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Another operator‑theoretical 
proof for the second‑order phase 
transition in the BCS‑Bogoliubov 
model of superconductivity
Shuji Watanabe

In the preceding papers, imposing certain complicated and strong conditions, the present author 
showed that the solution to the BCS-Bogoliubov gap equation in superconductivity is twice 
differentiable only on the neighborhoods of absolute zero temperature and the transition temperature 
so as to show that the phase transition is of the second order from the viewpoint of operator theory. 
Instead, we impose a certain simple and weak condition in this paper, and show that there is a unique 
nonnegative solution and that the solution is indeed twice differentiable on a closed interval from a 
certain positive temperature to the transition temperature as well as pointing out several properties of 
the solution. We then give another operator-theoretical proof for the second-order phase transition in 
the BCS-Bogoliubov model. Since the thermodynamic potential has the squared solution in its form, 
we deal with the squared BCS-Bogoliubov gap equation. Here, the potential in the BCS-Bogoliubov 
gap equation is a function and need not be a constant.

In the BCS-Bogoliubov model of superconductivity, one does not show that the solution to the BCS-Bogoliubov 
gap equation is partially differentiable with respect to the absolute temperature T. Nevertheless, without such a 
proof, one partially differentiates the solution and the thermodynamic potential with respect to the temperature 
twice so as to obtain the entropy and the specific heat at constant volume. One then shows that the phase transi-
tion from a normal conducting state to a superconducting state is of the second order. Therefore, if the solution 
were not partially differentiable with respect to the temperature, then one could not partially differentiate the 
solution and the thermodynamic potential with respect to the temperature, and hence one could not obtain 
the entropy and the specific heat at constant volume. As a result, one could not show that the phase transition 
is of the second order. For this reason, it is highly desirable to show that there is a unique solution to the BCS-
Bogoliubov gap equation and that the solution is partially differentiable with respect to the temperature twice.

In the preceding papers (see1[Theorems 2.2 and 2.10] and2[Theorems 2.3 and 2.4]), the present author gave a 
proof of the existence and uniqueness of the solution and showed that the solution is indeed partially differenti-
able with respect to the temperature twice on the basis of fixed-point theorems. In this way, the present author 
gave an operator-theoretical proof of the statement that the phase transition is of the second order, and thus 
solved the long-standing problem of the second-order phase transition from the viewpoint of operator theory. 
Here, the potential in the BCS-Bogoliubov gap equation is a function and need not be a constant.

But the present author imposed certain complicated and strong conditions in the preceding papers1–3. As a 
result, the present author showed that the solution to the BCS-Bogoliubov gap equation is partially differenti-
able with respect to the temperature only on the neighborhoods of absolute zero temperature T = 0 and the 
transition temperature T = Tc . Instead, we impose a certain simple and weak condition in this paper. Thanks 
to this simple and weak condition, we show that there is a unique nonnegative solution and that the solution is 
indeed partially twice differentiable with respect to the temperature on the interval [T0, Tc] as well as pointing 
out several properties of the solution. Here, the temperature T0 is defined in (1.4) below, and the temperature 
interval [T0, Tc] can be nearly equal to the whole temperature interval [0, Tc] (see Remark 2.1 below).

Differentiating the thermodynamic potential with respect to the temperature, we thus give another operator-
theoretical proof for the second-order phase transition. As is well known, the thermodynamic potential has the 
squared solution in its form, not the solution itself. Therefore, we deal with the squared BCS-Bogoliubov gap 
equation, not the BCS-Bogoliubov gap equation. From the viewpoint of operator theory, the present author 
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thinks that dealing with the squared BCS-Bogoliubov gap equation provides a straightforward way to show the 
second-order phase transition.

The BCS-Bogoliubov gap equation4,5 is a nonlinear integral equation given by

Here, the solution u0 is a function of the absolute temperature T (of a superconductor) and the energy x (of 
an electron). The closed interval I is given by I = [ε, ℏωD] , where the Debye angular frequency ωD is a positive 
constant and depends on a superconductor, and ε > 0 is a cutoff (see the following remark). The potential U(·, ·) 
satisfies U(x, ξ) > 0 at all (x, ξ) ∈ I2 . Throughout this paper we use the unit where the Boltzmann constant kB 
is equal to 1.

Remark 1.1  For simplicity, we introduce the cutoff ε > 0 in (1.1). Here, the cutoff ε > 0 is small enough. We see 
that the cutoff is unphysical, but we introduce it for simplicity.

In1–3,6–22, the existence, the uniqueness and several properties of the solution to the BCS-Bogoliubov gap 
equation were established and studied. See also Kuzemsky23[Chapters 26 and29] and24,25. Anghel and Nemnes26 
and Anghel27,28 showed that if the physical quantity µ in the BCS-Bogoliubov model is not equal to the chemi-
cal potential, then the phase transition from a normal conducting state to a superconducting state is of the first 
order under a certain condition without any external magnetic field. Introducing imaginary magnetic field, 
Kashima29–32 pointed out that the phase transition is of the second-order if and only if a certain value is greater 
than 

√

17− 12
√
2 and that the phase transition is of order 4n+ 2 if and only if the value above is less than or 

equal to 
√

17− 12
√
2 . Here. n is an arbitrary positive integer.

In this connection, the BCS-Bogoliubov gap equation in superconductivity plays a role similar to that of 
the Maskawa–Nakajima equation33,34 in elementary particle physics. In Professor Maskawa’s Nobel lecture, he 
stated the reason why he considered the Maskawa-Nakajima equation. See the present author’s paper35 for an 
operator-theoretical treatment of the Maskawa–Nakajima equation.

