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Introduction

The study of cancer biomarkers is an important issue 
due to the role they play in the early detection, diagnosis, 
and prognosis of cancer. A biomarker can be defined as 
a characteristic that is objectively measured and evaluated 
as an indicator of normal biologic processes, pathogenic 
processes or pharmacologic responses to a therapeutic 
intervention [2]. Studying biomarkers and their behavior 
has great potential to contribute to the discovery and 
understanding of the origin and evolution of cancer [3].

The analysis of high throughput experiments such as 
microarrays can lead to the identification of potential 
cancer biomarkers. Microarrays can be used to 

simultaneously analyze the expression of thousands of 
genes to select those that are differentially expressed. After 
selection, differentially expressed genes still go through 
further experimental validation in order to be confirmed 
as biomarkers.

Unlike other diseases such as cystic fibrosis [4] or mus-
cular dystrophy [5], where mutations of one gene can 
cause disease, no one single gene “causes” cancer [6]. 
Identifying potential cancer biomarkers plays a critical 
part in the understanding of cancer. Establishing how 
these genes possibly interact with one another and how 
these interactions could possibly contribute to the evolu-
tion of cancer is just as important. One possible and 
accepted way to better understand these interactions is 
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Abstract

Establishing the role that different genes play in the development of cancer is 
a daunting task. A step toward this end is the detection of genes that are im-
portant in the illness from high-throughput biological experiments. Furthermore, 
it is safe to say that it is highly unlikely that these show expression changes 
independently, even with a list of potentially important genes. A biological 
signaling pathway is a more plausible underlying mechanism as favored in the 
literature. This work attempts to build a mathematical network problem through 
the analysis of microarray experiments. A preselection of genes is carried out 
with a multiple criteria optimization framework previously published by our 
research group [1]. Afterward, application of the Traveling Salesperson Problem 
and Minimum Spanning Tree network optimization models are proposed to 
identify potential signaling pathways via the most correlated path among the 
genes of interest. Biological evidencing is provided to assess the effectiveness of 
the proposed methods. The capability of our analysis strategy is also demon-
strated through the undertaking of meta-analysis studies. Three important aspects 
are novel in this work: (1) our joint analyses of different groups of lung cancer 
states reveal new correlations, biologically evidenced, and previously undocu-
mented; (2) computation of the correlation coefficients from expression differ-
ences leads to an effective use of network optimization methods; and (3) the 
methods yield mathematically optimal correlation structures: no other configura-
tion is better correlated using the available information.
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to identify a signaling pathway among cancer biomarkers. 
A signaling pathway can be defined as the sequential 
interaction of products (such as proteins) of different 
genes, which cause an effect in the behavior of a cell. 
The abnormal activation of signaling pathways can lead 
to several different diseases, including cancer. Identifying 
and understanding these abnormal signaling pathways 
could possibly contribute to the diagnosis and treatment 
of cancer [7].

This work discusses the issue of identifying a potential 
signaling pathway among a list of potential lung cancer 
biomarkers through a network representation that leads 
to optimal configurations. The list of potential biomarkers 
is determined from microarray databases through the 
application of Multiple Criteria Optimization [8], a strategy 
proposed by our research group. The network optimiza-
tion models initially proposed in this work to obtain 
potential signaling pathways among potential cancer bio-
markers are the Traveling Salesperson Problem (TSP) [9] 
and the minimum spanning tree (MST) [10].

Literature Review

There is an inherent difficulty in analyzing microarrays 
(and—omics in general) associated with the large size of 
these experiments. Microarray experiments simultaneously 
measure the expression levels of thousands of genes, gen-
erating large amounts of data. The analysis of these data 
present a challenge to biologists; new tools are needed 
to derive biological insight from these experiments, includ-
ing signaling pathways [11–15].

Currently several experimental methods for determining 
signaling pathways exist. Signaling pathways, which accord-
ing to Baxevanis and Ouellette involve many direct protein-
protein relationships, can be mapped using protein-protein 
interaction detection methods such as copurification and 
nuclear magnetic resonance [16]. Each one of these types 
of experiments requires time, expertise, and economic 
resources, providing opportunities for improvement. The 
methodology proposed in this article, based on network 
optimization methods, is capable of determining a set of 
global optimal solutions. This overcomes some of the 
limitations of experimental methods.

There are also different computational methods for the 
identification or analysis of signaling pathways [17]. The 
following table lists software programs found during a 
recent literature search (Table  1), most of which can be 
also found through a PubMed search [18].

The ArrayXPath is a web-based tool for profile map-
ping and visualization of microarray gene expression from 
biological pathway resources [19]. ArrayXPath automati-
cally recognizes microarray probe identifiers by analyzing 
the statistical significance of the association between 

submitted data and maps in the pathway database [12]. 
ArrayXPath applies Fisher’s exact test to evaluate the sta-
tistical significance of the correlations. This software ana-
lyzes clusters of gene expression, and searches already 
existing pathway databases such as GenMAPP, Kyoto 
Encyclopedia of Genes and Genomes (KEGG), and 
BioCarta, among others. The methods proposed in this 
work do not require genes to be analyzed as clusters, 
and identify a potential pathway solution among previ-
ously identified over or under-expressed genes highlighted 
for a disease of interest. The analyses proposed in this 
work are based on mathematical optimization, which serve 
as a contrast to the statistical approaches found in the 
literature, such as those in ArrayXPath.

