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Highly atroposelective synthesis of nonbiaryl
naphthalene-1,2-diamine N-C atropisomers
through direct enantioselective C-H amination
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Shu-Yu Zhang 1

Nonbiaryl N-C atropisomer is an important structural scaffold, which is present in natural

products, medicines and chiral ligands. However the direct enantioselective C-H amination to

access optically pure N-C atropisomer is still difficult and rare. Here we report a π-π interaction

and dual H-bond concerted control strategy to develop the chiral phosphoric acids (CPAs)

catalyzed direct intermolecular enantioselective C-H amination of N-aryl-2-naphthylamines with

azodicarboxylates as amino sources for the construction of atroposelective naphthalene-1,2-

diamines. This type of N-C atropisomers is stabilized by intramolecular hydrogen bond and the

method features a broad range of substrates, high yields and ee values, providing a strategy to

chirality transfer via the modification of N-C atropisomers.
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Atropisomeric compounds, in which the chirality generates
from a chiral axis with highly sterically hindered rotation,
are among the most useful catalysts or ligands in enan-

tioselective catalysis and have been attracting considerable
attention of chemists1–6. To date, the biaryl atropisomers, such as
BINAP7,8 and BINOL9,10, have been well developed and widely
used. In sharp contrast, the catalytic atroposelective construc-
tion of nonbiaryl atropisomers, which is of critical importance
as medicine or chiral ligands in our lives (Fig. 1a)11–14, due to
the rotational restriction around an N-C single bond, remains
largely unexplored. Until recently, the preparation of these
optically active N-C nonbiaryl atropisomers still depends largely
on the chiral resolution and diastereoselective synthesis using
chiral pool precursors15–17. Only few strategies for catalytic
atroposelective construction of N-C nonbiaryl atropisomers
exist and mainly consist of enantioselective cyclization18–20, N-
functionalization21–27, and desymmetrization28–30 of the exist-
ing achiral N-C bond. The direct catalytic enantioselective
method to build a new chiral N-C bond to form nonbiaryl N-C
atropisomers still has significant synthetic challenges and has
attracted great interest.

Over the past three years, our laboratory has been engaged in
developing efficient C-H amination methods31–34. Among them,
azodicarboxylates, as a special amino source, have attracted our
great interest. In the course of our investigation, we found that 2-
naphthylamine derivatives could succeed in constructing C-N
bonds at C1 position with azodicarboxylates catalyzed by a
transition metal or Brønsted acid. Inspired by these results on the
C1 position of C(sp2)-H amination, we proceeded to investigate
whether the challenging nonbiaryl axially chiral N-C bonds could
be formed by this direct C-H enantioselective amination, which
would be an arguably ideal and attractive approach with great
atom and step economy.

The previous landmark study by Jørgensen’s group35 intro-
duced the enantioselective nonbiaryl axially chiral amination of 8-

amino-2-naphthol derivatives with azodicarboxylates catalyzed by
cinchona alkaloids (Fig. 1b). This study indicated that the amino
group of C-8 position played an indispensable role in the stability
of axially chirality and therefore the amination was limited by
substrate scope. In 2014, Gong’s group36 reported the chiral Au-
catalyzed cycloisomerization amination cascade reaction with
azodicarboxylates to build heteroaryl atropisomers. Much dis-
closed in this context that the nonbiaryl atropisomers of diazenes
were easily racemized and the single crystal of optically pure
heteroaryl atropisomers was unable to be obtained. Despite these
limits and challenges, it provided the foundation for our process.

Herein, we design a π–π interaction and dual H-bond con-
certed control strategy to develop the chiral phosphoric acids
(CPAs) catalyzed direct intermolecular enantioselective C-H
amination of N-aryl-2-naphthylamines with azodicarboxylates
for the construction of N-C atroposelective nonbiaryl naphtha-
lene-1,2-diamines (Fig. 1c).