Squaring both sides of the BCS-Bogoliubov gap equation and putting f0(T , x) = u0(T , x)
2 give the squared 

BCS-Bogoliubov gap equation:

Let Tc be the transition temperature (see20[Definition 2.5] for our operator-theoretical definition of Tc ) and 
let D = [T0, Tc] × I ∈ R

2 . Here, I = [ε, ℏωD] . Define our operator A by

where f ∈ W (see (2.2) below for the subset W). We define our operator A on the subset W and look for a fixed 
point of our operator A. Note that a fixed point of A becomes a solution to the squared BCS-Bogoliubov gap 
equation, and that its square root becomes a solution to the BCS-Bogoliubov gap equation (1.1).

Let U1 and U2 be positive constants, where (0 <)U1 ≤ U2 . If the potential U(·, ·) is a positive constant and 
U(x, ξ) = U1 at all (x, ξ) ∈ I2 , then the solution to the BCS-Bogoliubov gap equation (1.1) becomes a function 
of the temperature T only. Denoting the solution by T  → �1(T) , we have (see4)

Here, the temperature τ1 > 0 is defined by (see4)

The solution T  → �1(T) is continuous and strictly decreasing with respect to T, and moreover, the solution 
is of class C2 with respect to T. For more details, see20 [Proposition 1.2].

We set �1(T) = 0 at all T ≥ τ1 . Then (1.3) becomes

We choose an arbitrary temperature T0 (> τ1) . Then, for T ∈ [T0, Tc],

On the other hand, If U(x, ξ) = U2 at all (x, ξ) ∈ I2 , then we have the solution T  → �2(T) to

(1.1)u0(T , x) =
∫

I

U(x, ξ) u0(T , ξ)
√

ξ 2 + u0(T , ξ)2
tanh

√

ξ 2 + u0(T , ξ)2

2T
dξ , T ≥ 0, (x, ξ) ∈ I2.

f0(T , x) =

(

∫

I
U(x, ξ)

√

f0(T , ξ)

ξ 2 + f0(T , ξ)
tanh

√

ξ 2 + f0(T , ξ)

2T
dξ

)2

.

(1.2)Af (T , x) =

(

∫

I
U(x, ξ)

√

f (T , ξ)

ξ 2 + f (T , ξ)
tanh

√

ξ 2 + f (T , ξ)

2T
dξ

)2

, (T , x) ∈ D,

(1.3)1 = U1

∫

I

1
√

ξ 2 +�1(T)2
tanh

√

ξ 2 +�1(T)2

2T
dξ , 0 ≤ T ≤ τ1.

1 = U1

∫

I

1

ξ
tanh

ξ

2τ1
dξ .

1 > U1

∫

I

1

ξ
tanh

ξ

2T
dξ , T > τ1.

(1.4)U1

∫

I

1

ξ
tanh

ξ

2T
dξ < 1.
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Here, the temperature τ2 > 0 is defined by

The solution T  → �2(T) has properties similar to those of the solution T  → �1(T) . We again set �2(T) = 0 
at all T ≥ τ2.

The inequality U1 ≤ U2 implies

For the graphs of �1(·) and �2(·) , see2[Figure 1].

Main results
Suppose that the potential U(·, ·) in the BCS-Bogoliubov gap equation (1.1) satisfies the following conditions:

and (2.3) below.
The inequalities U1 ≤ U(x, ξ) ≤ U2 at all (x, ξ) ∈ I2 imply τ1 ≤ Tc ≤ τ2 (see20[Remark 2.6]). Set

Remark 2.1  The temperatures τ1 , T0 , Tc , τ2 satisfy (0 <) τ1 < T0 < Tc ≤ τ2 . If U1 is small enough, then so is τ1 . 
Therefore, T0 can be small enough, and hence T0 does not need to be close to the transition temperature Tc . As a 
result, the temperature interval [T0, Tc] can be nearly equal to the whole temperature interval [0, Tc] . For tem-
peratures at or near zero temperature, the smoothness of the solution to the BCS-Bogoliubov gap equation with 
respect to such temperatures has been shown in1[Theorem 2.2]. In this paper we thus deal with the temperature 
interval [T0, Tc].

Let W be a subset of the Banach space C(D) satisfying

Here, the norm of the Banach space C(D) is given by

and

Note that

Remark 2.2  The inequality f (T , x)/f (T , x1) ≤ a in the definition of W is not defined at T = Tc since 
f (Tc , x) = 0 . For T < Tc , there is a T1 ( T < T1 < Tc ) such that f (T , x) = (T − Tc) fT (T1, x) . Therefore, 
f (Tc , x)/f (Tc , x1) is defined to be fT (Tc , x)/fT (Tc , x1).

Remark 2.3  The conditions imposed in the previous papers of the present author1[Condition (C)] and2[Condition 
(C)] were very complicated, and so it was very tough to show the existence, uniqueness and smoothness of the 
solution to the BCS-Bogoliubov gap equation (1.1). Instead, we impose the simple condition that f ∈ C2(D) and 
f (Tc , x) = 0 in the definition of the subset W (see (2.2)). Thanks to this simple condition, it is straightforward 
to show the existence, uniqueness and smoothness of the solution.

(1.5)1 = U2

∫

I

1
√

ξ 2 +�2(T)2
tanh

√

ξ 2 +�2(T)2

2T
dξ , 0 ≤ T ≤ τ2.

1 = U2

∫

I

1

ξ
tanh

ξ

2τ2
dξ .

�1(T) ≤ �2(T) (0 ≤ T ≤ τ2).

(2.1)U(·, ·) ∈ C2(I2), (0 <)U1 ≤ U(x, ξ) ≤ U2 at all (x, ξ) ∈ I2,

a =







max
(x, ξ)∈I2

U(x, ξ)

min
(x, ξ)∈I2

U(x, ξ)







2

(≥ 1).

(2.2)
W =

{

f ∈ C2(D)(⊂ C(D)) : (0 ≤) �1(T)
2 ≤ f (T , x) ≤ �2(T)

2, f (Tc , x) = 0,

f (T , x)

f (T , x1)
≤ a, −fT (T , x) > 0, max

(T , x)∈D

{

−fT (T , x)
}

≤ MT

}

.

