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ABSTRACT
The b-carbonic anhydrase (CA, EC 4.2.1.1) from the genome of the opportunistic pathogen Malassezia
restricta (MreCA), which was recently cloned and characterised, herein has been investigated for enzymatic
activation by a panel of amines and amino acids. Of the 24 compounds tested in this study, the most
effective MreCA activators were L-adrenaline (KA of 15nM), 2-aminoethyl-piperazine/morpholine (KAs of
0.25–0.33mM), histamine, L-4-amino-phenylalanine, D-Phe, L-/D-DOPA, and L-/D-Trp (KAs of 0.32� 0.90mM).
The least effective activators were L-/D-Tyr, L-Asp, L-/D-Glu, and L-His, with activation constants ranging
between 4.04 and 12.8mM. As MreCA is involved in dandruff and seborrhoeic dermatitis, these results are
of interest to identify modulators of the activity of enzymes involved in the metabolic processes of
such fungi.
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1. Introduction

Carbonic anhydrases (CAs; EC 4.2.1.1) are present in most organ-
isms investigated to date1–5, with eight genetically distinct classes
of such enzymes, the a-, b-, c-, d-, f-, g-, h-, and i-CA classes being
encoded in the genome of various organisms6–8. They all catalyse
the simple but fundamental interconversion reaction between car-
bon dioxide and bicarbonate, with the comcomitant generation of
hydronium ions:

CO2 þ 2H2O � HCO�
3 þ H3O

þ

a-CAs are Zn2þ metalloproteins expressed in vertebrates, fungi,
protozoa, algae, plants and prokaryotes4–9. The b-CAs are also
Zn2þ enzymes and they are present in bacteria, fungi, protozoa
and chloroplasts of mono-/dicotyledon plants4,5. c-CAs are prob-
ably Zn2þ or Fe2þ enzymes, although it has been shown they are
also active with Co2þ within their active site, and are present in
archaea, bacteria and plants3,4. Limited information is known
about d-CAs, which are zinc- or cobalt-containing enzymes present
in marine diatoms7,10. The f-CAs are active with Cd2þ or Zn2þ at
their active site, and were also identified in marine diatoms11.
g-CA are Zn2þ metalloproteins identified in Plasmodium spp. and
other protozoans12. The recently identified h- and i-CAs are also
present in marine diatoms11,13, and the latter class is also
expressed in bacteria and are likely Mn(II) metalloenzymes, as
recently reported13.

Various classes of inhibitors of these enzymes, mainly targeting
mammalian CAs, are in clinical use as diuretics, antiglaucoma, anti-
epileptic or antiobesity agents for decades, whereas their use as
anticancer agents started to be contemplated only in the last

decade1,2,6,14–18. There has also been recent interest in inhibiting
CAs in various pathogenic bacteria to develop anti-infective appli-
cations6–8. These diverse applications are due to the fact that at
least 15 different a-CA isoforms are present in humans, being
involved in critical physiological and pathological processes14–18.

Activation studies of various classes of CAs, among which the
b-, c-, d-, f-, and g-CA classes were explored only recently, and
only with two classes of modulators of activity, the amines and
the amino acids3,19. The catalytic mechanism of these enzymes is
also well understood and explains also their activation mechan-
ism3. A metal hydroxide species present in the active site of these
enzymes acts as a strong nucleophile (at physiologic pH) for con-
verting the CO2 to bicarbonate, which is thereafter coordinated to
the catalytic metal ion. This adduct is not very stable and its reac-
tion with an incoming water molecule leads to the liberation of
bicarbonate in solution and generation of an acidic form of the
enzyme incorporating an M2þ(OH2) species at the metal centre,
which is catalytically ineffective for the hydration of CO2