Pathway Miner is another web-based tool that mines 
gene associations and networks in biological pathway 
information. The tool permits the analysis and interpreta-
tion of pathway information and networks based on the 
association with databases, suitable for high-throughput 
analysis of gene expression data [12]. Pathway Miner 
provides two options to analyze genes in a dataset: (1) 
to search genes based on their associations in metabolic 
and/or cellular and regulatory pathways from pathway 
resources, and (2) perform a statistical test and rank sig-
nificant pathways based on their P-values from three dif-
ferent resources: KEGG, BioCarta, and GenMapp [20]. 
Pathway Miner applies a one-sided Fisher’s exact test, as 
ArrayXPath does. Similar to several existing methods and 
software, Pathway Miner relies on statistical procedures. 
The methodologies presented in this article, in contrast, 
are of deterministic nature.

Signaling pathway impact analysis (SPIA) is a software 
tool used to measure the actual perturbation on a given 
pathway under a particular condition [21]. This package 
provides a technique for pathway analysis based on com-
bination of two types of evidence, the over-representation 
of differently expressed genes and the perturbation of the 
pathway as measured by expression changes. For each 
pathway, a P-value is calculated. With the assumption 
that the number of differentially expressed (NDE) genes 
in a pathway follows a hyper-geometric distribution, the 

Table 1. Pathway analysis software [12].

Tool Method

ArrayXPath Fisher exact test; Multiple testing 
correction

Pathway miner Fisher exact test
 Signaling pathway impact 
analysis

P-value, false discovery rate

PathRanker 3M,HME3M
MAPPFinder Standardized difference score (z) from 

hypergeometric distribution
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probability of the number of differentially expressed (PNDE) 
genes in the given pathway is calculated. The second 
probability, probability of pathway perturbation (PPERT), 
is calculated based on the estimated amount of perturba-
tion in each pathway due to the differential expression 
of the input gene list [12]. This differential expression is 
calculated by subtracting the expression levels between all 
the control samples from all case samples for each par-
ticular gene. SPIA and its probabilistic capability could 
benefit from the deterministic optimal solution found by 
this work’s proposed method for comparison or referenc-
ing purposes.

PathRanker is a software tool that can identify genetic 
pathways that dictate the response of metabolic networks 
to specific experimental conditions [22]. Initially, 
PathRanker uses a nonparametric pathway extraction 
method to identify the most correlated paths through a 
metabolic network. Then, it extracts the defining structure 
within these top-ranked pathways using both Markov 
clustering and classification algorithms. Furthermore, 
detailed node and edge annotations are defined, which 
enables tracking of each pathway, not only with respect 
to its genetic dependencies, but also for an analysis of 
the interacting reactions, compounds, and KEGG subnet-
works [22]. PathRanker relies on probabilistic clustering, 
to which a deterministic optimal solution might add a 
useful point of comparison as well.

MAPPFinder is another software that can dynamically 
link gene-expression data to Gene Ontology (GO) [23] 
hierarchies. MAPPFinder calculates the percentages of genes 
measured that meet a user-defined criterion [11]. Such 
criterion is required for each specific GO node, and for 
the cumulative total of the number of genes meeting the 
criterion in a parent GO term combined with all its chil-
dren, giving a complete picture of the number of genes 
associated with a particular GO term. Using this percentage 
and a z-score, the user ranks the GO terms by their rela-
tive amounts of gene-expression changes [11]. As mentioned 
before, MAPPFinder requires a user-defined criterion, which 
can be very subjective and possibly affect the convergence 
of the results. These issues might be circumvented by the 
methods like those proposed in this work.

The literature review presented here provides evidence 
for an opportunity to create a deterministic optimization-
driven approach to the construction of signaling path 
proxies, even as a way to contrast results from the sto-
chastic/statistic approaches already available. As illustrated 
in the following sections, the optimization-driven approach 
is capable of finding lists of important genes, as well as 
the most correlated path among them, without the need 
for the user to adjust parameters that influence the output, 
thus providing objectivity and repeatability. This charac-
teristic sharply differs from that in artificial intelligence 

and purely-statistic procedures, where significance areas, 
thresholds, assumed underlying distributions, and weights, 
among other factors, are decisions that importantly affect 
the results and that are left for the user to manipulate.

Methodology Background

Traveling salesman problem

The Traveling Salesman Problem is one the most famous 
combinatorial optimization problems [24]. In its most 
common interpretation, the TSP tries to construct the 
shortest tour through n cities [25], for a salesperson to 
visit, usually going back to a preselected base city [26]. 
In other words the TSP consists of an optimization prob-
lem that searches for a cyclic sequence within a network 
that minimizes a certain measure such as total cost or 
total distance.

As an example, take the network presented in Figure  1 
. A salesperson has to travel from city 1 through each 
city exactly once, and return home to city 1. If the objec-
tive was to obtain a tour that minimizes the total distances, 
that is a cycle with minimum total distance, there would 
be total of (5-1)!  =  24 possible cycles [27].

