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’ INTRODUCTION

Mass spectrometry-based shotgun proteomics is a powerful
tool for the interrogation of biological systems. Recent techno-
logical advances allow thousands of proteins to be routinely iden-
tified from submilligram quantities of tissues or cells.1 Increased
depth of proteome coverage lends itself to the investigation of
molecular signatures, which underlie complex disease processes.
For instance, in cancer, thousands of mutations have been identi-
fied but the precise relationship between genomic variation
and cancer phenotype remains largely unclear.2 Individual mutations
may bring about proteomic changes that otherwise would not be
predicted based on known gene function. In-depth proteomic
analysis is required to define the broader landscape of protein
networks and signaling pathways associated with cancer-related
mutations.

Determination of the proteomic consequences of individual
mutations in tissues presents a major challenge due to the
tremendous genetic heterogeneity between individual patient
tumors.3 Isogenic cell lines present an attractive model system,
wherein the phenotypic effects of a single gene defect can be
assessed in the context of uniform background gene/protein ex-
pression. Colorectal cancer (CRC) cell models are ideally suited

for the examination of proteomic effects of single gene changes.
Several mutations in key signaling pathways have been identified
in CRC. These “driver mutations” have been mapped to specific
events during tumor progression from normal epithelia to
carcinoma.4 One essential driver mutation occurs in adenoma-
tous polyposis coli (APC), and is among the most frequently
observed genetic aberrations in colorectal adenomas and cancers.5

APCmutations (or allelic loss) occur in 70�80%of adenomas and
carcinomas.6,7 While many other amino acid-changing mutations
are associatedwithCRC,most can be classified as “passenger”muta-
tions, that is, they do not confer a selective growth advantage on
the tumor and are propagated randomly by clonal expansion.4,8

Therefore, by focusing on proteomic changes assocziated with a
single driver mutation, one may decipher the protein subnet-
works that underlie tumor development.

APC occurs in complex with Axin (AXIN1) and glycogen
synthase kinase-3β (GSK3B) and plays a role in the proteolytic
degradation of β-catenin (CTNNB1). Decreases in CTNNB1
levels result in the inhibition of TCF/LEF-mediated transcription,
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a major component of the Wnt signaling pathway.9 The colon
tumor cell line SW480 contains amutation at positionQ1338 in the
APC coding sequence, which generates a premature stop codon.10

The remainingwild-type allele is deleted. AnAPC-corrected version
of SW480 (SW480APC) was generated by stable transfection with
wildtype APC.11 Relative to APC mutant cells (SW480Null),
SW480APC cells exhibit decreased proliferation rates, decreased
nuclear localization of β-catenin (CTNNB1), increased transloca-
tion of epithelial cadherin (CDH1) to the plasma membrane, and
enhanced cell�cell adhesion.11 Thus, the SW480APC model dis-
plays unique phenotypic properties that may map to underlying
proteomic expression signatures.

Here we employ two complementary proteomic technology
platforms that provide the means to systematically characterize
APC-driven proteomic differences. The first, shotgun proteo-
mics, employs liquid chromatography�tandem mass spectro-
metry (LC�MS/MS) and provides a nondirected, global inven-
tory of proteomes, together with quantitative assessments of
protein abundances.12,13 The second proteomics approach is
targeted analysis of individual proteins by multiple reaction
monitoring (MRM) mass spectrometry intensity measurement
of their constituent peptides.14,15 The data illustrate mechanisms
by which APC inactivation may alter cellular functions by per-
turbing the composition of cell proteomes. More generally, we
demonstrate the ability of label free shotgun proteomics to assess
proteomic consequences of a single gene difference.

’EXPERIMENTAL METHODS

Cell Culture and Subcellular Fractionation
SW480APC and SW480Null were a kind gift from Antony

Burgess (Ludwig Institute, Melbourne, Australia). Cells were
grown in RPMI 1640medium, supplemented with 10% fetal bovine
serum, 1% penicillin/streptomycin and genetecin (1.5 mg/mL).
Three biological replicate cultures were harvested approximately
1 week apart and these replicates were processed separately and
independently through the complete analysis. Growth medium
was aspirated, cells were washed once in 1� PBS and collected in
1� PBS, then centrifuged at 300� g for 5 min and the super-
natant was discarded. Cell pellets were stored at�80 �C until cell
lysis could be carried out.

For subcellular fractionation, cell pellets were resuspended in
buffer A (10 mM HEPES, pH7.9, 10 mM KCl, 2 mM MgCl2,
0.2 mM EDTA) containing protease inhibitors (aprotinin,
leupeptin) and incubated at 4 �C for 20 min. IGEPAL CA-630
(Sigma-Aldrich) was added to a final concentration of 0.5% v/v,
samples were incubated at 4 �C for 10 min and centrifuged at
300� g for 15 min at 4 �C. The supernatant (cytosolic fraction)
was collected in a separate tube. Pellets were resuspended in
Buffer A, centrifuged at 2000� g for 15 min at 4 �C and the
supernatant (cytosolic fraction) was combined with supernatant
from the previous step. The nuclear pellet was stored at�80 �C
and the cytosolic fraction was lyophilized overnight. Subsequent
lyis/digestion of cytosolic lyophilates and nuclear pellets was
carried out as described.