�g� = sup
(T , ξ)∈D

| g(T , ξ) |, g ∈ C(D),

MT =
4aU2

(

max
z≥0

z

cosh z

)2

εU1

(

tanh
ε

2Tc
−

ε

2Tc

1

cosh2 ε
2Tc

)

∫

I

dξ
(

ξ 2 +�2(0)2
)3/2

(> 0).

sup
f ∈W

[

max
(T , x)∈D

{

−fT (T , x)
}

]

= MT .
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Let us remind here that for T ∈ [T0, Tc] (see (1.4)),

Note that a ≥ 1 and that U(x, ξ) ≥ U1 at all (x, ξ) ∈ I2 . We then let the potential U(·, ·) satisfy

Remark 2.4  The following two theorems hold true not only when the potential U(·, ·) in the BCS-Bogoliubov 
gap equation (1.1) is a positive constant, but also when U(·, ·) is a function. See Remark 3.8 below.

We denote by W  the closure of W with respect to the norm � · � mentioned above. The following are our 
main results.

Theorem 2.5  Let the potential U(·, ·) in the BCS-Bogoliubov gap equation (1.1) satisfy (2.1) and (2.3). Let W be 
as in (2.2). Then there is a unique fixed point f0 ∈ W  of our operator A : W → W  . Therefore, there is a unique 
nonnegative solution u0 =

√

f0 to the BCS-Bogoliubov gap equation (1.1).

Let f0 be the fixed point given by Theorem 2.5 in the following two remarks, where several properties of 
the solution u0 =

√

f0 to the BCS-Bogoliubov gap equation (1.1) are pointed out. Suppose f0 ∈ W . If f0 is an 
accumulating point of W, then f0 can be approximated by an element f ∈ W , and the very element 

√

f  satisfies 
the following properties instead of u0.

Remark 2.6  u0 ∈ C2([T0, T1] × I) , where T1 > 0 is arbitrary as long as T1 < Tc . Since f0(Tc , x) = 0 and 
(∂f0/∂T)(T , x) < 0 at T in a neighborhood of Tc , it follows that u0(Tc , x) = 0 and (∂u0/∂T)(T , x) < 0 at T in 
a neighborhood of Tc . Moreover, (∂u0/∂T)(T , x) → −∞ as T ↑ Tc . But (∂u20/∂T)(T , x) → (∂f0/∂T)(Tc , x) 
as T ↑ Tc.

Remark 2.7  The inequalities �1(T) ≤ u0(T , x) ≤ �2(T) and 
u0(T , x)

u0(T , x1)
≤

√
a hold.

In order to show that the transition from a normal conducting state to a superconducting state at T = Tc is 
of the second-order, we need to deal with the thermodynamic potential � and differentiate it with respect to the 
temperature T twice. Note that the thermodynamic potential � has the fixed point f0 ∈ W  given by Theorem 2.5 
in its form, not the solution 

√

f0 to the BCS-Bogoliubov gap equation (1.1) in its form. As mentioned before, this 
is why we treat the squared BCS-Bogoliubov gap equation, not the equation itself . See1[(1.5), (1.6)] and2[(1.6)] 
for the form of the thermodynamic potential � . See also2[Definition 1.10] for the operator-theoretical definition 
of the second-order phase transition.

Theorem 2.8  Let the potential U(·, ·) in the BCS-Bogoliubov gap equation (1.1) satisfy (2.1) and (2.3). Let W 
be as in (2.2). Then the transition from a normal conducting state to a superconducting state at T = Tc is of the 
second-order.

Proofs of Theorems 2.5 and 2.8

Lemma 3.1 

(1)	 The subset W is a bounded and convex subset of the Banach space C(D).
(2)	 The closure W  is a bounded, closed and convex subset of the Banach space C(D).

Proof  (1) Note that the function T  → �2(T)
2 is strictly decreasing (see20[Proposition 1.2]). Therefore, W is 

bounded since f (T , x) ≤ �2(T)
2 ≤ �2(0)

2 for every f ∈ W . In order to show that W is convex, it suffices to 
show that

 Here, t ∈ [0, 1] and f , g ∈ W . Let T  = Tc . Since f (T , x) ≤ af (T , x1) and g(T , x) ≤ ag(T , x1) , it follows

∫

I

U1

ξ
tanh

ξ

2T
dξ < 1.

(2.3)a1/4 max
(T , x)∈D

[ ∫

I

U(x, ξ)

ξ
tanh

ξ

2T
dξ

]

≤ 1.

tf (T , x)+ (1− t)g(T , x)

tf (T , x1)+ (1− t)g(T , x1)
≤ a.
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Next let T = Tc . We remind Remark 2.2 here. Then

Therefore, W is convex.
(2) We have only to show that W  is convex. Let f , g ∈ W  . Then there are {fn}, {gn} ⊂ W satisfying fn → f  

and gn → g in the Banach space C(D). Since W is convex, tfn + (1− t)gn ∈ W for t ∈ [0, 1].

as n → ∞ . Thus tf + (1− t)g ∈ W  , and hence W  is convex. 	�  �

We next show that A : W → W.

Lemma 3.2  Let f ∈ W . Then Af is continuous on D.