Results
Reaction strategy. Our initial strategy was inspired by the pio-
neering studies of Akiyama37 and Terada38 on the use of CPAs as
organocatalysts, which were widely used in organic synthesis. In
line with our recent interest in the C-H amination reaction and
the use of azodicarboxylates as an amino source, we believe that
2-naphthylamine as a nucleophiles derivative has a weakly acidic
hydrogen atom, which could be activated and form a dual
hydrogen-bonding intermediate A with azodicarboxylates under
CPA as a catalyst to simultaneously activate two reaction partners
and thus construct a chiral N-C axis (Fig. 2a). It should be
mentioned, while chiral 2-naphthylamine derivatives such as
BINAP and NOBIN39–41 are widely used as enantioselective
catalysts in various reactions, the enantioselective construction of
2-naphthylamine derivatives is still rare42–47. Recently, Tan48

reported the organocatalytic arylations of 2-naphthylamine to
successfully form biaryl atropisomers. However, the more
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Fig. 1 N-C nonbiaryl axially chiral structure. a N-C axially chiral compounds. b Previous N-C atropisomers with azodicarboxylates. c This work: CPA-
catalyzed direct atroposelective C-H aminations via a concerted control of π-π interaction and dual H-bond strategy
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challenging chiral nonbiaryl N-C atropisomers of 2-
naphthylamine derivatives have not been discovered.

Based on this initial strategy mentioned above, we started to
evaluate our hypothesis by using N-substituted 2-naphthylamine
1 and di-tert-butyl azodicarboxylate (DBAD) 2a as model
substrates. As shown in Table 1, when the substrate 1a (with
hydrogen atom substituted by methyl and phenyl) was used, the
reaction failed to generate any desired product using CPA1-3 as
catalysts (Table 1, entries 1–3). Interestingly, when 1b and 1c (the
substrate with an N-H bond) were used in the amination (Table 1,
entries 4–7), the amination underwent smoothly and gave the

amination products in 45–74% yields. These results showed that
the N-H bond was indispensable and played a critical role in this
process, which was in agreement with our initial design. However,
the enantioselectivity of the desired product was very low (4–8%
ee) even when the more sterically hindered Ph- or Ph3Si-
substituted CPAs CPA2 and CPA3 were used. As shown in
Fig. 2a, we believe the main reason is that the rotation is
unhindered using only the dual H-bond to control the transition
state of intermediate B. While the general approach to install
some large groups at 2-naphylamine substrates (C8 position)
might limit the rotation of intermediate B and partially probably
improve the stereoselective control, however, it will severely limit
the versatility and scope of substrates and applications of this
chiral amination reaction.

To overcome these drawbacks and limitations, we designed a
weak intermolecular interaction to help limit the contortion of
intermediate B and enhance the stereoselectivity control of our C-
H amination reaction. The π-π interaction49,50 as an arguably
ideal modified strategy was introduced in our enantioselective
axially chiral amination (Fig. 2b, c). To evaluate the efficiency of
our modified design, we used N-phenyl substituted 2-
naphthylamine 1d to react with DBAD in the presence of
phenyl-substituted CPA3 as a catalyst (Table 1, entry 8).
Remarkably, the enantioselectivity of this N-C axially chiral
amination reaction was significantly promoted and gave the 47%
ee with an isolated yield of 45%. We also investigated some more
protecting groups of the nitrogen with the more steric hindrance,
such as benzyl (1e), tert-butyl (1g), and they all gave low
enantioselectivity (Table 1, entries 9–11). These results strongly
support our modified design in Fig. 2b, and clearly indicate that
the concerted control strategy of π-π interaction and dual H-bond
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Fig. 2 Reaction strategy. a Initial dual hydrogen-bonding strategy. b
Modified strategy: concerted control of π-π interaction and dual H-bond
strategy

Table 1 Screening results of reaction strategy

Entry 1 Catalyst Dual H-Bond π-π 3

Interactions Yielda eeb

1 1a CPA1 No No No reaction
2 1a CPA2 No No No reaction
3 1a CPA3 No Yes No reaction
4 1b CPA3 Yes No 63%, 4% ee
5 1c CPA1 Yes No 74%, 7% ee
6 1c CPA2 Yes No 71%, 4% ee
7 1c CPA3 Yes No 45%, 8% ee
8 1d CPA3 Yes Yes 45%, 47% ee
9 1e CPA3 Yes No 19%, 9% ee
10 1f CPA3 Yes No 23%, 0% ee
11 1g CPA3 Yes No 37%, 4% ee

All screening reactions were carried out in a 10 mL glass vial with a PTFE-lined cap on a 0.1 mmol scale. 2.0 equiv of 2a, 10 mol% catalyst, 1 mL DCM, 25 °C for 3 h
aYield represents isolated yield
bDetermined by HPLC analysis
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between the N-phenyl of 2-naphthylamine and the aryl of CPAs
are extremely important and efficient for the control of
stereoselectivity in this nonbiaryl axially chiral amination
reaction.