Cell Lysis, Protein Digestion, and Isoelectric Focusing of
Peptides

Lysis of cell pellets was carried out at ambient temperature.
Each biological replicate (one cell pellet from one cell line) was
processed in parallel to minimize the effects of systematic errors.
Pellets were resuspended in 100 μL 100 mM Ammonium

bicarbonate (AmBic) and 100 μL trifluoroethanol (TFE)
(organic solvent) was added followed by sonication (3 � 20 s).
Samples were incubated at 60 �C and resonicated (3 � 20 s).
Protein concentration was estimated using a bicinchoninic acid
(BCA) assay (Pierce, Rockford, IL). Proteins were reduced and
alkylated with 40 mM tris(2-carboxyethyl)phosphine (TCEP)/
100mMdithiothreitol (DTT) and 50mM iodoacetamide (IAM),
respectively. Samples were diluted in 50 mM AmBic, pH 8.0 and
tyrpsinized overnight at 37 �C (1:50, w:w). Subsequently, pep-
tides were lyophilized overnight. Peptides were desalted as
described16 and separated by isoelectric focusing (IEF) using
immobiline IPG strips (24 cm, pH 3.5�4.5) (GE Healthcare) as
described.16,17

LC�MS/MS
LC�MS/MS shotgun proteomic analyses were performed on

LTQ XL mass spectrometer (Thermo Fisher Scientific) equip-
ped with an Eksigent NanoLC AS1 autosampler and Eksigent
NanoLC 1DPlus pump, Nanospray source, and Xcalibur 2.0 SR2
instrument control. Peptides were separated on a packed capil-
lary tip (Polymicro Technologies, 100mm� 11 cm) with Jupiter
C18 resin (5 mm, 300 Å, Phenomenex) using an in-line solid-
phase extraction column (100mm� 6 cm) packed with the same
C18 resin using a frit generated with liquid silicate Kasil 1.18

Mobile phase A consisted of 0.1% formic acid andmobile phase B
consisted of 0.1% formic acid in 90% acetonitrile. A 90-min
gradient was carried out with a 30-min washing period (100% A)
to allow for solid-phase extraction and removal of any residual
salts. Following the washing period, the gradient was increased to
25%B by 35min, followed by an increase to 90%B by 50min and
held for 9 min before returning 95% A. MS/MS spectra of the
peptides are acquired using data-dependent scanning in which
one full MS spectrum (mass range 400�2000 m/z) is followed
by five MS/MS spectra. MS/MS spectra are recorded using
dynamic exclusion of previously analyzed precursors for 60 s with
a repeat of 1 and a repeat duration of 1. MS/MS spectra were
generated by collision-induced dissociation of the peptide ions at
normalized collision energy of 35% to generate a series of b- and
y-ions as major fragments. Biological samples from 3 indepen-
dent cell cultures were injected in duplicate for a total of 6
replicate measurements for the SW480null and SW480APC
cell lines.

LC�MS/MS Data Analysis
MS/MS scans were transferred to mzML file format by

“Scansifter”, an in-house-developed software algorithm, which
reads tandem mass spectra stored as centroided peak lists from
Thermo RAW files and transcodes them to universal mzML
format.19 If 90% of the intensity of a tandem mass spectrum
appeared at a lowerm/z than the precursor ion, a single precursor
charge was assumed; otherwise, the spectrum was processed
under both double and triple precursor charge assumptions. The
resulting mzML files were searched against the Human IPI
database (v3.64) using the Myrimatch algorithm (version
1.2.11).20 The database search was configured to look for both
fully tryptic and semitryptic peptides with a precursor mass/charge
(m/z) tolerance of 1.25 and a fragment m/z tolerance of 0.5.
Carboxamidomethylation of cysteines was included as static
modification, and oxidation of methionine as a dynamic modi-
fication in the search criteria, while any number of missed
cleavages was allowed. A reverse version of the Human IPI
database was included in the database search to allow for the
calculation of false discovery rates (FDR). The IDpicker algorithm
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(version 2.2.2) was used to assemble the set of peptides identified
into a minimal list of proteins that could explain the observed
spectral data set.21,22 A minimum of two peptides per protein
were required for valid protein identification with a peptide false
discovery rate (FDR) of 5%. Proteins that could not be distin-
guished due to fully shared peptide sequences were grouped
together (protein groups).

Statistically significant differences in protein spectral counts
between different groups (i.e., SW480Null versus SW480APC)
were calculated using the QuasiTel algorithm.23 QuasiTel is a
statistical analysis package which uses quasi-likelihood modeling
to compare differences in spectral count data between two groups.
The algorithm assigns a log-transformed rate ratio indicating the
magnitude of the observed difference in spectral counts, and a
probability of observing such differential levels for each protein
corrected for multiple comparisons. Complete results from
QuasiTel outputs and corresponding summaries from IDpicker
reports are provided as Supplementary Table S1, Supporting
Information.

LC�MRM-MS
Cell line samples for LC�MRM-MS were prepared as out-

lined above for LC�MS/MS proteomics, except peptide extracts
were not subjected to further fractionation by IEF. Peptide
samples from each cell line were resuspended in 0.1% formic
acid at 0.25 μg/μL and analyzed in triplicate (2 μL injection
volume) on a TSQVantage triple quadrupole mass spectrometer
(Thermo-Fisher, San Jose, CA) equipped with an Eksigent
nanoLC solvent delivery system, autosampler and a nanospray
source. The mobile phase consists of 0.1% formic acid in either
HPLC grade water (A) or 90% acetonitrile (B). A 80-min
gradient was carried out with a 15-min washing period (100% A).
Following the washing period, the gradient was increased to 60%
B by 43 min, followed by an increase to 95% B by 49 min and
held for 11 min before returning 97% A. Four optimized tran-
sitions for each peptide of corresponding proteins were selected
using the Skyline software package24 (see Table S2 in Supporting
Information for a list of peptides and corresponding precursor
and product m/z values). Instrument parameters include Q2 gas
1.5 mTorr, scan width 0.004 m/z, scan time10 ms, and both Q1
and Q3 resolution fwhm 0.7. A stable isotope labeled version of
the β-actin peptide GYSFTTTAER was used as an internal
standard (60 fmol/injection) for relative quantification of target
proteins by the Labeled Reference Peptide (LRP)method.25 The
integrated chromatographic peak areas for the transitions of each
targeted peptide were obtained from Skyline,24 and summed,
normalized to summed peak areas for the β-actin internal stan-
dard, and multiplied by a factor of 106, as we described in detail
elsewhere.25 An unpaired t test was used to test for significant
differences between samples (n = 3).