Proof  Let (T , x), (T1, x1) ∈ D , and suppose T < T1 < Tc . We can deal with the case where T1 = Tc similarly 
. Then

Step 1. A straightforward calculation gives

where

The function f is continuous since f ∈ W  . Therefore, for an arbitrary ε1 > 0 , there is a δ > 0 such that if 
|T2 − T3| + |x2 − x3| < δ , then |f (T2, x2)− f (T3, x3)| < ε1 . Here, (T2, x2), (T3, x3) ∈ D are arbitrary and the 
δ > 0 does not depend on (T2, x2), (T3, x3) since f is uniformly continuous on D. Since f (T , η)/f (T , ξ) ≤ a 
by (2.2),

where |T − T1| < δ with some ξ1 ∈ I . Note that (see (1.3))

and that

tf (T , x)+ (1− t)g(T , x)

tf (T , x1)+ (1− t)g(T , x1)
≤

t af (T , x1)+ (1− t) ag(T , x1)

tf (T , x1)+ (1− t)g(T , x1)
= a.

tf (Tc , x)+ (1− t)g(Tc , x)

tf (Tc , x1)+ (1− t)g(Tc , x1)
=

tfT (Tc , x)+ (1− t)gT (Tc , x)

tfT (Tc , x1)+ (1− t)gT (Tc , x1)

≤
t afT (Tc , x1)+ (1− t) agT (Tc , x1)

tfT (Tc , x1)+ (1− t)gT (Tc , x1)
= a.

∥

∥ {tf + (1− t)g} − {tfn + (1− t)gn}
∥

∥ ≤ t
∥

∥ f − fn
∥

∥+ (1− t)
∥

∥ g − gn
∥

∥ → 0

|Af (T , x)− Af (T1, x1)| ≤ |Af (T , x)− Af (T1, x)| + |Af (T1, x)− Af (T1, x1)|.

Af (T , x)− Af (T1, x) =
∫

I
U(x, η) I1 dη

∫

I
U(x, ξ){I2 + I3 + I4} dξ ,

I1 =

√

f (T , η)

η2 + f (T , η)
tanh

√

η2 + f (T , η)

2T
+

√

f (T1, η)

η2 + f (T1, η)
tanh

√

η2 + f (T1, η)

2T1
,

I2 =
f (T , ξ)− f (T1, ξ)

√

f (T , ξ)+
√

f (T1, ξ)

1
√

ξ 2 + f (T , ξ)
tanh

√

ξ 2 + f (T , ξ)

2T
,

I3 =
√

f (T1, ξ)

{

1
√

ξ 2 + f (T , ξ)
tanh

√

ξ 2 + f (T , ξ)

2T

−
1

√

ξ 2 + f (T1, ξ)
tanh

√

ξ 2 + f (T1, ξ)

2T

}

,

I4 =

√

f (T1, ξ)

ξ 2 + f (T1, ξ)

{

tanh

√

ξ 2 + f (T1, ξ)

2T
− tanh

√

ξ 2 + f (T1, ξ)

2T1

}

.

∣

∣

∣

∣

∫

I
U(x, η)I1dη ×

∫

I
U(x, ξ)I2dξ

∣

∣

∣

∣

≤ 2
U2
2

U2
1

√
a

{

∫

I

U1
√

η2 +�1(T)2
tanh

√

η2 +�1(T)2

2T
dη

}2
∣

∣f (T , ξ1)− f (T1, ξ1)
∣

∣

≤ 2
U2
2

U2
1

√
aε1,

∫

I

U1
√

η2 +�1(T)2
tanh

√

η2 +�1(T)2

2T
dη = 1, T ∈ [0, τ1]
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with �1(T) = 0 at T ∈ [τ1, Tc] . Since f (T , ξ) > f (T1, ξ)(T < T1),

where |T − T1| < δ with some ξ1 ∈ I . Similarly,

where

Thus

where |T − T1| < min(δ, δ1).
Step 2. By hypothesis, the potential U(·, ·) is continuous on the compact set I2 , and hence U(·, ·) is uni-

formly continuous. Therefore, for an arbitrary ε1 > 0 , there is a δ2 > 0 such that if |x − x1| < δ2 , then 
|U(x, η)− U(x1, η)| < ε1 . Note that the δ2 does not depend on f ∈ W . A straightforward calculation gives

where |x − x1| < δ2.
Step 3. Steps 1 and 2 thus imply

∫

I

U1
√

η2 + 02
tanh

√

η2 + 02

2T
dη < 1, T ∈ (τ1, Tc]

∣

∣

∣

∣

∫

I
U(x, η) I1 dη ×

∫

I
U(x, ξ) I3 dξ

∣

∣

∣

∣

≤ U2 �2(0)

{

∫

I

U2
√

η2 +�2(T)2
tanh

√

η2 +�2(T)2

2T
dη

+
∫

I

U2
√

η2 +�2(T1)2
tanh

√

η2 +�2(T1)2

2T1
dη

}

×
∫

I

1

ξ 2
dξ

∣

∣f (T , ξ1)− f (T1, ξ1)
∣

∣

≤ 2
U2 �2(0)

ε
ε1,

∣

∣

∣

∣

∫

I
U(x, η)I1dη ×

∫

I
U(x, ξ)I4dξ

∣

∣

∣

∣

≤ 2U2�2(0)

(

max
z≥0

z

cosh z

)2
{

∫

I

U2
√

η2 +�2(T)2
tanh

√

η2 +�2(T)2

2T
dη

+
∫

I

U2
√

η2 +�2(T1)2
tanh

√

η2 +�2(T1)2

2T1
dη

}

×
∫

I

1

ξ
dξ |T − T1|

≤ 4U2�2(0)

(

max
z≥0

z

cosh z

)2

(ln ε)|T − T1|ε1,

|T − T1| < δ1 =
ε1

4U2 �2(0)
(

maxz≥0
z

cosh z

)2
ln ε

.

|Af (T , x)− Af (T1, x)| ≤
(

2
U2
2

U2
1

√
a+ 2

U2 �2(0)

ε
+ 1

)

ε1,

∣

∣Af (T1, x)− Af (T1, x1)
∣

∣

≤
∫

I
{U(x, η)+ U(x1, η)}

√

f (T1, η)

η2 + f (T1, η)
tanh

√

η2 + f (T1, η)

2T1
dη

×
∫

I
|U(x, ξ)− U(x1, ξ)|

√

f (T1, ξ)

ξ 2 + f (T1, ξ)
tanh

√

ξ 2 + f (T1, ξ)

2T1
dξ

≤ 2

∫

I
U2

√

�2(T1)2

η2 +�2(T1)2
tanh

√

η2 +�2(T1)2

2T1
dη

×
∫

I
|U(x, ξ)− U(x1, ξ)|

√

�2(T1)2

η2 +�2(T1)2
tanh

√

η2 +�2(T1)2

2T1
dξ

≤ 2
�2(0)

2

U2
ε1,
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where |T − T1| + |x − x1| < min(δ, δ1, δ2) . Therefore, Af is continuous on D. 	�  �

Lemma 3.3  Let f ∈ W . 