The TSP can be modeled as a network optimization 
problem. Consider that cij represents the cost of trave-
ling from city i to city j and let yij be a binary vari-
able, indicating whether or not the salesperson travels 
from city i to city j. In addition, let us define flow 
variables xij on each of the m arcs (i,j) and assume 
that the salesperson has n-1 units available at node 
1 (supply), which is arbitrarily selected as a “source 
node,” and the salesperson must deliver 1 unit to 
each of the other nodes or vertices (demand) [1]. 
The model is as follows [1]: 

Figure  1. Example of the application of the traveling salesperson 
problem.
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Let A be the set of all arcs (i,j), then let 
A’  =  {(i,j):yij  =  0} that is the arcs forming in a solution 
to the previous model, and let A’’  =  {(i,j):xij  >  0}, that 
is the arcs with nonnegative flow in a solution to the 
previous model. The problem tries to minimize the objec-
tive function representing the total cost of a solution 
in Equation  1. The constraints (2 and 3) imply that 
exactly one arc of A’ leaves and enters any node i; 
therefore, A’ is the union of node disjoint cycles con-
taining all of the nodes. In general, any integer solution 
satisfying (eq.  2) and 3) will be union of disjoint cycles; 
if any such solution contains more than once cycle, they 
are referred to as subtours, as they pass through only 
a subset of nodes [1].

In constraint (4) Ɲ is a n  ×  m matrix, called the node-arc 
incidence matrix of the minimum cost flow problem. Each 
column ij in the matrix corresponds to the flow variable 
xij, in (4) all of them contained in the m  ×  1 vector x. The 
column ij has a value of +1 in the ith row to indicate 
incoming flow, and a value of −1 in the jth row to indicate 
outgoing flow; the rest of its entries are zero. The right hand 
side vector b with dimensions nx1 contains positive values 
to indicate supply in particular nodes, negative values to 
indicate demand in particular nodes, or zeroes in transship-
ment nodes. Constraint (4) ensures that A” is connected as 
we need to send 1 unit of flow from node 1 to every other 
node via the arcs in A”. The forcing constraints (5) imply 
that A” is a subset A.’ These conditions imply that the arc 
set A’ is connected and thus cannot contain subtours [9].

Minimum spanning tree

The minimum spanning tree considers an undirected and 
connected network, where the given information includes 
some measure of the positive length (e.g., distance, cost, 
time, etc.) associated to each link [10,28]. The MST involves 
choosing a set of links that have the shortest total length 

among all sets of links that ensure that the chosen links 
provide a path between each pair of nodes [26].

An example of the MST is presented in Figure  2 where 
we have five nodes of a network with their potential links 
and the positive length for each if it is inserted into the 
network. Enough links must be inserted to satisfy the require-
ment that there is a path between every pair of nodes. The 
objective is to satisfy this requirement while at the same 
time minimizing the total length of the links inserted into 
the network. In the example in Figure  2 the solution is 
highlighted by the darker and thicker lines. In the case of 
a spanning tree the total number of possible solutions con 
be calculated with Cayley’s formula nn-2 where n is the 
number of nodes in the graph [29]. In this particular example 
there is a total of 55-2  =  125 possible solutions

Methodology

In this work the TSP and the MST are the methods 
proposed to obtain an optimal proxy for a signaling path-
way. In order to begin to apply these methods however, 
the first step is to identify genes of interest based on the 
differences in expression when comparing control and 
cancer tissues. Multiple Criteria Optimization (MCO) based 
on Pareto conditions, as described in the works of Lorenzo 
et  al. [30] and Camacho et  al. [31], is used for this 
purpose. An MCO program developed in MatLab [31] 
is applied. The proposed network models are applied to 
structure the list of selected genes. The networks use sta-
tistical linear relationships between gene expression changes 
as measured by Pearson correlation between pairs 
[32–34].

Statistical correlation can be defined as a measure of 
the coordinated behavior between two random variables. 
It measures the strength or degree of association between 
two variables, say X and Y. Linear correlation values range 
from −1 to +1. The correlation can be considered more 
intense the closer the linear correlation values are to either 
+1 or −1. If we have a series of n measurements of X 
and Y written as xi and yi where i  =  1,2…n, then the 

(1)
Minimize

∑

(ij)∈A

cijyij

(2)

∑

1≤j≤n

yij =1∀i

(3)

∑

1≤i≤n

yij =1∀j

(4) x=b

(5)xij ≤ (n−1)yij ∀(i,j)∈A

(6)xij ≥0∀(i,j)∈A

(7)yij =0 or 1∀(i,j)∈A

Figure 2. Example of a minimum spanning tree.
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sample correlation coefficient can be used to estimate the 
Pearson correlation ρ between X and Y as follows:

where x̄ and ȳ are the sample means of X and Y, and 
sx and sy are the sample standard deviations of X and Y 
[35,36].

In this work, as a first approximation, the linear cor-
relations that can be observed among a list of genes 
considered to be potential biomarkers are used as a base 
to construct networks such as the one presented in Figure 3.

As shown in Figure 3 there are many possible sequences 
that can be followed in order to discover a potential 
signaling pathway, even from a small list of genes. In 
this example, for five genes there can be (5-1)!  =  24 pos-
sible solutions. The number of possible solutions grows 
exponentially as more genes are included. The TSP can 
serve to support the discovery of a signaling pathway 
among a list of genes of interest with efficiency and effi-
cacy since, if solved optimally, it will arrive at the most 
correlated cycle path.

Traveling salesperson problem

The TSP can be used to discover a potential signaling 
pathway from a network of genes, by identifying a sequence 
that maximizes the linear correlation among the genes 
[30]. The cyclic nature of the TSP solution would rep-
resent the feedback mechanisms present in gene product 
interactions. The rationale behind using a connecting model 
for the gene expression changes is that in biology nothing 
works in isolation. Every action in a cell or organism 
has an origin (coded information or stimuli) and will 

produce a response in another cell component. To main-
tain control over their internal conditions, cells coordinate 
their gene expression changes. Cells also have evolved to 
waste little energy, which is why this work proposes opti-
mization models based on the coordinated gene expression 
changes as proxies for pathways.