Microarray Transcriptomic Analysis
For total RNA isolation cells were washed once in 1X PBS,

lysed in TRIzol, and homogenized. Nucleic acids were isolated by
chloroform extraction, and RNA was precipitated with isopro-
panol and purified by cesium chloride (CsCl) (5.7M) gradient
centrifugation. Digoxigenin-UTP labeled cRNA was generated
and linearly amplified from 1 μg of total RNA using Applied
Biosystems Chemiluminescent RT-IVT Labeling Kit. cRNA was
fragmented and hybridized to the Applied Biosystems Human
Genome Survey Microarray V2.0 (29,098 genes) and imaged on
an AB1700 chemilumiescent microarray analyzer (Applied Biosys-
tems, Foster City, CA). We compared the two groups to identify

genes that were differentially expressed between them. First,
expression data were normalized using quartile normalization and
then log transformed. Before log transformation, we increased all
expression value by a base number to make the lowest expression
level equals 1. The normalized and log transformed data was
analyzed using the Limma package in Bioconductor.26 Specifically,
we used Limma to fit a linear model to the data using an empirical
bayes method to moderate standard errors. Expression data were
normalized using quartile normalization and then log transformed.
Before log transformation, we increased all expression value by a
base number to make the lowest expression level equal to 1.

Hierarchical Clustering Analysis
We performed a coclustering analysis integrating both mRNA

and protein measurements for proteins that showed an adjusted
p-value of less than 0.1 (QuasiTel analysis) and also had mRNA
expression data. Before integration, protein and mRNA expres-
sion data sets were standardized protein/gene-wise separately so
that each protein/gene had a mean expression value of 0 and
standard deviation of 1 across samples in the data set. On the
basis of the integrated data, pairwise similarity was calculated
using the Pearson’s correlation coefficient. Average linkage was
used for hierarchical clustering. Genes and samples were clus-
tered separately.

Webgestalt Enrichment Analysis of Differentially Expressed
Proteins

Enrichment analysis of proteomic data was carried out using
Webgestalt.27,28 Webgestalt identifies enriched classes of genes/
proteins in large scale data sets by searching from several public
resources: NCBI Gene, NCBI Gene Expression Omnibus (GEO)
Ensembl, Gene Ontology (GO), Kyoto Encyclopedia of Genes
and Genomes (KEGG), Pathway Commons, Wikipathways,
Molecular Signatures Database (MSigDB). A set of 155 dif-
ferentially expressed proteins (<0.1 adjusted quasi p-value) or
26 discordant proteins/transcripts (proteins with <0.1 adjusted
p-value showing opposite expression trends with microarray
data) were analyzed by Webgestalt using the entire set proteins
observed (5002 proteins) as a reference set. Statistical signi-
ficance was calculated using the Fisher test with Benjamini-
Hochberg correction formultiple testing. Each enriched category
is assigned an adjusted p-value (listed in Results along with each
enriched class) and an enrichment factor (ratio of observed to
expected for given enrichment class) (see Table 2).

’RESULTS

Description of LC�MS/MS Shotgun Proteomics
Very few large scale global proteomic studies have examined

the consequences of a single genetic mutation on the proteome
and it is unclear if such studies are capable of detecting the effects
of such small perturbations of the cellular system.29,30 Previous
studies relied on 2-D gel electrophoresis for identification of
differentially expressed proteins, thus restricting proteome cover-
age to less than 1000 proteins.29,30 Label free shotgun proteomics
may provide more a comprehensive approach to detection of the
subtle effects of a single gene change. Indeed, proteomic effects
may be limited to a discrete number of signaling networks related
to the gene of interest, or there may be more widespread changes
as a result of secondary events such as transcription factor
activation, altered metabolism or growth rates. Furthermore,
the proteomic consequences of a single gene mutation may differ
from changes in the gene expression profile. Due to differences in
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transcript and protein turnover rates as well as post-transciptional
regulation, transcriptomic profiling alone may not provide an
accurate assessment of the effects of a single gene change. Therefore,
we examined the effects of a single gene alteration on the proteome
and transcriptome. We chose to study the effects of restoration of
APC in a colorectal cancer cell line because of the central impor-
tance of this gene in colorectal carcinoma development.

Shotgun proteomic analysis was performed on three biological
replicates of the isogenic SW480Null (mutant APC) and SW-
480APC (APC restored) cell lines (15 IEF fractions per replicate,
2 repeat injections per fraction), as described in Experimental
Methods. In three biological replicate analyses we observed aver-
ages of 26 100 (9.5%CV) and 24 300 (12.6%CV) confidently
matched spectra in SW480APC and SW480Null, respectively.
These values corresponded to 4855 (7.4%CV) and 4795 (8.0%CV)
protein groups in SW480APC and SW480Null, respectively.