(1)	 Af is partially differentiable with respect to both T and x. Its first-order partial derivatives (Af )T and (Af )x 
are both continuous on D. Therefore, Af ∈ C1(D).

(2)	 Af is twice partially differentiable with respect to both T and x. Its second-order partial derivatives (Af )TT , 
(Af )Tx = (Af )xT and (Af )xx are all continuous on D. Therefore, Af ∈ C2(D).

Proof  (1) Let us show that Af is partially differentiable with respect to T at (Tc , x0) ∈ D . Note that Af (Tc , x0) = 0 . 
Let T < Tc . It follows from f (Tc , ξ) = 0 (see (2.2)) that

for some T1 (T < T1 < Tc) . Then

 Since T is in a neighborhood of Tc , we let T ≥ Tc/2 . Therefore,

where the right side is independent of T and is Lebesgue integrable on I. Thus, as T ↑ Tc,

 Therefore, Af is partially differentiable with respect to T at (Tc , x0) , and

 We next show that (Af )T is continuous at (Tc , x0) . Here,

where

Note that

In order to show that (Af )T (T , x) → (Af )T (Tc , x) as T ↑ Tc , we show that as T ↑ Tc,

|Af (T , x)− Af (T1, x1)| ≤
(

2
U2
2

U2
1

√
a+ 2

U2 �2(0)

ε
+ 1+ 2

�2(0)
2

U2

)

ε1,

f (T , ξ) = f (Tc , ξ)+ (T − Tc)fT (T1, ξ) = (Tc − T)
(

−fT (T1, ξ)
)

Af (Tc , x0)− Af (T , x0)

Tc − T
=−

(

∫

I
U(x0, ξ)

√

f (T , ξ)/(Tc − T)

ξ 2 + f (T , ξ)
tanh

√

ξ 2 + f (T , ξ)

2T
dξ

)2

=−

(

∫

I
U(x0, ξ)

√

−fT (T1, ξ)

ξ 2 + f (T , ξ)
tanh

√

ξ 2 + f (T , ξ)

2T
dξ

)2

.

√

−fT (T1, ξ)

ξ 2 + f (T , ξ)
tanh

√

ξ 2 + f (T , ξ)

2T
≤

√
MT

ξ
tanh

ξ

Tc
,

Af (Tc , x0)− Af (T , x0)

Tc − T
→ −

(

∫

I
U(x0, ξ)

√

−fT (Tc , ξ)

ξ
tanh

ξ

2Tc
dξ

)2

.

(3.1)(Af )T (Tc , x0) = −

(

∫

I
U(x0, ξ)

√

−fT (Tc , ξ)

ξ
tanh

ξ

2Tc
dξ

)2

.

(3.2)
(Af )T (T , x) =

∫

I
U(x, η)

√

f (T , η)

η2 + f (T , η)
tanh

√

η2 + f (T , η)

2T
dη

×
∫

I
U(x, ξ)(J1 + J2 + J3) dξ ,

J1 =
fT (T , ξ)
√

f (T , ξ)

ξ2

{

ξ 2 + f (T , ξ)
}3/2

tanh

√

ξ 2 + f (T , ξ)

2T
,

J2 =
√

f (T , ξ) fT (T , ξ)

2T
{

ξ 2 + f (T , ξ)
}

cosh2
√

ξ2+f (T , ξ)
2T

,

J3 =−
√

f (T , ξ)

T2 cosh2
√

ξ2+f (T , ξ)
2T

.

(3.3)
(Af )T (T , x)− (Af )T (Tc , x0) =(Af )T (T , x)− (Af )T (Tc , x)

+ (Af )T (Tc , x)− (Af )T (Tc , x0).
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A straightforward calculation gives

Here, we assumed T ≥ Tc/2 . The right side of this inequality is independent of T and is Lebesgue integrable 
on I2 , and so (as T ↑ Tc)

 Similarly we can show that

as T ↑ Tc . Moreover, we have similarly that

as x → x0 . It thus follows from (3.3) that (Af )T is continuous at (Tc , x0) . Similarly we can show the rest of (1), 
and (2). Note that (Af )TT is given as follows.

where

	�  �

A proof similar to that of20[Lemma 3.4] gives the following.

Lemma 3.4  Let f ∈ W . Then �1(T)
2 ≤ Af (T , x) ≤ �2(T)

2 at each (T , x) ∈ D.

Lemma 3.5  Let f ∈ W . Then Af (Tc , x) = 0 (x ∈ I) , and

∫

I
U(x, η)

√

f (T , η)

η2 + f (T , η)
tanh

√

η2 + f (T , η)

2T
dη

∫

I
U(x, ξ)J1dξ → (Af )T (Tc , x),

∫

I
U(x, η)

√

f (T , η)

η2 + f (T , η)
tanh

√

η2 + f (T , η)

2T
dη

∫

I
U(x, ξ)(J2 + J3)dξ → 0.

U(x, η)

√

f (T , η)

η2 + f (T , η)
tanh

√

η2 + f (T , η)

2T
U(x, ξ) J1 ≤ U2

2

√
a

(

1

η
tanh

η

Tc

)2

MT .