For the TSP, a list of potential biomarkers of interest 
must first be identified. The list was obtained using MCO 
[8]. In short, MCO aims to identify the best compromis-
ing solutions from a set of possible solutions characterized 
by at least two possible performance measures in conflict. 
The analysis of the selected lung cancer microarray data-
base was modeled as an MCO problem. Database GDS3257, 
which was selected for this work contained readings for 
22,283 genes and 107 samples, where 49 are control and 
58 cancerous tissue samples [37].

Once the potential biomarkers were established, the next 
step was to calculate the differences in genetic expression 
for each gene. This was done by comparing all of its control 
samples against all of its cancer samples. Figure 4 graphically 
exhibits the differences in genetic expression in the case of 
the SPP1 gene, where each point is the level of expression 
for either a control or cancer tissue. SPP1 was identified as 
a potential lung cancer biomarker utilizing multiple criteria 
optimization based on Pareto optimality conditions.

The genetic expression differences in all genes con-
sidered to be potential biomarkers were used to calculate 
the linear correlations among each pair. The values of 
the differences serve as input for calculating the linear 
correlations between all genes being considered (see 
eq.  8). Figure  5 is a representation of the correlation 
between genes SPP1 and AGER based on their differ-
ences in genetic expression between control and lung 
cancer tissues. Each point in Figure 5 is graphed accord-
ing to the difference in genetic expression between a 
particular pair of control and lung cancer tissue sample 

(8)

𝜌
xy
=

∑n

i=1
(xi − x̄)(yi − ȳ)

(n−1)sxsy

=

∑n

i=1
(xi − x̄)(yi − ȳ)

�

∑n

i−1
(xi − x̄)

2
n
∑

i−1

(yi − ȳ)
2

Figure  3. Representation of a potential sequence of a signaling 
pathway.

Figure 4. Representation of the expression differences in normal and 
cancer tissues.
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for SPP1 and AGER. Let us assume d1 represents the 
difference in genetic expression between a particular 
pair of control and lung cancer tissue samples for SPP1, 
and d2 is the difference in genetic expression between 
the same pair of tissue samples for AGER. Each point 
can be considered to be (d1, d2).

The linear correlations between all genes of interest are 
calculated using Equation  8. The linear correlation values 
obtained can be associated with the arcs in a network 
model, such as the one in Figure  3. The absolute values 
of these linear correlations are used in order to obtain a 
sequence that maximizes the intensity of the linear correla-
tions of the analyzed genes. Once the linear correlation 
values for all the genes are obtained, they are used to 
construct a matrix such as the one in Table  2. The 11 
genes listed in Table 2 are potential lung biomarkers identi-
fied through MCO.

This matrix serves as input for the MCO program in 
MatLab (developed by our collaborator J. Rodríguez). The 
software is used to obtain an optimal sequence maximiz-
ing linear correlations among the eleven genes considered 
as potential biomarkers.

Minimum spanning tree

The TSP has the somewhat restrictive assumption that a 
signaling pathway behaves as a tour. The MST is an 
alternative method that results in a noncyclic structure. 
The MST allows representation of groups of coordinated 
gene expression changes that may be independent from 
each other. The MST does not consider feedback because 
it is an open structure. It was deemed convenient to 
contrast these models as they have different advantages 
and could provide complementary information. The MST, 
as described in Section “Minimum Spanning Tree”, is 
applied to develop a signaling pathway proxy from a list 
of genes identified as potential biomarkers (see Table  3). 
Parting from the same matrix developed from the linear 
correlations of the genes of interest (see Table  2) the 
MST results in a minimal tree with the largest correlation 
among the nodes of interest.

Lung Cancer Signaling Pathways

Case study: lung cancer

According to the National Cancer Institute, lung cancer 
is the second most common type of cancer and the pri-
mary cause of cancer-related death in both men and 

Figure 5. Example of correlation between potential biomarkers.

Table 2. Matrix of absolute values of pairwise gene correlations.

AGAR SFTPC TMEM100 FABP4 SPP1 WIF1 COL11A1 CYP4B1 FCN3 ADH1B CLDN18

AGAR 0 0.643 0.436 0.515 0.531 0.496 0.363 0.348 0.545 0.364 0.567
SFTPC 0.643 0 0.373 0.410 0.410 0.570 0.432 0.550 0.441 0.544 0.550
TMEM100 0.436 0.373 0 0.305 0.270 0.226 0.159 0.239 0.600 0.433 0.319
FABP4 0.515 0.410 0.305 0 0.317 0.257 0.070 0.310 0.201 0.384 0.407
SPP1 0.531 0.410 0.270 0.270 0 0.373 0.375 0.155 0.277 0.273 0.462
WIF1 0.496 0.570 0.226 0.226 0.257 0 0.241 0.390 0.371 0.470 0.446
COL11A1 0.363 0.432 0.159 0.159 0.079 0.241 0 0.236 0.326 0.253 0.265
CYP4B1 0.348 0.550 0.239 0.239 0.319 0.390 0.236 0 0.264 0.497 0.239
FCN3 0.545 0.441 0.600 0.600 0.201 0.371 0.326 0.264 0 0.312 0.370
ADH1B 0.364 0.544 0.433 0.433 0.384 0.470 0.253 0.497 0.312 0 0.404
CLDN18 0.567 0.550 0.319 0.407 0.462 0.446 0.265 0.239 0.370 0.404 0

Table 3. List of potential lung cancer biomarkers.