Spectral counting was used to determine relative differences in
protein expression between SW480APC and SW480Null. This
approach to analysis of shotgun proteomic data provides an
alternative quantitative approach to isotope labeling approaches,
such as SILAC.12,13,31 Previous studies have shown that spectral
counting can achieve reproducible characterization of defined
proteomic differences across multiple laboratories and the quasi-
likelihood modeling approach to compare data sets can correct
for instrument-to-instrument variations and interlaboratory
variation.23,32,33 Moreover, spectral counting-based quantitative
proteomic analysis can be universally applied to many types of
biospecimens including cell lines, frozen tissues, formalin fixed
tissues and blood plasma.16,34 A single discovery platform pro-
vides a straightforward way of comparing protein expression
signatures across multiple sample types. Therefore, mutation
specific proteomic profiles in cell culture models can easily be
weighed against proteomic data sets inmore complex clinical samples.

Although conventional search criteria (2 peptides per pro-
teins, 5% peptide-level FDR)were applied to the data set, protein
FDR levels remain considerably high (25.7%) after initial data-
base searching. False positive peptides tend to be distributed
across a large number of proteins. However, in general only a few
spectra map to these false positive proteins (average 1.6 spectral
counts per protein per cell line). Therefore, by applying a minimum

spectra-per-protein filtering criterion, protein FDR improved sub-
stantially. After removal of proteinswith fewer than 6 spectral counts
(minimum one spectrum per biological replicate), a total of 5002
proteins (3.8% protein FDR) remained. Of these 99.2% were
detected in both SW480APC and SW480Null (Figure 1A). A
majority of proteins was observed in all three biological replicates
(SW480APC, 84% and SW480Null, 85%), while relatively few
proteins were found in just a single biological replicate
(SW480APC, 3% and SW480Null, 3.4%) (Figure 1B). There-
fore, 97% of all proteins were observed in at least two of the three
biological replicates, indicating the considerable reproducibility
of the platform. Individual protein spectral counts in biological
replicates (average of Rep1 vs Rep2, Rep 1 vs Rep3, Rep 2 vs Rep 3)
show good overall correlation (SW480APC, r = 0.85 and
SW480Null, r = 0.88, Spearman ranked correlation).

Proteomic and Transcriptomic Comparison
To compare proteomic and transcriptomic profiles in the

SW480APC model, supervised clustering analysis of shotgun
proteomic data and corresponding microarray data was carried
out (Figure 2). The analysis was limited to 111 differentially ex-
pressed proteins (<0.1 adjusted quasi p-value) that were also
detectable bymicroarray analysis. Clustering analysis revealed that
a plurality of proteins and transcripts (76%, 85/111 proteins)
show the same directionality of expression change between
SW480APC and SW480Null, that is, most proteins down-
regulated in SW480APC are also down-regulated at the tran-
script level. One distinct cluster of 14 proteins was up-regulated
in SW480APC in shotgun proteomics but down-regulated in
microarray (Figure 2, red box). This set included cell adhesion
proteins CTNNA1 and ACTN1 and phosphatases PPP4R1 and
PTPRF. Further analysis of SW480APC/SW80Null log2 ratios
for the set of 111 proteins/genes between microarray and proteo-
mics revealed only modest correlation (r = 0.503, Spearman ranked
correlation). Transcripts found to be significantly differentially
expressed by microarray (top 3% ranked by adjusted p-value, 122
genes/proteins) showed similar correlation with corresponding
proteomic log2 ratios (r = 0.63, Spearman ranked correlation).

It is likely that differences in turnover rates for proteins
and transcripts as well post-transcriptional regulation events

Figure 1. Biological variation of LC�MS/MS proteomics. (A) Venn diagrams show protein expression overlap for shotgun proteomic inventories in
SW480APC and SW480Null (top). Overlap in three biological replicates is shown for SW480APC (bottom left) and SW480Null (bottom right).
Spearman ranked correlations for replicate to replicate comparisons shown in parentheses (B) Stacked plots show percentage of proteins identified in
one, two or three biological replicates in SW80APC and SW480Null.
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(e.g., microRNA (miRNA), mRNA processing) contribute to the
observed discordance. Interestingly, DICER1 which plays a key
role in RNA-induced silencing is up-regulated in SW480APC,
presumably resulting in altered microRNA biosynthesis and
expression. Altered DICER1 expression is a feature of several
cancers including ovarian, pancreatic and lung cancer.35�37 Pre-
vious studies have shown conflicting results for DICER1 expres-
sion levels in CRC, with some noting decreased expression in
colon adenocarcimonas, while others demonstrated that over-
expression is associated with poor prognosis.38,39 The data here
suggest that restoration of wildtype APC correlates with en-
hanced DICER1 expression which may result in altered miRNA
expression profiles. Further inspection of 26 discordant proteins
revealed enrichment for several miRNA targets, including miR-
338 (adjusted p-value =0.01) and miR-193A (adjusted p-value =
0.07) (Webgestalt enrichment analysis, see Experimental Meth-
ods). miR-338 is down-regulated in hepatocellular carcinoma,
while overexpression of miR-193A inhibits tumor growth in
colon xenografts by targeting KRAS and PLAU.40,41 These data
suggest that changes to specific miRNA levels might result in
discordant protein/transcript expression.42 Therefore, restora-
tion of APCmay affect miR-338 andmiR-193A expression levels,
thereby giving rise to discordant transcript/protein levels in spe-
cific targets, e.g. PLD3, SIX4.