∫

I
U(x, η)

√

f (T , η)

η2 + f (T , η)
tanh

√

η2 + f (T , η)

2T
dη

∫

I
U(x, ξ) J1 dξ → (Af )T (Tc , x).

∫

I
U(x, η)

√

f (T , η)

η2 + f (T , η)
tanh

√

η2 + f (T , η)

2T
dη

∫

I
U(x, ξ) (J2 + J3) dξ → 0

(Af )T (Tc , x) → (Af )T (Tc , x0)

(Af )TT (T , x) =
1

2

��

I
U(x, η) (J1 + J2 + J3) dη

�2

+
�

I
U(x, η)

�

f (T , η)

η2 + f (T , η)
tanh

�

η2 + f (T , η)

2T
dη

×
�

I
U(x, ξ)







K1 +
1

cosh2
√

ξ2+f (T , ξ)
2T

(K2 + K3 + K4 + K5)







dξ ,

K1 =

{

fTT (T , ξ)
√

f (T , ξ)
−

fT (T , ξ)
2

2
√

f (T , ξ)
3
−

3fT (T , ξ)
2

2
√

f (T , ξ)
(

ξ2 + f (T , ξ)
)

}

×
ξ2

{

ξ 2 + f (T , ξ)
}3/2

tanh

√

ξ 2 + f (T , ξ)

2T
,

K2 =
fT (T , ξ)

2
√

f (T , ξ)

ξ2

ξ 2 + f (T , ξ)

{

fT (T , ξ)

2T (ξ2 + f (T , ξ))
−

1

T2

}

,

K3 =
fT (T , ξ)

2
√

f (T , ξ)

{

fT (T , ξ)

2T (ξ2 + f (T , ξ))
−

1

T2

}

,

K4 =
√

f (T , ξ)

{

fTT (T , ξ)

2T (ξ 2 + f (T , ξ))
−

fT (T , ξ)

2T2 (ξ2 + f (T , ξ))
−

(fT (T , ξ))
2

2T (ξ2 + f (T , ξ))2
+

2

T3

}

,

K5 =−
√

f (T , ξ)

√

ξ 2 + f (T , ξ)

{

fT (T , ξ)

2T (ξ2 + f (T , ξ))
−

1

T2

}2

tanh

√

ξ 2 + f (T , ξ)

2T
.
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Proof  By (2.2),

Next, it follows from (1.2) that at T ∈ [0, Tc),

where ξ1, ξ2 ∈ I . It then follows from Remark 2.2 and (3.1) that at T = Tc,

The result follows. 	�  �

Lemma 3.6  For f ∈ W, −(Af )T (T , x) > 0. 

Proof  It follows immediately from (3.2) that −(Af )T (T , x) > 0.	�  �

Lemma 3.7  For f ∈ W,

Proof  From (3.2) it follows that

where

Note that the function z  →
tanh z

z
 is strictly decreasing at z > 0 . It then follows from (2.3) that

First let T < Tc . Then B < A since tanh z >
z

cosh z
 at z > 0 , f (T , ξ) > 0 and ξ ≥ ε . Therefore, 

√
aAB < (a1/4A)2 ≤ 1 by (3.4). Thus

as long as

Af (T , x)

Af (T , x1)
≤ a.

Af (Tc , x) =

(

∫

I
U(x, ξ)

√

f (Tc , ξ)

ξ 2 + f (Tc , ξ)
tanh

√

ξ 2 + f (Tc , ξ)

2Tc
dξ

)2

= 0.

Af (T , x)

Af (T , x1)
=

�

U(x, ξ1)

U(x1, ξ2)

�2

≤





max
(x, ξ)∈I2

U(x, ξ)

min
(x, ξ)∈I2

U(x, ξ)





2

= a,

Af (Tc , x)

Af (Tc , x1)
=

(Af )T (Tc , x)

(Af )T (Tc , x1)
≤





max
(x, ξ)∈I2

U(x, ξ)

min
(x, ξ)∈I2

U(x, ξ)





2

= a.

sup
f ∈W

[

max
(T , x)∈D

{

−(Af )T (T , x)
}

]

≤ sup
f ∈W

[

max
(T , x)∈D

{

−fT (T , x)
}

]

(

= MT

)

.

−(Af )T (T , x) ≤
√
aA

{

B sup
f ∈W

[

max
(T , x)∈D

{

−fT (T , x)
}

]

+ C

}

,

A =
�

I

U(x, η)
�

η2 + f (T , η)
tanh

�

η2 + f (T , η)

2T
dη,

B =
�

I

U(x, ξ)
�

ξ 2 + f (T , ξ)

�

ξ2

ξ 2 + f (T , ξ)
tanh

�

ξ 2 + f (T , ξ)

2T

+
f (T , ξ)

ξ 2 + f (T , ξ)

�

ξ 2 + f (T , ξ)

2T cosh2
√

ξ2+f (T , ξ)
2T







dξ ,

C =
�

I
U(x, ξ)

f (T , ξ)

T2 cosh2
√

ξ2+f (T , ξ)
2T

dξ .

(3.4)a1/4A ≤ a1/4 max
(T , x)∈D

[ ∫

I

U(x, η)

η
tanh

η

2T
dη

]

≤ 1.

−(Af )T (T , x) ≤
√
aA

{

B sup
f ∈W

[

max
(T , x)∈D

{

−fT (T , x)
}

]

+ C

}

≤ sup
f ∈W

[

max
(T , x)∈D

{

−fT (T , x)
}

]



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8393  | https://doi.org/10.1038/s41598-022-11652-4

www.nature.com/scientificreports/

This inequality holds true since (see the definition of MT in (2.2))

Here,

Note also that 1−
√
aA2 ≥ 0 . Thus, at T < Tc,

Next let T = Tc . Then

 This is because at T = Tc,

by (3.4). Thus

	�  �

Remark 3.8  Let U(x, ξ) = U1 = U2 at all (x, ξ) ∈ I2 . Then, a = 1 and f (T , x) = �1(T)
2 = �2(T)

2 . Moreover, 
Tc = τ1 = τ2 and

at all (T , x) ∈ [0, Tc] × I (see (1.5)). Therefore, the preceding lemma holds true not only when the potential 
U(·, ·) in the BCS-Bogoliubov gap equation (1.1) is a positive constant, but also when U(·, ·) is a function.