Potential biomarkers

AGER COL11A1

SFTPC CYP4B1
TMEM100 FCN3
FABP4 ADH1B
SPP1 CLDN18
WIF1
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women in the United States. Also based on analysis con-
ducted by this institution, an estimated $11.9 billion were 
spent on lung cancer care in 2014 [38,39].

As detailed previously, the GDS3257 database selected 
for this work was first reported by [37]. It contains 107 
samples, where 49 are control and 58 cancerous tissue 
samples. The subjects involved in this study ranged from 
the ages of 44–79  years old and had histologically con-
firmed primary lung adenocarcinoma, stages I–IV. The 
database also has detailed smoking and medical history 
information, which allows for division of the total of 107 
samples into one of three groups: no history of smoking, 
former smokers, and current smokers (see Fig.  6). Each 
of these samples show the measured relative expression 
of a total of 22,283 genes.

TSP and MST were applied to identify potential signal-
ing pathways from the list of eleven potential biomarkers 
for lung cancer obtained using MCO.

Traveling salesperson problem

By applying the TSP formulation, a sequence that maxi-
mizes the linear correlations from a large number of 
possible solutions was obtained using the methodology 
described by Lorenzo et  al., [30]. Figure  7 shows the 
results.

This sequence was obtained from the (11-1)!  ≈  3.6 
million possible solutions. It represents a solution that 
maximizes the linear correlations between the expression 
changes of these 11 genes. This result shows the potential 

Figure 6. Representation organization of database (GDS3257).
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of this work: being able to obtain an optimal cycling 
path from thousands (or millions) of possible solutions. 
It must be clarified that because this is an observational 
analysis of a microarray database, causality or directionality 
cannot be established at this point.

Minimum spanning tree

As an alternative method to the TSP, the MST was applied 
to obtain a tree that maximizes the linear correlations of 
the eleven genes that were identified previously. The result-
ing structure is presented in Figure  8.

The solutions obtained with the TSP and MST requires 
biological verification. There are scientific reports for some 
of the correlation links in the resulting models that will 
be discussed in Section “Biological Evidence and Validation 
of Proposed Methodology”.

Utilizing the combination of methodologies of MCO 
to determine a list of potential biomarkers from databases, 
and subsequently employing the TSP and MST to identify 
possibly signaling pathways from the genes of interest, 

could serve as a viable alternative to existing methods to 
provide an original analysis pipeline completely driven 
by optimization procedures.

Meta-analysis

This section describes the first steps taken to carry out 
a meta-analysis in order to identify signaling pathways 
of interest from the different groups previously described 
in Section “Case Study: lung cancer” between control and 
cancer tissues groups within GDS3257 database. These 
groups include: 16 samples Cancer Never-smoker (CNS) 
versus 24 samples Cancer Current Smoker (CCS), 16 
samples Healthy Current Smoker (HCS) versus 24 samples 
CCS, 16 samples HCS versus 16 samples CNS, 15 samples 
Healthy Nonsmoker (HNS) versus 24 samples CCS, 15 
samples HNS versus 16 samples CNS, and 15 samples 
HNS versus 16 samples HCS.

Initially, MCO was applied to identify genes with high 
variations in their relative expression levels when utilizing 
two performance measures, the absolute values of the 

Figure 7. Optimal correlation cycle among 11 potential biomarkers obtained with Traveling Salesperson Problem.

Figure 8. Optimal correlation walk among 11 potential biomarkers obtained with minimum spanning tree.
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differences between means and median as described in 
reference [31].

The following step was to apply the TSP and MST 
optimization methods to identify potential signaling path-
ways. For each group comparison the TSP and MST were 
applied and a signaling pathway was obtained. Figure  9 
represents the group comparisons conducted.

Both methods were applied to identify a signaling pathway 
when analyzing CNS versus CCS. Once MCO was conducted 
to determine the genes with the largest changes in relative 
expression, a total of 20 genes were identified as genes of 
interest for this particular comparison. The resulting network 
solution when applying the TSP and MST methods are 
represented by Figures  10 and 11 respectively.

Several similarities exist between both networks’ solu-
tions that are potentially interesting from a biological 
perspective. These two networks are the best solution from 
a total of (20-1)! and 2020-2 possible configurations for 
the TSP and MST respectively.

The next comparison conducted was for HCS versus 
CCS. The MCO solution produced a list of 16 genes. 
The same analysis described before was done. Figures  12 
and 13 are the graphical representations of the solutions 
obtained for each method respectively. In these solutions, 
as for the previous comparisons, there are notable 
similarities.

The third analysis was the comparison of HCS versus 
CNS, where a total of 23 genes were considered when 

Figure 9. Representation of six analyses between four conditions in microarray database GDS3257.

Figure 10. Optimal correlation tour using the traveling salesperson problem formulation (cancer never-smoker vs. cancer current smoker).
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carrying out the TSP and MST methods. The resulting 
signaling pathways are presented in Figures  14 and 15.

The following comparison was done between HNS versus 
CCS. When MCO was conducted, a total of 17 genes 
were identified. The TSP and MST were applied to obtain 
Figures  16 and 17.