1–3
. To

generate the nucleophilic M2þ(OH–) species, a proton transfer
reaction occurs, which determines the rate for the catalytic cycle
in many of these types of very efficient enzymes. For many a-CAs
this step is assisted by a proton shuttle residue, which is His64 in
most mammalian isoforms20. This is one of the few residues in
a-CAs possessing a flexible conformation, with an inward (in con-
formation) and outward (out) conformation. For this reason, the
imidazole moiety of this histidine, with a pKa of 6.0–7.5 (depend-
ing on the isoform3) is an appropriate proton shuttling residue
which transfers the proton from the metal coordinated water to
the reaction medium, in a crucially important and rate-
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determining step of the catalytic cycle1–3. The process can also be
assisted by endogenous molecules, which bind within the enzyme
active site, as proven by X-ray crystallography and other techni-
ques, which have been termed CA activators (CAAs)19. Such acti-
vators facilitate the proton transfer reactions between the metal
ion centre and the external medium by an alternative pathway to
the proton shuttle residue. The two reactions of the CA catalytic
cycle are shown by Equations (1) and (2), with the deprotonation
of zinc-bound water being the rate-determining step (Equation
(2)19,21. This leads to the generation of the active form of the
enzyme3,19,22:

EZn2þ�OH� þ CO2�EZn2þ�HCO�
3 �þH2O

EZn2þ�OH2 þ HCO�
3 (1)

EZn2þ�OH2�EZn2þ�OH� þ Hþ�rate determining step� (2)

In the presence of an activator molecule “A”, Equation (2)
becomes Equation (3); that is, in the enzyme-activator complex
the proton transfer reaction is no longer intermolecular but intra-
molecular, and thus favoured3,19:

EZn2þ�OH2 þ A� EZn2þ�OH2� A
� �

� EZn2þ�HO�� AHþ½ �
�EZn2þ�HO� þ AHþ (3)

Enzyme–activator complexes

CAAs were recently demonstrated to have potential pharmaco-
logic applications23, as the activation of mammalian enzymes was

shown to enhance cognition and memory in experimental animal-
s23a,b, whereas its inhibition had the opposite effect14.

The activation of CAs from pathogenic bacteria may also be
relevant for understanding the factors governing virulence and
colonisation of the host, because pH in the tissues surrounding
the pathogens likely plays a key role in such processes3,5 and
many compounds that are CAAs (biogenic amines and amino acid
derivatives) are abundant in such tissues. Considering such evi-
dence, in this study we report an activation study with amines
and amino acids (compounds 1–24, Figure 1) of the b-CA recently
reported and characterised biochemically from the dandruff pro-
ducing organism Malassezia restricta24.

2. Materials and methods

2.1. Enzymes production and purification

The protocol described in the previous works24 has been used to
obtain purified recombinant MreCA.

2.2. Ca activity/activation measurements

An Sx.18Mv-R Applied Photophysics (Oxford, UK) stopped-flow
instrument has been used to assay the catalytic activity of various
CA isozymes for CO2 hydration reaction25. Phenol red (at a con-
centration of 0.2mM) was used as indicator, working at the
absorbance maximum of 557 nm, with 10mM Hepes (pH 7.5, for

Figure 1. Amino acids and amines 1–24 investigated as CAAs in the present article.
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a-CAs)26–29 or TRIS (pH 8.3, for b-CAs)30–33 as buffers, 0.1M NaClO4

(for maintaining constant ionic strength), following the CA-cata-
lyzed CO2 hydration reaction for a period of 10 s at 25 �C. The CO2

concentrations ranged from 1.7 to 17mM for the determination of
the kinetic parameters and inhibition constants. For each activator
at least six traces of the initial 5–10% of the reaction have been
used for determining the initial velocity. The uncatalyzed rates
were determined in the same manner and subtracted from the
total observed rates. Stock solutions of activators (at 0.1mM) were
prepared in distilled-deionized water and dilutions up to 1 nM
were made thereafter with the assay buffer. Enzyme and activator
solutions were pre-incubated together for 15min prior to assay, in
order to allow for the formation of the enzyme–activator com-
plexes. The activation constant (KA), defined similarly with the
inhibition constant KI, can be obtained by considering the classical
Michaelis–Menten equation (Equation (4), which has been fitted
by non-linear least squares by using PRISM 3:

v ¼ vmax=f1þ ðKM=½S�Þð1þ ½A�f=KAÞg (4)

where [A]f is the free concentration of activator.
Working at substrate concentrations considerably lower than