Protein Networks and Pathways Affected by Reintroduction
of APC

Using quasi-likelihood modeling of protein spectral counts we
identified a set of 155 proteins showing differential expression be-
tween SW480APC and SW480Null (adjusted quasi p-value <0.1)

(97 down in SW480Null, 57 up in SW480Null). Within this
set of 155 proteins we carried out a systematic search for
enrichment of functionally related protein classes using the
Webgestalt software tool.28 Table 1 shows the top five sets of
proteins (ranked by adjusted p-value) from multiple enrichment
analyses (GO, KEGG, etc). This approach identified groups of
proteins that were down-regulated in SW480Null cells (>75%
proteins down in SW480Null, red arrows alone) including cell
adhesion (GO:0007155, adjusted p-value = 0.005) and type II
interferon signaling (WP619, adjusted p-value = 0.031). In-
creased expression of proteins involved in protein kinase C bind-
ing (GO:0005080, adjusted p-value = 0.133) and DNA topo-
isomerase activity (GO:0003916, adjusted p-value = 0.133) was
observed in SW480Null (>75% proteins up in SW480Null, green
arrows alone). Interestingly, some groups enriched for differen-
tially expressed proteins contained proteins that were either up-
regulated or down-regulated in SW480Null (<75% proteins up
or <75% down in SW480Null, red and green arrows), including
negative regulation of the cell cycle (GO:0045786, adjusted
p-value = 0.015) and terpenoid backbone biosynthesis (KEGG
ID 900, adjusted p-value = 0.003).

Pathways and protein functional classes affected by APC
restoration (derived from Webgestalt enrichment analysis) are
depicted schematically in Figure 3A. A major proteomic feature
of SW480Null cell line is the down-regulation cell adhesion
proteins. Loss of epithelial cadherin (CDH1) and the attendant
abrogation of adherens junctions have been previously reported
in SW480Null cells.11 CDH1 was shown byWestern blot to have
2-fold higher expression in SW480APC cells.11 Here we ob-
served 2-fold higher expression of CDH1 in SW480APC by

Figure 2. Proteomic and transcriptomic profile comparison of SW480APC and SW480Null. Heat map shows supervised clustering analysis of shotgun
proteomics data and transcriptomic data for 111 differentially expressed proteins (adjusted quasi p-value <0.1) (red, increased expression; green,
decreased expression). Clustering was performed on log2 transformed spectral counts from 6 replicate analyses for proteomics and on log2 transformed
RMA values for microarray.
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Table 1. Enrichment Analysis of Differentially Expressed Proteinsa

aThe Webgestalt algorithm27,28 was used to identify enriched sets of proteins in a set of 155 differentially expressed proteins. The top five
ranked categories (based on adjusted p-value) from each database are listed. Enriched categories with >75% proteins up-regulated in
SW480Null were classified as up in SW480Null (green arrow alone) and enriched classes with >75% down regulated in SW480Null were
classified as down in SW480Null (red arrow alone). All others classified as a mix of up-regulated and down-regulated proteins. The entire data
set of 5002 proteins was used as a reference set in the analysis. Databases are abbreviated as follows; GO, gene ontology (BP, biological process,
MF, molecular function, CC, cellular component); KEGG, Kyoto Encyclopedia of Genes and Genomes; WP, Wiki Pathways; PC, Pathway
Commons; MsigDB, Molecular Signatures Database (TF, transcription factor, miRNA, microRNA, PPI, protein protein interaction, CP,
chromosome position). For a given category the enrichment ratio (ER) is the ratio of observed proteins in the 155 protein set to the number
expected based on chance.
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LC�MS/MS and 3-fold higher expression by LC�MRM (see
Table 2). SW480Null cells had decreased levels of many other
proteins involved in adherens junction formation and cell adhe-
sion, including CDH3, CTTNA1, CTTND1, NCAM1, EVPL,
DSG2, CECAM1, and EPCAM (Figure 3A). Another group of
proteins down-regulated in SW480Null cells includes regulators
of the actin cytoskeleton,11 which undergoes dramatic reorgani-
zation associated with the APCnull phenotype. Levels of the
actins ACTB and ACTG1 were unchanged in the SW480Null cells,
but levels of the actin regulators FARPB2, EPPK1, VIL1, ACTN1
and GSN all were decreased. Thus, proteomic findings confirm a
previously identified phenotypic feature of SW480Null cells.

The effect of APC loss on the Wnt signaling pathway itself is
relatively modest and appears to reflect adaptation to APC loss.
The negative Wnt regulators DKK4 and CLU were decreased.
CACYBP, which participates in CTTNB1 degradation and
USP15, a deubiquitylation enzyme which prevents APC degrada-
tion, both were increased in SW480ull cells (Figure 3A). We
observed a trend of elevated CTNNB1 in SW480APC, although
this trend did not meet the 0.1 adjusted quasi p-value threshold
(adjusted quasi p-value = 0.18, log2 SW480APC/SW480Null
rate ratio = 0.52). However, measurement of cytosolic and nuclear
CTNNB1 by MRM revealed a 3-fold increase in cytosolic
CTNNB1 in SW480APC (p < 0.001, unpaired t test), suggesting
that restoration of APC results in reducedWnt activation (Figure 3B,
top panel). MRM analysis confirmed that total CTNNB1
(cytosolic and nuclear) is higher in SW480APC (log2 SW480APC/
SW480Null = 0.81, p = 0.001, unpaired t test).

Changes to proteomic expression profiles in APC restored
cells may be the result of altered transcription factor activities.
Enrichment analysis revealed that targets of the transcription

repressor ZEB1 (hsa_CAGGTA_V$AREB6_01, adjusted
p-value = 0.022) were measured at lower levels in SW480Null,
implying elevated ZEB1 activity in this cell line. Activation of
ZEB1 is thought to play a key role in epithelial to mesenchymal
transition (EMT), a process characterized by loss of cell polarity
and adhesion and increased motility. A prominent feature of
EMT is loss of CDH1 expression. ZEB1 represses CDH1 by
binding to E-box elements in the promoter region. Therefore, the
observed decrease in CDH1 expression in SW480Null may be a
direct result of ZEB1 activation.43 Furthermore, the ZEB1 core-
pressor SMARCA4 is up-regulated in SW480Null (Figure 3A).
Others have shown that disruption of the ZEB1/SMARCA4
binding causes an increase in CDH1 expression and a decrease in
the mesenchymal marker VIM, trends seen here in SW480APC.44

Therefore, SMARCA4-dependent activation of ZEB1 may play a
role in conferring key phenotypic features in SW480Null.