The HNS versus CNS comparison produced a list of 
18 genes as inputs for the TSP and MST (Figs.  18 and 
19)

The last analysis carried out for this meta-analysis was 
the comparison between HNS versus HCS. When applying 
the TSP and MST for this comparison, the networks were 

Figure 11. Optimal correlation tree using the minimum spanning tree formulation (cancer never-smoker vs. cancer current smoker).

Figure 12. Optimal correlation tour using the traveling salesperson problem formulation (healthy current smoker vs. cancer current smoker).
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to be constructed from 30 genes of interest which height-
ened the number of possible solutions for both methods 
(Figs.  20 and 21).

The similarities that were maintained through the dif-
ferent analyses could prove to be biologically significant 
once further biological validation can be conducted. Table 4 
presents relationships that were observed in several of the 
resulting pathways when utilizing the TSP. The relations 
between ABCA8-ADH1B and TMEM100-FCN3-CLEC3B 
for example were maintained in several of the solution 
pathways.

This comparison of signaling pathways was also done 
for the resulting pathways when applying the MST, Table 5 
summarizes the comparison. For the MST there were also 
relationships maintained across different trees.

There are some arrangements of genes common between 
the TSP and MST, these are included in the following 
Table  6.

Biological Evidence and Validation of 
Proposed Methodology

Biological evidence for lung cancer case 
study

This section describes the search for existing biological 
evidence in literature to analyze and validate the results 
described in previous sections.

Based on the signaling pathways proposed by the TSP 
and MST formulations, public databases including KEGG 
and GeneCards were searched for relevant biological infor-
mation. Information for the solutions for the TSP (see 
Fig.  4) and MST (see Fig.  5) is presented in the following 
Tables (Table  7 and 8). Table  7 includes information on 
gene relations consisting of two genes within either signaling 
pathway. The table indicates if any information was found 
for a direct relationship for the genes, or if there is an 
indirect relationship through one or more genes, or if no 
information was found for the relation. Table  8 includes 
the same information, but for relations including three genes.

Several gene relations were identified to have either a 
direct or indirect connection. SPP1 and AGER (also known 
as RAGE) is one example of a direct relation that has 
been previously identified and forms part of the IL-2 
pathway. The COL11A1 and SPP1 relation is also docu-
mented within several known pathways as described in 
Table 7. Various other gene relations had evidence of being 
related to one another through other genes. In addition, 
the relation including AGER, SPP1, and COL11A1 is docu-
mented within various known pathways (see Table  8).

The gene relations included in our results can be cat-
egorized into two classifications, the first being gene rela-
tionships connected to lung cancer already reported, serving 

to validate our methodology. The second classification 
includes gene relationships involved in other types of 
cancer, which offer the greatest possibility for discovery. 
In the first type of classification, genes COL11A1, SPP1, 
AGER, WIF1, SFTPC, FABP4, and CLDN18 are included. 
Existing literature has previously established the change 
in expression in lung cancer for several of these genes, 
as well as being part of the correlated pathways between 
known driver genes (K-Ras and EML4-ALK) and tumor 
suppressor genes (RAR-beta, FHIT, RASSF1, INK4a/
ARFand p53). The correlated pathways between driver 
genes, tumor suppressor genes, and the genes of the first 
classification are as follows: COL11A1-SPP1 through ECM 
receptor/PI3K-Akt pathway, AGER through IL-2 and 
HGMB1 pathway, WIF1-SFTPC through WNT and WNT 
mediated beta catenin signaling pathway, CLDM18 through 
its function in tight junction on pathways.

The second classification of genes includes FCN3, 
ADH1B, TMEM100, and CYPB1. The expression changes 
of these genes have been reported for different cancer 
pathways. These include complement pathway, chemical 
carcinogenesis, tumor suppression, and cytochrome P450 
inflammatory responses respectively. Furthermore, all the 
genes have been correlated with inflammatory responses. 
These commonalities infer a possible relation to lung 
cancer pathways.

Biological evidence for meta-analysis results

As described in Section “Meta-analysis”, diverse gene rela-
tions could be observed throughout several of the com-
parisons between the different groups (see Fig. 9). Similarly 
with the previous section, a search for existing biological 
evidence was conducted based on the gene relations that 
were maintained in the TSP (see Table 7).

Sun et  al. [40] analyzed microarray data containing 
information on Parkinson’s disease. They identified a total 
of 10 distinctly differentially expressed genes, including 
RPS4Y1 and XIST, genes that were connected in our pro-
posed TSP signaling pathway, presenting the possibility 
that the expression of these genes is coordinated (for men). 
According to their analysis, they concluded that RPS4Y1 
and XIST, along with PRKAG2 and DLG1, can be regarded 
as gene biomarkers for Parkinson’s disease [40].

A relation between the expressions of ABCA8 and 
ADH1B, was reported by Liu et  al. [41], in their study 
of ovarian cancer progression, where it was found that 
ABCA8 and ADH1B were part of six genes that were 
downregulated in the condition. Through their analysis 
they concluded that high expression of ABCA8, along 
with ALDH1A2, might predict poor outcome in terms 
of survival. In addition, the report mentions that ADH1B 
and ALDH1A2 might be associated with drug resistance 
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[41]. Based on their conclusions, both ABCA8 and ADH1B 
have a role in ovarian cancer, which could possibly be 
similar in lung cancer according to our results.