Optimization of reaction conditions. Based on our final design
(Fig. 2b) and considerations mentioned above, we further
attempted our chiral amination by using N-phenyl-2-
naphthylamine 1d and DBAD 2a as model substrates. After an
initial screening of the aryl-substituted CPA catalysts (Table 2,
entries 1–6), we found that all the aryl-substituted CPAs CPA3-
CPA7 showed good enantioselectivity and the catalyst CPA6 gave
the desired product 3a with the best result of 94% isolated yield
and 74% ee in DCM at −60 °C (Table 2, entry 4). Encouraged by
this result, various solvents were screened (Table 2, entries 7–9).
A remarkable solvent effect was observed. When the mixed sol-
vent of DCM and Et2O (1:1) was used as the reaction medium,
the product 3a was notably promoted to 88% ee (Table 2, entry
10). After adjusting the ratio of DCM/Et2O and changing the
temperature, we found that the optimal catalytic system (standard
condition) consisted of 2.0 equiv of azodicarboxylate 2a, 10 mol%
of CPA6 at −70 °C in a mixed solvent (0.1 M, DCM: Et2O= 7:3)
for 48 h, which resulted in 93% isolated yield and 91% ee (Table 2,
entry 12).

In addition, lowering the temperature would decrease the
chemical yield (Table 2, entry 13) and increasing the amount of
catalyst resulted in a little change (Table 2, entry 14).

Substrate scope. With the optimized conditions at hand, we first
probed the scope of different azodicarboxylate sources

(Table 3b–d). Some commercially available azodicarboxylates,
such as DEAD (diethyl azodicarboxylate), DIAD (diisopropyl
azodicarboxylate), and dibenzyl azodicarboxylate, could react
with 1d and provide amination products 3b–3d with high yields.
However, it is clear that the enantioselectivity of this axially chiral
amination was sensitive to the steric hindrance of azodicarbox-
ylate, and DBAD was still the best azodicarboxylate amino source
and gave the desired N-C axially chiral product 3a in 91% ee.
(Table 2, entry 12). Subsequently, the effect of the substituents
(R3) on the benzene ring was examined. The electron-donating
groups including methyl and methoxy were fully compatible with
the reaction condition and gave the axially chiral products 4a and
4b in high yields (95% and 92%) with good to excellent enan-
tioselectivities (86% ee and 93% ee). In addition, when the sub-
stituent was on meta-position or ortho-position, the reactivity
was notably decreased (Table 3, 4d, 4e).

Encouraged by these results, we further expanded the scope of
functionalized naphthalene rings in order to examine the
generality of this axially chiral amination. The N-phenyl-2-
naphthylamines substituted with a variety of functional groups,
such as alkyl, aryl, halogens, vinyl, and alkynyl, were well
tolerated in our reaction system and formed N-C axially chiral
products 5a–5p in good to excellent yields and high enantios-
electivities. Using methyl as a substituent at C3 position, the
reactivity was notably deceased but the stereoselectivity (5d) was
slightly affected. The 5, 6, or 7-methyl-substituted substrates,
which were away from the reactive site, gave excellent isolated
yields of 90–92% and 86–93% ee (Table 3, 5a–5c). Furthermore,
we focused our attention on the amino group at the adjacent C8-
position, which was of great importance in Jørgensen’s report.
When 8-amino substituted N-phenyl-2-naphthylamine was used

Table 2 Optimization of reaction conditions

Entry R Cat Solvent Temp/°C Time/h Yield %a ee %b

1 Ph CPA3 DCM(D) −60 12 63 73
2 Ph CPA4 DCM −60 12 24 62
3 Ph CPA5 DCM −60 12 75 74
4 Ph CPA6 DCM −60 12 94 74
5 Ph CPA7 DCM −60 12 58 73
6 Ph CPA8 DCM −60 12 11 12
7 Ph CPA6 Toluene −60 12 24 47
8 Ph CPA6 Et2O(E) −60 12 11 41
9 Ph CPA6 THF −60 12 <2 –
10 Ph CPA6 D:E= 1:1 −60 12 42 88
11 Ph CPA6 D:E= 7:3 −60 12 67 90
12 Ph CPA6 D:E= 7:3 −70 48 93 91
13 Ph CPA6 D:E= 7:3 −78 48 65 92
14c Ph CPA6 D:E= 7:3 −70 48 94 91