Functional class enrichment analysis identified several groups
with both up-regulated and down-regulated proteins in SW480Null
(Table 1, red and green arrows). This result suggests that APC
restorationmay affect expression of proteins in a common pathway,
but changes do not necessarily occur in a uniform direction. For
instance, 2/6 proteins (PDCD4, NGFR) were down in SW480-
Null and 4/6 proteins (SMARCA4, RB1, EGFR, CENPF) were
up in SW480Null for the GO category negative regulation of the
cell cycle (GO:0045786, adjusted p-value = 0.014). This ob-
servation may reflect the multiple roles played by individual pro-
teins in the cell cycle. Similarly, forα6β4 integrin signaling (WP244,
adjusted p-value = 0.004) 5/7 proteins (LAMA3, LAMB1, DSP,
EIF4E, SFN) were down in SW480Null and 2/7 proteins (VIM,
EGFR) were up in SW480Null. Elevated VIM and EGFR levels
in SW480Null may result in changes to integrin-mediated cell

Figure 3. Proteomic changes associated with APC restoration. (A) Schematic figure represents a subset of enriched classes from 155 differentially
expressed proteins (<0.1 adjusted quasi p-value) between SW480Null and SW480APC (see Table 2 for details on all enriched classes). APCnull status
results in decreased expression (red symbols) of proteins associated with cell adhesion and the actin cytoskeleton and up-regulation (green symbols) of
proteins involved in cell cycle control cholesterol biosynthesis. (B) SW480APC cells display redistribution of CTNNB1 from cytoplasm to nucleus. Cells
were fractionated and nuclear and cytosolic fractions were analyzed by LC�MRM for CTNNB1 (top panel) and HIST1H4A (nuclear protein marker)
(bottom panel).
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adhesion and motility, thereby contributing to a more tumoro-
genic phenotype APCNull cells.

Proteins up-regulated in SW480Null cells included cell cycle-
related proteinsRB1, SMARCA4,CENPF andDNA topoisomerases
TOP2A, TOP2B (Figure 3A). Among other proteomic differ-
ences observed, SW480Null cells display up-regulated EGFR, but
down-regulated NGFR, which suggests a shift in growth factor
response. SW480Null cells display down-regulation of SLC5A1
(sodium glucose cotransporter) and SLC12A6 (potassium chlor-
ide cotransporter). Down-regulation of MVD and FDPS, two
key regulators of terpenoid backbone synthesis synthesis, may
affect the prenylation of signaling enzymes. These changes may
be the result of increased growth rates in SW480Null cells. To
broaden the search for enriched functional protein groups, we
carried out a limited manual inspection of significantly differen-
tially expressed proteins. This approach reveals functional groups
which fall outside theWebgestalt enrichment criteria (i.e., those groups
not in the top five ranked categories based on adjusted p-values), as
well as proteins which share a common function but lack a common
GO designation. Manual interrogation (g3 proteins, all up in SW-
480Null) revealed elevated levels of proteins involved in mRNA
processing (DDX23, RBM10, SART1, CD2BP2, SFRS2IP) and
nuclear transport (NUP50, NUP155, XPO4). Assessment of the
impact of these protein expression changes would require further
experiments. However, the magnitude of these protein changes is
similar to those associated with well-documented effects on cell
adhesion, cytoskeletal organization and cell cycle regulation.
Thus, these newly identified proteomic changes provide new
avenues to explore the APCNull phenotype.

Verification of Proteomic Differences by LC�MRM-MS
A subset of the proteins found to be differentially expressed by

LC�MS/MS shotgun proteomics were assessed by LC�MRM-MS.
This approach provides a quantitative measurement of proteo-
typic peptides and an accurate assessment of the relative pro-
tein abundance in SW480APC and SW480Null.25 LC�MRM-MS
measurements showed substantial reproducibility across three
replicate runs. For 22 proteotypic peptides analyzed, a median
CV value of 11.5% was observed. Correlation between log ratios
(SW480APC/SW480Null) from each approach was also evalu-
ated (r = 0.63, Spearman ranked correlation). For all proteins,
LC�MRM-MS measurements agree with LC�MS/MS shotgun
proteomics, and identical trends in protein expression were
observed between the two platforms, that is, proteins with high
levels in SW480APC by shotgun proteomics are also seen to be
high by LC�MRM-MS (e.g., DKK4, CDH1) (Figure 4 and
Table 2). Similarly, proteins which were not found to be
differentially expressed by shotgun proteomics, showed no
difference by LC�MRM-MS (e.g., LCP1, ADD3). Thus, the
data demonstrate that for a subset of differentially expressed
proteins, label free shotgun proteomics data and LC-MRM data
are broadly concordant.

