn/SnOx Foams

Anodized Sn foams were also subjected to some preliminary photoelectrochemical measurements.
Unfortunately, the electrochemical stability of samples anodized for 10 min was insufficient to perform
a full set of measurements. Therefore, only Sn/SnOx systems obtained after 20 min of anodic oxidation
were tested. An example of the chronoamperometric curve recorded during the sequential illumination
of as-synthesized Sn/SnOx is presented in Figure S5 (see the Supplementary Information). Although
noticeable dark currents appeared during anodic polarization of the sample, they were stable enough
to allow recording of the photocurrent spectrum, which is shown in Figure 5a (red line).
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It has been proven, that annealing of anodic SnOx layers formed on the plain Sn foil not only
can improve the photoresponse of anode [29,40,44] resulting in both higher photocurrents and
enhanced electrode stability, but also can affect the Sn2+ content and, in consequence, bandgap of the
semiconductor [40]. For this reason, the photoresponse of annealed Sn/SnOx foams was also tested,
and the obtained photocurrent spectrum is also shown in Figure 5a (black line).

Incident photon to current efficiency (IPCE) values was calculated for both studied samples using
Equation (1),

IPCE = 1240·
Ip(λ)

P(λ)·λ
(1)
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where: Ip (λ) is photocurrent density (A·m−2), P(λ) is the incident power density of light (W·m−2) and
λ is the wavelength (nm), and the resulting IPCE spectra are shown in Figure 5b.

Surprisingly, contrary to the previous works [29,40], the higher photoelectrochemical response
was observed for the as-synthesized sample. A significant IPCE drop caused by annealing can be
attributed to the different behavior of micro/nanostructured Sn during thermal treatment, including
further oxidation of the metallic substrate resulting in the generation of compact SnO layer at the
Sn/SnOx interface. However the most important is the partial disintegration and fragmentation of the
thinnest parts of dendrites (see Figure 4f) resulting in a lower active surface area of the photoanode
and worse electrical contact between the semiconductor and metallic current collector.

Finally, the bandgap for both as-synthesized and annealed Sn/SnOx foams was estimated from
(IPCE hυ)2 vs. (hυ) plots (Tauc plots) presented in Figure 5c. Again, contrary to anodic SnOx obtained
directly on Sn foils, the bandgap for the annealed sample was found to be significantly higher (3.51 eV)
than for as-synthesized one (3.21 eV).

However, it should be emphasized that the results described above should be treated only
as preliminary evidence that such kind of hierarchical Sn/SnOx systems can exhibit significant
photoelectrochemical activity. However, further extensive studies should be performed in order to
find optimal procedures for both the synthesis of the material itself and its post-treatment. Particular
emphasis should be put on improving the conversion efficiency, but mostly, the stability of the material.
Such works are currently being carried out in our group.

4. Conclusions

In summary, it has been proven for the first time that hierarchical nanoporous tin/tin oxide
systems can be successfully obtained by electrochemical deposition of the metallic Sn foam in an acidic
electrolyte followed by its anodic oxidation in NaOH. Moreover, careful optimization of the anodizing
duration allows the formation of nanoporous oxide shell on the metallic core without significant
changes in the foam morphology. Contrary to thermally oxidized foams, which are hydrophobic,
nanoporous tin/tin oxides were found to be superhydrophilic even after further thermal treatment
that means that anodic oxidation gives the opportunity to tune the wetting behavior of this kind of
porous materials. It is strongly expected that such hierarchical nanostructured composites can be
very promising candidates for various applications, including energy conversion and storage systems.
Finally, it is believed that similar procedures of electrochemical deposition and anodization can also be
employed for the fabrication of similar hierarchical metal/metal oxide nanostructures of other elements.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/3/410/s1,
Figure S1: Current density vs. time curve recorded during Sn electrodeposition in the electrolyte containing
20 mM SnCl2·2H2O and 1.5 M H2SO4 at the potential of 6 V, Figure S2: Optical microscope images of Sn samples
with various pre-treatments (no pre-treatment—A; roughed by sandpaper—C; activated in HCl—E; roughed and
activated—G) together with Sn foams electrodeposited on particular substrates (B, D, F, H), Figure S3: Optical
images of water droplets on the surface of plain Sn foil before (A) and after (B) annealing in air at 200 ◦C for
2 h, Figure S4: FE-SEM images of Sn foams after 30 min of anodization in 1 M NaOH at 4 V. Low magnification
(A), and higher magnification (B) images, Figure S5: Chronoamperometric curve recorded during the sequential
illumination of the Sn/SnOx foam with the light of different wavelengths (with a step of 10 nm) at the potential of
0.9 V vs. SCE.
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