All screening reactions were carried out in a 10 mL glass vial with a PTFE-lined cap on a 0.1 mmol scale. 2.0 equiv of 2a, 10% mol catalyst, 1 mL solvent
aYield represents isolated yield
bDetermined by HPLC analysis
c20 mol% catalyst
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as a substrate in our reaction conditions, the reaction was very
complex and the desired C-1 amination product 5e was not
obtained. To our delight, when Bz was used as an N-protecting
group, C-1 regioselective axially chiral amination product 5f was
obtained with 77% yield and 94% ee. The absolute regioselectivity
and configuration of 5g was determined by X-ray crystallographic
analysis (see Supplementary Fig. 129 for details).

In addition, various substituent groups were investigated (5h–
5p). The electronic properties of the substituents did not affect
the stereoselectivity of the reaction and gave 92–94% ee. The
substrates with electron-withdrawing groups would reduce the
electron cloud density and limit the reactivity of amination

reaction. For example, the 6-Br substituted N-phenyl-2-
naphthylamine gave the desired product 5i in 51% isolated yield,
but with excellent 92% ee.

Mechanistic study. Based on our design, experimental results,
and literature precedent51–53, a possible reaction pathway was
proposed (Fig. 3). First, the CPA simultaneously activated N-
phenyl-2-naphthylamine and azodicarboxylate through a dual
hydrogen-bonding activation mode to form intermediate I. Then,
the π-π interaction assisted intermediate I with the concerted
control of the enantioselectivity, and the nucleophilic addition of

Table 3 Substrate scope

′
′

′ ′

′
′

′
′
′

All yields were based on isolated products on a 0.1 mmol scale under standard reaction condition. The ee value was determined by HPLC analysis
NR no reaction, ND no detected
a−20 °C
b72 h
c−30 °C, 72 h
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N-phenyl-2-naphthylamine to the azodicarboxylate proceeded
and formed intermediate II. In the following step, rear-
omatization became favorable for efficient central-to-axial chir-
ality conversion54 and delivered the desired amination product
3a. Notably, an intramolecular hydrogen bond (2.233 Å) between
the N–H and the oxygen of the carbonyl group was observed and
the 1H NMR chemical shift evidently changed with temperature
(see Supplementary Figs. 127–129).

Stereo-stability study. To further verify the stereo-stability of our
N-C axially chiral products, a series of the half-lives of racemization
(in n-hexane at 25 °C) of the substituted products were measured.
For the substituent group on the benzene ring, the 4b gave 67.4 h.
The substituent groups on the naphthalene ring gave 5a (103.3 h),
5b (32.1 h), 5c (63.3 h), 5 h (24.8 h), 5i (46.6 h), 5 l (52.7 h), 5m
(33.3 h), and 5p (20.6 h). The compound 5d with substituent at
adjacent C3 position of naphthalene ring gave the half-life of race-
mization of 11.4 h. Interestingly, substituent group on C8 position of
the naphthalene 5 g was very stable and gave the half-life of race-
mization of 5325.2 h. At solid state, we used 3a (90.10% ee) as an
example, and it was 90.04% ee after 90 h at −18 °C. These results
indicated that our N-C axially chiral products have suitable stability.

To get a better understanding of the stereo-stability of our N-C
nonbiaryl atropisomers, a series of experiments were then carried
out to examine the steric hindrance of azodicarboxylates (Fig. 4,
Part I), the effect of intramolecular hydrogen bond (Fig. 4, part II),
and the substituted groups of the naphthylamine (Fig. 4, part III).
Based our above experiment results (3a–3d), we knew that the more
steric hindrance of azodicarboxylates gave the better enantioselec-
tivity. Furthermore, in order to confirm that the low enantioselec-
tivity was originated from the racemization during the reaction
process or the hard stereo-control, we did three parallel experiments
to obtain the 3d at 12 h (64% ee), 24 h (66% ee) and 48 h (67% ee)
under standard conditions, showing that the N-C nonbiaryl
atropisomers were stable at reaction conditions without racemiza-
tion. Compared 3a (92% ee, 70.9 h) and 3d (67% ee, 25.0 h), this

evidence suggested that the large steric hindrance of azodicarbox-
ylates (Fig. 4, part I) not only improved the enantioselectivity of
reaction, but also stabilized the N-C atropisomers.