’DISCUSSION

Extensive information is currently available on genomic varia-
tion in cancer. Large data repositories such as the Cancer Genome
Atlas (TCGA) and Catalogue of Somatic Mutations in Cancer
(COSMIC) provide vast knowledge on a range of mutations across
a spectrum of tumor types.2,6 However, the global proteomic effects

Table 2. Summary of LC�MS/MS and LC�MRM-MS Data for 22 Proteins Validated by Targeted Proteomics

LC�MS/MS LC�MRM

HGNC

gene symbol

SW480APC

count

SW480Null

count

log2
(SW480Null/

SW480APC) QL p-value AdjP

log2
(SW480Null/

SW480APC)

t test,

p-value

ADD3 39 40 0.1 5.15 � 10�1 8.36 � 10�1 �0.3 9.80 � 10�3

ASS1 63 30 �1 9.10 � 10�6 4.04 � 10�3 �0.5 1.37 � 10�1

CADM1 25 5 �2.2 1.75 � 10�3 7.21 � 10�2 �1.3 1.00 � 10�4

CDH1 39 18 �1 3.44 � 10�3 1.06 � 10�1 �1.7 1.00 � 10�4

CLU 40 12 �1.6 1.70 � 10�5 5.67 � 10�3 �2.1 1.00 � 10�4

CST1 40 7 �2.4 3.83 � 10�5 8.00 � 10�3 �1.8 6.00 � 10�4

CTNND1 85 47 �0.7 8.30 � 10�5 1.39 � 10�2 �1.2 1.00 � 10�4

DKK4 100 2 �5.5 1.64 � 10�6 1.37 � 10�3 �6 1.00 � 10�4

DSG2 41 19 �1 6.49 � 10�4 3.77 � 10�2 �1.2 1.80 � 10�3

DYSF 124 8 �3.8 2.54 � 10�9 6.37 � 10�6 �0.9 1.14 � 10�2

EGFR 26 70 1.5 3.10 � 10�4 2.38 � 10�2 1.6 3.05 � 10�2

FDPS 41 19 �1 3.83 � 10�4 2.78 � 10�2 �1 2.00 � 10�4

LCP1 21 23 0.2 3.80 � 10�1 7.67 � 10�1 �0.2 9.33 � 10�2

LGALS3BP 59 22 �1.3 1.59 � 10�4 1.63 � 10�2 �1.5 9.60 � 10�3

LLGL2 18 1 �4.1 3.79 � 10�4 2.78 � 10�2 �1.4 4.00 � 10�2

MGAT1 14 2 �2.7 2.98 � 10�3 9.84 � 10�2 �1 2.21 � 10�2

NES 112 258 1.3 9.44 � 10�5 1.41 � 10�2 1.2 4.57 � 10�2

PDCD4 48 12 �1.9 1.69 � 10�4 1.66 � 10�2 �2.3 5.00 � 10�4

PPL 173 106 �0.6 4.09 � 10�3 1.16 � 10�1 �1.2 2.00 � 10�4

PYCR1 101 37 �1.3 5.15 � 10�4 3.47 � 10�2 �1.9 1.60 � 10�3

VIL1 82 26 �1.6 5.09 � 10�6 2.55 � 10�3 �1.5 1.53 � 10�2

VSNL1 75 30 �1.2 1.57 � 10�3 6.67 � 10�2 �1.1 1.77 � 10�2
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of cancer-related mutations have not been well characterized.
Here we examined the proteomic consequences of a single gene
difference in a CRC cell line model in which APC expression has
been restored. Label free LC�MS/MS shotgun proteomics
provided a robust and reproducible means to inventory over
5000 proteins in SW480APC and SW480Null. Differentially
expressed proteins included cell adhesion and actin binding
proteins and cell cycle regulators all known to be impacted by
restoration of wildtype APC expression.11 Additionally, several
protein classes not previously thought to be related to Wnt
signaling were differentially expressed, for example, cholesterol
biosynthesis, ZEB1 transcription targets.

Although most canonical Wnt signaling proteins did not show
altered expression (e.g., GSK3B, CTNNB1, DVL1), DKK4, a
known negative regulator of Wnt signaling, was significantly up-
regulated in SW480APC.45 DKK4, in conjunction with Kremen2
(KRM2), inhibits the interaction between Wnt and its core-
ceptor low-density lipoprotein receptor-related protein 5/6
(LRP5/6).46 Interestingly, DKK4 is down-regulated in primary
colorectal tumors and several colorectal cancer cell lines, and
re-expression of DKK4 resulted in attenuation of cell cycle
progression.47 Our data agree with these earlier findings that
DKK4 plays an important role in APC-dependent tumor forma-
tion. In SW480Null cells we observed increased expression of
CACYBP which plays a role in degradation of CTNNB1.48

CACYBP is up-regulated in pancreatic cancer and suppression
by siRNA results in decreased cellular proliferation rates.49 In
mutant APC expressing cells, enhanced CACYBP expression
may be an adaptive response to increased levels of unbound
CTNNB1.

A distinct group of proteins involved in RNA processing is up-
regulated in SW480Null cells (e.g., DDX23, SART1 and HNR-
NPL). Several genes are known to undergo abnormal splicing in
cancer, including KLF6, DNMT3B and BRCA1.50�52 Changes in
the levels or the activities of regulatory splice proteins may
contribute to tumor formation.53 For instance serine/arginine rich

(SR) proteins play a key role in the specification of splice sites in
eukaryotic mRNA and are regulated in part by their phosphoryla-
tion status. SFRS2 is an SR protein involved in the formation of an
early ATP-dependent splicing complex.54 Here we see an increase
in its interacting protein SFRSIP in SW480Null. SR proteins may
also interact with heterogeneous nuclear ribonucleoproteins
(hnRNPs).53 In the current data set HNRNPL is up-regulated
in mutant APC cells. Changes to the stoichiometric ratios of SR
proteins and hnRNPs may influence the expression profiles of
splice variants in APCNull cells. Further experiments will be
required to establish if increases to RNA processing proteins are
merely a byproduct of the faster growth rate in SW480Null cells or
the result of another aspect of APC deficiency.