Lemma 3.9  The set AW is equicontinuous.

Proof  Let f ∈ W . Let (T , x), (T1, x1) ∈ D and suppose T < T1 < Tc . We can deal with the case where T1 = Tc 
similarly. Then

 The preceding lemma gives

Here, T < T2 < T1 and ξ ∈ I . Therefore, a proof similar to that of Lemm 3.2 gives

sup
f ∈W

[

max
(T , x)∈D

{

−fT (T , x)
}

]

≥
√
aAC

1−
√
aAB

.

√
aAC

1−
√
aAB

=
√
aAC

1−
√
aA(A− B′)

≤
√
aAC

√
a AB′

=
C

B′
≤ MT = sup

f ∈W

[

max
(T , x)∈D

{

−fT (T , x)
}

]

.

B′ =
�

I

U(x, ξ)
�

ξ 2 + f (T , ξ)

f (T , ξ)

ξ 2 + f (T , ξ)







tanh

�

ξ 2 + f (T , ξ)

2T
−

�

ξ 2 + f (T , ξ)

2T cosh2
√

ξ2+f (T , ξ)
2T







dξ .

−(Af )T (T , x) ≤ sup
f ∈W

[

max
(T , x)∈D

{

−fT (T , x)
}

]

.

−(Af )T (Tc , x) =

(

∫

I
U(x, ξ)

√

−fT (Tc , ξ)

ξ
tanh

ξ

2Tc
dξ

)2

≤
√
a

(

∫

I
U(x, ξ)

√

−fT (Tc , ξ)

ξ
tanh

ξ

2Tc
dξ

)2

≤
√
a

(∫

I
U(x, ξ)

1

ξ
tanh

ξ

2Tc
dξ

)2

sup
f ∈W

[

max
(T , x)∈D

{

−fT (T , x)
}

]

≤ sup
f ∈W

[

max
(T , x)∈D

{

−fT (T , x)
}

]

.

√
aA2 =

(

a1/4
∫

I

U(x, η)

η
tanh

η

2Tc
dη

)2

≤ 1

sup
f ∈W

[

max
(T , x)∈D

{

−(Af )T (T , x)
}

]

≤ sup
f ∈W

[

max
(T , x)∈D

{

−fT (T , x)
}

]

= MT .

a1/4A =
∫

I

U2
√

ξ 2 +�2(T)2
tanh

√

ξ 2 +�2(T)2

2T
dξ = 1

|Af (T , x)− Af (T1, x1)| ≤ |Af (T , x)− Af (T1, x)| + |Af (T1, x)− Af (T1, x1)|.

|f (T , ξ)− f (T1, ξ)| =
∣

∣fT (T2, ξ)
∣

∣ · |T − T1| ≤ MT |T − T1|.
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from which the result follows. 	�  �

Since Af (T , x) ≤ �2(T)
2 ≤ �2(0)

2 for f ∈ W (see Lemma 3.4), the set AW is uniformly bounded. Moreover, 
AW is equicontinuous by the preceding lemma. We thus have the following.

Lemma 3.10  A : W → W , and the set AW is relatively compact.

Lemma 3.11  The operator A : W → W is continuous.

Proof  Let T < Tc . Then, for f , g ∈ W,

where

 Since f (T , η)/f (T , ξ) ≤ a and g(T , η)/g(T , ξ) ≤ a by (2.2), it follows

 Moreover,

 Therefore, at T < Tc,

 Since Af (Tc , x) = Ag(Tc , x) = 0 , this inequality holds true also at T = Tc . Thus

|Af (T , x)− Af (T1, x1)| ≤
{(

2
U2
2

U2
1

√
a+ 2

U2 �2(0)

ε

)

MT

+ 4U2 �2(0)

(

max
z≥0

z

cosh z

)2

ln ε

+2
�2(0)

2

U2
max

(x, ξ)∈I2
{Ux(x, ξ)}

}

(|T − T1| + |x − x1|),

Af (T , x)− Ag(T , x) =
∫

I
U(x, η) L1 dη

∫

I
U(x, ξ){L2 + L3} dξ ,

L1 =

√

f (T , η)

η2 + f (T , η)
tanh

√

η2 + f (T , η)

2T
+

√

g(T , η)

η2 + g(T , η)
tanh

√

η2 + g(T , η)

2T
,

L2 =
f (T , ξ)− g(T , ξ)

√

f (T , ξ)+
√

g(T , ξ)

1
√

ξ 2 + f (T , ξ)
tanh

√

ξ 2 + f (T , ξ)

2T
,

L3 =
√

g(T , ξ)

{

1
√

ξ 2 + f (T , ξ)
tanh

√

ξ 2 + f (T , ξ)

2T

−
1

√

ξ 2 + g(T , ξ)
tanh

√

ξ 2 + g(T , ξ)

2T

}

.

∣

∣

∣

∣

∫

I
U(x, η)L1dη ×

∫

I
U(x, ξ)L2dξ

∣

∣

∣

∣

≤ 2
U2
2

U2
1

√
a

{

∫

I

U1
√

η2 +�1(T)2
tanh

√

η2 +�1(T)2

2T
dη

}2
∥

∥f − g
∥

∥

≤ 2
U2
2

U2
1

√
a
∥

∥f − g
∥

∥.