The results for the PANTHER [42] Molecular Function 
Ontology tool (Fig. 22) provide information about common 
molecular functions that may be affected by the expression 
change in the genes selected in the different comparisons. 
Molecular functions possibly affected in the seven compari-
sons (including the global comparison) are: binding, struc-
tural molecule activity, catalytic activity, and transporter 
activity. When comparing the control and cancer groups 
for nonsmokers and current smokers, the common molecular 
functions are: translation regulator activity, binding, structural 
molecule activity, catalytic activity, and transporter activity. 

The common molecular functions between control and 
cancer for current smokers, and control and cancer for 
nonsmokers are: binding, receptor activity, structural mol-
ecule activity, catalytic activity, and transporter activity. Even 
as some of the genes change from list to list, there are 
common molecular functions that are maintained across 
the different comparisons, including the comparison between 
nonsmokers and current smoker controls.

Comparison to existing software

There are several methods or tools for identifying and 
constructing signaling pathways. GeneMANIA [43] was 
the tool selected for comparison with the methodology 

Figure 13. Optimal correlation tree using the minimum spanning tree formulation (healthy current smoker vs. cancer current smoker).
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described in this work. It is a tool that has a web interface 
for generating hypotheses about gene function, analyzing 
gene lists, and prioritizing for functional analysis [44].

GeneMania uses publicly available databases [45]. This 
includes coexpression data that is collected from Gene 
Expression Omnibus, physical and genetic interaction data 
from BioGRID, and predicted protein interaction data 
from the orthology Interologous Interaction Database 

(I2D). Pathway and molecular interaction data from 
Pathway Commons are also included, which contains data 
from BioGRID, Memorial Sloan-Kettering Cancer Center, 
Human Protein Reference Database, and HumanCyc, 
among others [45].

In GeneMANIA, a researcher must provide a prede-
termined list of genes of interest. The program then extends 
the list with genes that are functionally similar or have 

Figure 14. Optimal correlation tour using the traveling salesperson problem formulation (healthy current smoker vs. cancer never-smoker).

Figure 15. Optimal correlation tree using the minimum spanning tree formulation (healthy current smoker vs. cancer never-smoker).
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Figure 16. Optimal correlation tour using the traveling salesperson problem formulation (healthy nonsmoker vs. cancer current smoker).

Figure 17. Optimal correlation tree using the minimum spanning tree formulation (healthy nonsmoker vs. cancer current smoker).
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shared properties with the initial query genes. The output 
is in the form of a display for the interactive association 
network, which illustrates the relations among the genes 
and data sets [45].

GeneMANIA is based on a heuristic method that builds 
a composite functional association network by integrating 
multiple functional association networks and predicts gene 
function [46]. The constructed composite network is a 
weighted sum of individual data sources. Each edge in 
the composite network is weighted by the corresponding 
individual data source. Given the composite network, 
GeneMANIA uses label propagation to score all genes 
not in the query gene list. The scores are used to rank 
the genes. The score assigned to each gene reflects how 
often paths that start at a given gene node end up in 

one of the query gene nodes and how long and heavily 
weighted those paths are [45].

The list of 11 genes in Table  3 from our lung cancer 
case study was used to compare the TSP and MST meth-
odologies and GeneMANIA.

Figure  22 is the resulting overlap of three networks 
that GeneMANIA constructed to relate or connect one 
gene to another from our original query list. Additionally 
GeneMANIA included 20 additional genes to the query 
list in order to construct the networks. The maximum 
total of additional genes that the tool can include is 
determined by the user from a range of 0 to 100, with 
a default value of 20.

The network that generated the largest number of rela-
tionships and the largest network connecting all of the original 

Figure 18. Optimal correlation optimal correlation tour using the traveling salesperson problem formulation (healthy nonsmoker vs. cancer never-
smoker).

Figure 19. Optimal correlation tree using the minimum spanning tree formulation (healthy nonsmoker vs. cancer never-smoker).
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Figure 20. Optimal correlation optimal correlation tour using the Traveling Salesperson Problem formulation (healthy nonsmoker vs. healthy current 
smoker).

Figure 21. Optimal correlation tree using the minimum spanning tree formulation (healthy nonsmoker vs. healthy current smoker).
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eleven genes was that of the coexpression factor. In total 
there are 24 connections that form part of the network that 
GeneMANIA constructed. It must be noted that GeneMANIA 
was unsuccessful in including all genes in the list. SPP1 and 
COL11A1 were not connected to the rest of the genes.

The second network constructed by GeneMANIA con-
taining some genes of our query list is the category of 
colocalization. As can be seen in Figure  23, GeneMANIA 
did not include five of the eleven genes as part of the 

resulting network. In this category GeneMANIA only con-
nected four genes from the query list with a total of four 
connections. It was not successful in directly relating all 
the genes to each other (Fig.  23).

The third and last network generated by GeneMANIA 
can be seen in Figure  24. This network is categorized as 
genes that share protein domains. This network only links 

Table 4. Comparison of gene relations between conditions of microarray database.

Colors define blocks of correlated genes.

Table 5. Comparison of gene relations between conditions of microar-
ray database minimum spanning tree.

Comparison

Gene relationships

XIST-RPS4Y1
WIF1-SFTPC-CLEC3B-
FCN3-TMEM100 AGER-FABP4

CNS vs. CCS ✓
HCS vs. CCS ✓ ✓
HCS vs. CNS ✓ ✓ ✓
HNS vs. CCs ✓ ✓
HNS vs. CNS ✓ ✓
HNS vs. HCS ✓

Table 6. Comparison of gene relations between conditions of microar-
ray database (TSP-MST).