Altered expression was observed in proteins associated with
isoprenoid biosynthetic pathways (ACAT2, MVD, FDPS,
HMGCS2). Prenylation and farnesylation of key signal transduc-
tion proteins may modify pathways activities in cancer. Modula-
tions to PTP4A3 and CDC42 have been shown to contribute to
colon cancer and breast cancer, respectively.55,56 Given the
important role of prenylation in tumor formation, anticancer
agents have been developed which suppress key enzymes in this
pathway, including RCE1 and IMCT.57,58 Isoprenoid biosyn-
thetic proteins identified here may represent alternative ther-
apeutic targets in mutant APC-dependent colorectal cancer.
Interestingly, many of these proteins showed discordant expres-
sion patterns between transcriptomic and proteomic data sets.
The isoprenoid pathway provides metabolic precursors to steroid
biosynthesis, a process subject to feedback regulation. For
example, elevated sterol levels result in decreased HMGCR,
the rate-limiting enzyme of sterol biosynthesis, via ER-associated
degradation and proteolysis.59 It is unclear if such a feedback
mechanism may explain discordant expression of isoprenoid
synthesis proteins in this study.

In general, our results illustrate how proteomic analysis may
provide biological insights that would otherwise not be predicted
by transcriptomic analysis alone or by previous descriptions of

Figure 4. Validation of proteomic differences by LC�MRM-MS. Shotgun proteomics data are plotted as spectral counts for triplicate analyses (red
bars), whereas MRMdata are plotted as summed signal intensity for measured transitions normalized to summed intensity for transitions measured for a
reference peptide (blue bars). (n = 3). A list of peptides and corresponding precursor and product m/z values is provided in Supplementary Table S2.
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the APCNull phenotype. Several novel pathways are implicated
in the current proteomic data set including DNA topoisomerase
activity, terpenoid backbone biosynthesis and α6-β4 integrin
signaling. Functional enrichment results from transcriptomic
data alone (data not shown) showed considerable divergence
from those of proteomics data. Known APCNull phenotypic pro-
perties were either not observed (e.g., negative regulation of the
cell cycle) or showed only modest enrichment in transcriptomic
only analyses (e.g., actin-binding, adjusted p-value = 0.371;
cell�cell adherens junction, adjusted p-value = 0.378). Loss of
CDH1 expression, a previously validated hallmark of APCNull
cells, is weakly corroborated at the transcript level (log2 ratio = 0.2,
adjusted p-value = 0.45) but clearly demonstrated at the proteo-
mic level (log2 ratio = 1, adjusted p-value = 0.1). Furthermore,
target enrichment of the EMT-related ZEB1 transcriptional
repressor in SW480APC is only observed in the proteomics data
set. Therefore, proteomics appears to present a more reliable
approach to biological discovery in the SW480APC model and
underscores the added value of proteomic techniques over tran-
scriptomic approaches.

Label free shotgun proteomics provides significant depth of
proteome coverage and aids in the detection of subtle proteomic
differences in the SW480APC model. Nonetheless, there are
some important limitations associated with the approach. The
proteomic consequences of APC restoration were only examined
in a single SW480APC clone, raising the possibility that clonal
cell line features contribute to observed proteomic differences.
However, Faux and colleagues showed that multiple SW480APC
clones display a consistent set of phenotypic properties, for ex-
ample, decreased growth rates, loss of anchorage independent
growth, increased CDH1 levels.11 Our proteomic data recapitu-
late many of these features. In particular, we document decreased
expression of over 20 cell adhesion proteins (e.g., DSP,
CTNND1, CADM1) and changes to cell cycle regulatory pro-
teins (e.g., RB1, SMARCA4) in SW480Null. LC�MS/MS and
LC�MRM proteomic data for CDH1 (2- and 3-fold higher in
SW480APC, respectively) agree with the previously reported
2-fold decrease.11 These specific findings suggest that proteomic
differences primarily reflect the biological consequences of APC
restoration.

As with most proteomic technologies, there is a bias toward
detection of high abundant proteins and many lower abundant
proteins are either not detected at all, or do not produce enough
signal to allow a confident comparison of relative expression levels
between samples. In the SW480APC model several proteins
from the Wnt signaling pathway (e.g., APC, AXIN2, TCF7,
LEF1, DVL1) were not detected. Consequently, only a partial
evaluation of the proteomic effects of APC restoration on the
Wnt signaling pathway can bemade. Likewisemany transcription
factors, which may play key regulatory roles in the SW480APC
model, are not detected. However, the high number proteins
confidently identified in this data set (>5000) still allows many
significant differences to be observed and meaningful biological
information may be inferred from these differences. For instance,
enhanced activity of the transcriptional repressor ZEB1 in
SW480Null can be deduced from elevated levels of ZEB1 protein
targets in SW480APC. Furthermore, verification of 22 proteins
by targeted LC�MRM confirmed the direction and magnitude
of the differences observed in the LC�MS/MS proteomics data,
thereby demonstrating the general reliability of the approach.

The approach used here to analyze the effects restoration of
wildtype APC can be applied to other model systems where known

phenotypic differences arise from a specific genetic alteration. In
colorectal cancermutations in TP53, KRAS and SMAD4 contribute
significantly to tumor development.5 Elucidation of the global pro-
teomic consequences of these mutations should yield new insights
into basic tumor biology. In conclusion, we have demonstrated the
utility of label free shotgun proteomics to assess the proteomic
effects of a single gene difference in a colorectal cancer cell model.
Our findings reflect previously reported phenotypic features of the
APCNull phenotype while also identifying new aspects of the
underlying biology associated with APC deficiency.
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