The N-C nonbiaryl atropisomers of our 2-naphthylamine
substrates are much more stable than 2-naphthol35 (Fig. 4), and
the intramolecular hydrogen bond55,56 (conformed by X-ray)
would be the important reason. Despite the N-phenyl substituted
group was necessary because of π–π interaction in stereo-control
in Table 1, the compound 5q (obtained by chiral resolution),
which was much easier to form intramolecular hydrogen bond,
was used to compare the half-lives of racemization to examine the
intramolecular hydrogen bond effect on stereo-stability and gave
514.8 h. These results indicated that the intramolecular hydrogen
bond (N-H…O) notably improved the stereo-stability of these
N-C axially chiral products.

Synthetic applicability. To enhance the practicality and effec-
tiveness of our enantioselective catalytic protocol, a gram-scale
reaction was carried out, as shown in Fig. 5a. The desired N-C
axially chiral amination product 3a was obtained in 1.17 g (87%
yield) with ideal 90% ee under standard conditions. In addition,
we also tested the feasibility of this protocol in the late-stage

Fig. 3 Proposed reaction mechanism. The mechanism was described citing 1d as an example
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modification of complex molecules in Fig. 5b. To our delight, the
estrone derivative 6 was well tolerated and gave the desired
product 7 in 94% yield with excellent stereochemical integrity and
high diastereoselectivity (>20:1 dr).

To demonstrate the synthetic utility of our N-C axially chiral
amination products, based on our continuing interest in
developing remote C-H functionalization, herein we designed a
challenging remote chiral transformation in Fig. 5c. Allylic
alkylation is an important component of chemistry and
enantioselective studies, and particularly those of allylic alcohols,
rely heavily on transition metals57–59. The para-position of the
aniline C-H allylic alkylation was not reported. Herein, the N-C
axially chiral amination product 3a was used to react with (E)-
1,3-diphenylprop-2-en-1-ol, which was catalyzed by DPP (diphe-
nyl phosphate) at −30 °C in DCE for 24 h. The desired product
was obtained in 72% yield. After the removal of Boc and the N-C
axial chirality, a remote chiral 1- to 8-position transformation was
achieved in two steps, in 54% yield with 51% ee. Further
enantioselective catalysis studies of this allylic alkylation will be
reported by us.

Discussion
We have designed a π–π interaction and dual H-bond concerted
control strategy and developed the CPAs catalyzed direct enan-
tioselective nonbiaryl N-C axially chiral amination of 2-
naphthylamine derivatives with azodicarboxylates as amino
sources in good yields and high enantioselectivities. This type of
N-C atropisomers is stabilized by intramolecular hydrogen bond
and a broad range of substrates was proved to be well tolerated.
Moreover, these axially chiral products could be converted into
derivatives containing new chiral centers. Further mechanistic
studies and the applications of this enantioselective axially chiral
amination methodology in the synthesis of complex nitrogen-
containing products are currently underway.

Methods
General procedure. A mixture of 2-naphthylamine derivatives 1 (0.1 mmol, 1
equiv) and CPA6 (0.01 mmol, 0.1 equiv), in DCM: Et2O= 7:3 (1 mL) was stirred at
−70℃ for 30 min in a 10 mL glass vial (purged sealed with PTFE cap). Then
azodicarboxylate (0.2 mmol, 2 equiv) was added, and the reaction mixture was
stirred at −70℃ for 48 h. The reaction mixture was direct purified by silica gel
flash chromatography to give the amination product.

Data availability
The data that support the findings of this study are available from the corresponding
authors on request (DOI: 10.6084/m9.figshare.8131271). The X-ray crystallographic
coordinates for structure reported in this article have been deposited at the Cambridge
Crystallographic Data Centre (CCDC), under deposition numbers 1875011[https://www.
ccdc.cam.ac.uk/structures/Search?Ccdcid=1875011&DatabaseToSearch=Published].
These data can be obtained free of charge from The Cambridge Crystallographic Data
Centre via www.ccdc.cam.ac.uk/data_request/cif.
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