Comparison

Gene relationships (TSP-MST)

XIST-RPS4Y1 CLEC3B-FCN3-TMEM100 SFTPC-WIF1

CNS vs. CCS ✓
HCS vs. CCS ✓ ✓
HCS vs. CNS ✓ ✓ ✓
HNS vs. CCs ✓ ✓
HNS vs. CNS ✓ ✓
HNS vs. HCS ✓

TSP, traveling salesperson problem, MST, minimum spanning tree; CNS, 
cancer never-smoker; CCS, cancer current smoker; HNS, healthy 
nonsmoker.
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two of the eleven genes. As in the other categories it was 
unsuccessful in linking all of our original query list of 
genes.

In our case study for lung cancer, GeneMANIA gener-
ated three networks based on three separate categories. 
Only in the first category of coexpression, GeneMANIA 
was successful in establishing a network linking all eleven 
of the genes of interest. None of these three networks 
generated by GeneMANIA was in the category of 
pathways.

GeneMANIA relies on published analysis to generate 
networks; our methodology does not have this dependence 
for generating possible signaling pathways. Therefore our 
method possesses an interesting potential for determining 
previously undiscovered pathways or gene relations impor-
tant in a disease, in this case lung cancer. Also, due to 
its deterministic nature, our methodology is able to obtain 
a global optimal solution with either the TSP or MST. 
In addition, both methods were capable of obtaining solu-
tions that include all genes from a list.

Table 7. Evidence on relations consisting of two genes included in proposed signaling pathways.

2 Genes

Gene relations

Type of relationship

Traveling 
salesperson 
problem

Minimum 
spanning tree PathwaysDirect

Indirect 
(through 
various) Not found

FCN3-COL11A1 ✓ ✓
COL11A1-SPP1 ✓ ✓ ERK signaling, phospholipase-C pathway, 

PI3K-Akt signaling pathway, degradation of 
the extracellular matrix, integrin pathway

SPP1-AGER ✓ ✓ ✓ IL-2 Pathway
AGER-FABP4 ✓ ✓ ✓
FABP4-CLDN18 ✓ ✓
CLDN18-WIF1 ✓ ✓
WIF1-SFTPC ✓ ✓ ✓
SFTPC-CYP4B1 ✓ ✓ ✓
CYP4B1-ADH1B ✓ ✓ Biological oxidations, metabolism, cytochrome 

P450 - arranged by substrate
ADH1B-
TMEM100

✓ ✓

TMEM100-FCN3 ✓ ✓ ✓
FCN3-AGER ✓ ✓
CLDN18-AGER ✓ ✓
SFTPC-AGER ✓ ✓
SFTPC-ADH1B ✓ ✓
SFTPC-COL11A1 ✓ ✓

Table 8. Evidence on relations consisting of three genes included in proposed signaling pathways.

3 Genes

Gene relations

Type of relationship

Traveling 
salesperson 
problem

Minimum 
spanning tree PathwaysDirect

Indirect 
(through 
various) Not found

AGER- SPP1-COL11A1 ✓ ✓ IL-2 pathway, ERK signaling, phospholipase-C 
pathway, PI3K-Akt signaling pathway, 
degradation of the extracellular matrix, 
integrin pathway

SPP1-AGER-SFTPC ✓ ✓
SPP1-AGER-FABP4 ✓ ✓
SPP1-AGER-FCN3 ✓ ✓
SPP1-AGER-CLDN1 ✓ ✓ IL-2 pathway, integrin pathway
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Conclusions

Identifying cancer biomarkers is an important step in the 
diagnosis, prognosis, and prevention of this disease; and 
determining how these biomarkers are related or interact 
is just as important. A signaling pathway among these 
biomarkers is, then, a worthy aim. Uncovering signaling 
pathways for potential biomarkers could further the under-
standing of the origins and the evolution of cancer.

As a first approach to structure a network of potential 
biomarkers, the linear correlations that exist among these 
genes are used. Once the network of a preselected list of 
potential biomarkers is constructed, the TSP can be applied 
to obtain an optimal sequence that maximizes the linear 
correlations. This sequence represents the potential signal-
ing pathway. In Section “Case study: lung cancer” biological 
information was gathered supporting the potential of our 
methodology and of the important gene relations in our 
proposed signaling pathway.

In addition, the MST formulation is used here as an 
alternative method to the TSP to discover a signaling 
pathway from the same list of preselected potential bio-
markers. The MST provides an optimal tree, a representa-
tion that must be contrasted to that of TSP’s tour.

In Section “Traveling Sales Problem” of this article 
includes the exploration for biological evidence to assess 
the resulting signaling pathways constructed when com-
paring the different conditions of the microarray database 
described in Section “Case study: lung cancer”. Several 
groupings of genes were common throughout the different 
comparisons, suggesting a possible biological significance 
worthy of experimental biological validation. Future work, 
will investigate consistency on gene selection and network 
structuring using different databases.

Three important aspects are novel in this work: (1) 
the joint analyses of different groups of lung cancer states 
reveal new correlations, biologically evidenced, and previ-
ously undocumented; (2) computation of the correlation 
coefficients from expression differences leads to an effective 
use of network optimization methods; and (3) the methods 
yield mathematically optimal correlation structures: no 
other configuration is better correlated with the available 
information.
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