∣

∣

∣

∣

∫

I
U(x, η)L1dη ×

∫

I
U(x, ξ)L3dξ

∣

∣

∣

∣

≤ 2
U2
2�2(0)

2

U1

∫

I

U1
√

η2 +�1(T)2
tanh

√

η2 +�1(T)2

2T
dη

∫

I

1

ξ 3
dξ

∥

∥f − g
∥

∥

≤
U2
2�2(0)

2

U1ε2

∥

∥f − g
∥

∥.

∣

∣Af (T , x)− Ag(T , x)
∣

∣ ≤
(

2
U2
2

U2
1

√
a+

U2
2�2(0)

2

U1ε2

)

∥

∥f − g
∥

∥.

�Af − Ag� ≤
(

2
U2
2

U2
1

√
a+

U2
2 �2(0)

2

U1 ε2

)

�f − g�.
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The result follows. 	�  �

We next extend the domain W of our operator A to its closure W  with respect to the norm � · � of the Banach 
space C(D).

Lemma 3.12   A : W → W .

Proof  For f ∈ W  , there is a sequence {fn}∞n=1 ⊂ W satisfying �f − fn� → 0 as n → ∞ . By the preceding lemma,

 Therefore, the sequence {Afn}∞n=1 ⊂ W  is a Cauchy sequence. Hence there is an element F ∈ W  satisfying 
�F − Afn� → 0 as n → ∞ . Note that the element F does not depend on how to choose the sequence {fn}∞n=1 ⊂ W , 
as shown below. Suppose that there is another sequence {gn}∞n=1 ⊂ W satisfying �f − gn� → 0 as n → ∞ . Simi-
larly, the sequence {Agn}∞n=1 ⊂ W becomes a Cauchy sequence, and hence there is an element G ∈ W  satisfying 
�G − Agn� → 0 as n → ∞ . Then

as n → ∞ . Therefore, F = G , and hence F does not depend on how to choose the sequence in W. Thus we define 
F = Af  . The result thus follows. 	�  �

Lemma 3.13  For f ∈ W ,

Proof  For f ∈ W  , there is a sequence {fn}∞n=1 ⊂ W  satisfying �f − fn� → 0 as n → ∞ . Since f is Lebesgue 
integrable on I, we set

at all (T , x) ∈ D . Then

 By the proof of Lemma 3.12,

as n → ∞ . On the other hand, a proof similar to that of Lemma 3.11 gives

as n → ∞ . The result thus follows. 	�  �

A straightforward calculation gives the following.

Lemma 3.14   A : W → W  is continuous. Moreover, the set AW  is uniformly bounded and equicontinuous, and 
hence the set AW  is relatively compact.

Lemma 3.14 immediately implies the following.

Lemma 3.15  The operator A : W → W  is compact. Therefore, the operator A : W → W  has a unique fixed point 
f0 ∈ W  , i.e., f0 = Af0.

Proof  Applying the Schauder fixed-point theorem gives that the operator A : W → W  has at least one fixed 
point f0 ∈ W  . A proof similar to that of20[Lemma 3.10] gives the uniqueness of f0 ∈ W  . 	�  �

Our proof of Theorem 2.5 is now complete.
In order to give a proof of Theorem 2.8, we need to deal with the thermodynamic potential � and differentiate 

it with respect to the temperature T twice, as mentioned before. Note that the thermodynamic potential � has the 

�Afn − Afm� ≤
(

2
U2
2

U2
1

√
a+

U2
2 �2(0)

2

U1 ε2

)

�fn − fm�.

�F − G� ≤ �F − Afn� + �Afn − Agn� + �Agn − G� → 0

Af (T , x) =

(

∫

I
U(x, ξ)

√

f (T , ξ)

ξ 2 + f (T , ξ)
tanh

√

ξ 2 + f (T , ξ)

2T
dξ

)2

.

H(T , x) =

(

∫

I
U(x, ξ)

√

f (T , ξ)

ξ 2 + f (T , ξ)
tanh

√

ξ 2 + f (T , ξ)

2T
dξ

)2

∣

∣Af (T , x)−H(T , x)
∣

∣ ≤
∣

∣Af (T , x)− Afn(T , x)
∣

∣+
∣

∣Afn(T , x)−H(T , x)
∣

∣

≤
∥

∥Af − Afn
∥

∥+
∣

∣Afn(T , x)−H(T , x)
∣

∣.

∥

∥Af − Afn
∥

∥ → 0

∣

∣Afn(T , x)−H(T , x)
∣

∣ ≤
(

2
U2
2

U2
1

√
a+

U2
2 �2(0)

2

U1 ε2

)

�fn − f � → 0
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fixed point f0 ∈ W  given by Theorem 2.5 in its form, not the solution 
√

f0 to the BCS-Bogoliubov gap equation. 
Suppose that the fixed point f0 is an element of the subset W. It then follows immediately from Theorem 2.5 
that f0 ∈ C2(D) . Hence the thermodynamic potential � with the fixed point f0 satisfies all the conditions in the 
operator-theoretical definition of the second-order phase transition (see2[Definition 1.10]). We thus apply a 
proof similar to that of2[Theorem 2.4] to have Theorem 2.8.

Suppose that the fixed point f0 is an accumulating point of the subset W. We then replace the fixed point 
f0 ∈ W \W  in the form of the thermodynamic potential � by a suitably chosen element of f ∈ W  since the 
fixed point f0 is an accumulating point of the subset W. Thanks to Theorem 2.5, we find that the suitably chosen 
element f is in C2(D) . Then we can differentiate the suitably chosen element f with respect to the temperature T 
twice. Therefore, once we replace the fixed point f0 ∈ W \W in the form of the thermodynamic potential � by 
a suitably chosen element of f ∈ W , we can again show that the thermodynamic potential � with this f ∈ W 
satisfies all the conditions in the operator-theoretical definition of the second-order phase transition. We can 
again apply a proof similar to that of2[Theorem 2.4] to have Theorem 2.8. This proves Theorem 2.8.
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