KM ([S] �KM), and considering that [A]f can be represented in the
form of the total concentration of the enzyme ([E]t) and activator
([A]t), the obtained competitive steady-state equation for deter-
mining the activation constant is given by Equation (5):

v ¼v0 � KA
,(

KA þ
�
½A�t � 0:5

n
ð½A�t þ ½E�t þ KAÞ

�ð½A�t þ ½E�t þ KAÞ2 � 4½A�t:½E�t
�1=2o) (5)

where v0 represents the initial velocity of the enzyme-catalyzed
reaction in the absence of activator3,30–35. This type of approach
to measuring enzyme-ligand interactions is in excellent agree-
ment with recent results from native mass spectrometry
measurements36.

2.3. Reagents

Amines and amino acid derivatives 1–24 were obtained in the
highest purity that was available commercially from Sigma-Aldrich
(Milan, Italy).

3. Results and discussion

We measured the kinetics constants (kcat and KM) of the recently
described b-CA from M. restricta, MreCA, for comparison to those
of the thoroughly studied human (h) CA isoforms hCA I and II,
belonging to the a-CA class (Table 1). The experiments were also
performed in the presence of 10lM L-Trp as activator.

The data in Table 1 indicates that the presence of L-Trp does
not change the KM both for the two enzymes belonging to the
a-class (hCA I/II) as well as for MreCA, a situation also observed
for all CA classes for which CA activators have been investigated
so far3,29–33. In fact, as proven by kinetic and crystallographic
data3,20, the activator binds in a diverse binding region within the
active site of the substrate binding site. Thus, the activator does
not influence KM but has an effect only on the kcat. Indeed, a
10mM concentration of L-Trp leads to a 9-fold enhancement of
the kinetic constant of MreCA compared to the same parameter
in the absence of the activator (Table 1). For hCA I and II, the
enhancement of the kinetic constant in the presence of L-Trp was

rather modest, as these enzymes show a weaker affinity for this
activator (Table 1). On the other hand, L-Trp has a submicromolar
affinity for MreCa which explains its potent activating effect (see
discussion later in the text).

Thus, an entire range of amines and amino acids, of types
1–24, were tested for their efficacy as MreCA activators (Table 2).
These compounds were also investigated earlier3 for their
activating properties against hCAs and many enzymes from patho-
genic organisms, as reported previously26–33. The following
structure–activity relationship (SAR) for the activation of MreCA
with compounds 1–24 has been documented considering the
data in Table 2:

i. The compounds which showed the least effective for activat-
ing MreCA were L-His, L-/D-Tyr, L-Asp, and L-/D-Glu, with acti-
vation constants ranging between 4.04 and 12.8 mM. These
compounds belong to a rather heterogeneous group of amino

Table 1. Activation of hCA I, II and MreCA with L-Trp, at 25 �C, for the CO2

hydration reaction25.

Enzyme kcat
a KM

a (kcat)L-Trp
b KA

c(lM)

(s � 1) (mM) (s�1) L-Trp
hCA Id 2.0� 105 4.0 3.4� 105 44.0
hCA IId 1.4� 106 9.3 4.9� 106 27.0
MreCAe 1.06� 106 9.9 9.6� 106 0.32
aObserved catalytic rate without activator. KM values in the presence and the
absence of activators were the same for the various CAs (data not shown).
bObserved catalytic rate in the presence of 10 lM activator.
cThe activation constant (KA) for each enzyme was obtained by fitting the
observed catalytic enhancements as a function of the activator concentration25.
Mean from at least three determinations by a stopped-flow, CO2 hydrase
method25. Standard errors were in the range of 5–10% of the reported values
(data not shown).
dHuman recombinant isozymes, from work by Capasso and Supuran32.
eFungal recombinant enzyme, this work.

Table 2. Activation constants of hCA I, hCA II and MreCA with amino acids and
amines 1–24 by a stopped-flow CO2 hydrase assay25.

No. Compound
KA (lM)a

hCA Ib hCA IIc MreCAc

1 L-His 0.03 10.9 12.8
2 D-His 0.09 43 1.84
3 L-Phe 0.07 0.013 2.69
4 D-Phe 86 0.035 0.76
5 L-DOPA 3.1 11.4 0.87
6 D-DOPA 4.9 7.8 0.70
7 L-Trp 44 27 0.32
8 D-Trp 41 12 0.89
9 L-Tyr 0.02 0.011 4.15
10 D-Tyr 0.04 0.013 7.83
11 4-H2N-L-Phe 0.24 0.15 0.61
12 Histamine 2.1 125 0.90
13 Dopamine 13.5 9.2 2.71
14 Serotonin 45 50 0.82
15 2-Pyridyl-methylamine 26 34 0.34
16 2–(2-Aminoethyl)pyridine 13 15 2.13
17 1–(2-Aminoethyl)-piperazine 7.4 2.3 0.25
18 4–(2-Aminoethyl)-morpholine 0.14 0.19 0.33
19 L-Adrenaline 0.09 96.0 0.015
20 L-Asn 11.3 >100 0.93
21 L-Asp 5.20 >100 4.04
22 L-Glu 6.43 >100 5.26
23 D-Glu 10.7 >100 4.70
24 L-Gln >100 >50 0.90
aMean from three determinations by a stopped-flow, CO2 hydrase method25.
Standard errors were in the range of 5–10% of the reported values (data
not shown).
bHuman recombinant isozymes, from the work by Supran and collegues3.
cFungal recombinant enzyme, this work.
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acids, with both deprotonated (Asp, Glu), neutral (Tyr) and
protonated (His) side chains at pH 7.4. On the other hand, it
seems that in some cases the enantiomer is relevant for this
activity, if one compares the differences in KA between L and
D-His, with the last compound being 6.95 times a better acti-
vator compared to its diastereoisomer (Table 2).

ii. Compounds possessing a medium activating effect were D-
His, L-Phe, dopamine and 2-(2aminoethyl)pyridine (derivative
16), which showed activation constants in the range of
1.84–2.71 lM (Table 1). Again, small structural changes, as in
the pair of compounds 15/16, leads to drastic changes of
activity. The two compounds only differ by a CH2 group, but
15 is 6.26 times a more effective activator compared to 16.

iii. The effective, submicromolar CAAs against MreCA detected
here were D-Phe, L-/D-DOPA, and L-/D-Trp, 4-amino-L-
phenylalanine, 2-aminoethyl-piperazine/morpholine, hista-
mine, serotonin, some pyridyl-alkylamines, L-Gln, and L-Asn,
with KAs of 0.25–0.93 mM. L-adrenaline, with a KA of 15 nM,
was the most effective among all compounds investigated
here for the activation of MreCA (Table 2).

iv. The activation profile of this fungal enzyme with amino acids
and amines is very different from that of the human isoforms
hCA I and II, with only L-Asn and L-Gln showing some selectiv-
ity for the activation of the fungal versus the human enzymes.

4. Conclusions

CAs were shown to be involved in metabolic and signalling path-
ways in fungi, including pathogenic ones, and this mechanism has
been proposed to be exploited for the development of antifungals
with different mechanisms of action compared to the clinically used
agents, for which extensive drug resistance has been docu-
mented7,24,34. Indeed, in an animal model of dandruff provoked by
M. globosa, a related species to M. restricta, it has been shown that
b-CA inhibition with sulphonamides has a potent antifungal effect35.
However, there are no studies to date on the role of CAAs on the
life cycle of fungal pathogens. Considering the fact that amines and
amino acids as those investigated here are found in high concentra-
tions in many tissues, our present finding may be relevant for a bet-
ter understanding of processes connected with infectivity and
growth of fungal pathogens. L-adrenaline was observed to be the
best MreCA activator. Is it a coincidence that stress, i.e. higher circu-
lating amounts of catecholamines such as L-adrenaline, is associated
with a worsening of seborrhoeic dermatitis and dandruff?
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