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Abstract
Background Hepatic enzymes involved in drug metabolism vary markedly in expression, abundance and activity, which 
affects individual susceptibility to drugs and toxicants. The present study aimed to compare mRNA expression and protein 
abundance of the most pharmacologically relevant drug-metabolizing enzymes in two main sources of the control liver 
samples that are used as the reference, i.e. organ donor livers and non-tumorous tissue from metastatic livers. An association 
analysis of the most common genetic variants with mRNA and protein levels was also performed.
Methods The CYP450 and UGT enzymes (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, 
CYP3A4, CYP3A5, UGT1A1, UGT1A3, UGT2B7 and UGT2B15) were analyzed for mRNA (qPCR) and protein abundance 
(LC–MS/MS) in healthy donors (n = 11) and metastatic (n = 13) livers. Genotyping was performed by means of TaqMan 
assays and pyrosequencing.
Results Significantly higher protein abundance in the metastatic livers was observed in case of CYP2C9, CYP2D6, and 
UGT2B7, and for UGT1A3 the difference was only significant at mRNA level. For all the enzymes except CYP2E1 some 
significant correlation between mRNA and protein content was observed, and for UGT1A1 an inverse correlation with age 
was noted. CYP2C19, CYP3A5 and CYP2D6 were significantly affected by genotype.
Conclusion The selection of a control group for the study on drug-metabolizing enzymes (e.g. in pathological states) may 
possibly affect its conclusions on differences in mRNA and protein content. Genotyping for common functional variants of 
CYP450 enzymes should be performed in all studies on drug-metabolizing enzymes.
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Introduction

Most of the drugs, as well as other xenobiotics, undergo 
biotransformation in the body, which has a significant 
impact on their pharmacokinetics and, in consequence, 
their actions and biological effects. Although drug 

metabolism occurs in most tissues, liver is the major site 
of biotransformation. Drug metabolism is divided into 
two phases: phase I reactions usually increase polarity of 
compounds and might possibly be followed by the sec-
ond phase—conjugation, which generally serve as a final 
detoxifying and inactivating step [1]. The cytochromes 
P450 (CYPs) constitute the major enzyme family capa-
ble of catalyzing oxidative biotransformation of most 
drugs, as well as many endogenous substrates. Among 
over fifty human CYPs, those of particular relevance 
for clinical pharmacology include hepatic CYP1A2, 
CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, 
CYP2E1, CYP3A4, and CYP3A5 [2]. As for phase II of 
drug metabolism, conjugation with glucuronic acid is the 
most common pathway of drug biotransformation, and 
the UDP-glucuronyltransferases from the UGT1A and 2B 
subfamilies play a key role in terminating the biological 
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actions and enhancing the renal elimination of non-polar 
drugs [3]. Hepatic enzymes involved in drug metabolism 
vary markedly in expression, abundance and activity, 
which affect individual susceptibility to drugs and toxi-
cants. Apart from factors regulating gene expression and 
enzymatic activity, genetic variation has a large impact on 
the observed interindividual variability. In case of some 
cytochromes, i.e. CYP2D6, CYP3A5 or CYP2C19, com-
mon genetic variants may even result in complete defi-
ciency of enzymatic activity in a significant number of 
patients [2].

A number of papers have been published, focusing on 
altered levels of drug-metabolizing enzymes (DMEs) in 
various liver pathologies, i.e. viral hepatitis, alcoholic, 
immunological and cholestatic liver diseases, inflammation, 
non-alcoholic fatty liver disease and hepatic cancer [4–9]. 
Despite the quantification method used (mRNA expression, 
protein abundance or enzymatic activity), final conclu-
sions were drawn from comparisons of pathological liver 
specimens and controls (considered as healthy) liver tissues. 
There are two main sources of the control liver samples used 
as reference livers in published studies, i.e. donor livers [5, 
7, 9] and non-tumorous tissue from metastatic livers [4, 8], 
and in some of the studies combined control groups were 
used [6]. As it is not clear if liver DMEs are significantly 
affected by metastatic cancer or if they are altered in brain-
dead organ donors (but both groups could represent the 
same functional liver state in a routine clinical screening), 
the present study aimed, for the first time, to characterize 
mRNA expression and protein abundance of the most phar-
macologically relevant DMEs in the two most frequently 
used types of reference liver tissues. Secondly, even though 
it is clear that genetic factors have significant impact on 
individual variation and function of some DMEs, genetic 
analysis is not always included in liver studies [5, 10, 11]. 

Hence, association of the most common functional genetic 
variants of genes encoding the studied DMEs with mRNA 
and protein levels was also investigated in the current paper.

The current study is complementary to the previously 
published paper, which demonstrates differences of drug 
transporter expression and protein abundance (ABC: P-gp, 
MRP1, MRP2, MRP3, MRP4, BCRP, BSEP and SLC: 
NTCP, MCT1, OCT1, OCT3, OAT2, OATP1B1, OATP1B3, 
OATP2B1) in metastatic and donor livers [12]. The protein 
abundance of NTCP was significantly higher, whereas of 
P-gp significantly lower in non-tumorous tissues from meta-
static livers.

Materials and methods

Liver samples

Tissues were sampled from two groups of individuals: (1) 
organ donors (n = 11), and (2) patients undergoing surgical 
resection of liver metastases (n = 13). All the subjects were 
Polish of European descent. The deceased organ donors, 
died from intracranial bleeding or head injury, were free 
from chronic diseases. A small sample of a donor liver was 
taken from the explanted liver, just after resection. The 
samples from metastatic patients, i.e. non-tumorous liver 
tissue (which was confirmed by histological examination), 
located at least 5 cm aside from metastatic tumors, were 
collected during resection of metastatic colon adenocarci-
noma from patients, who were free from chronic diseases. 
The specimens were immediately snap frozen in liquid 
nitrogen for protein analysis or put in RNAlater (Applied 
Biosystems, USA) for RNA analysis, and subsequently 
stored in − 80 °C until further processing. Clinical charac-
teristics of the study participants is given in Table 1 (most 

Table 1  Clinical characteristics of the study groups (mean ± SD, range)

a p value calculated by means of Mann–Whitney U test, except for sex ratio  (Chi2 test with Yate’s correction); [ ]—normal range

Organ donors (n = 11) Patients with metastatic liver (n = 13) pa

Age (years) 46.2 ± 12.6 (19–60) 64.1 ± 8.3 (53–77) 3 × 10–4

Sex (males/females) 8/3 9/4 0.792
Total bilirubin [< 1.23 mg/dL] 0.70 ± 0.69 (0.1–2.15) 0.55 ± 0.26 (0.20–1.06) 0.710
AST [5–40 IU/L] 33 ± 10 (12–45) 37 ± 19 (11–65) 0.756
ALT [5–40 IU/L] 30 ± 20 (13–89) 29 ± 18 (10–55) 0.797
Serum total protein [6.0–8.0 g/dL] 5.2 ± 1.0 (3.3–6.4) 6.8 ± 0.7 (5.2–7.5) 0.002
Serum albumin [3.5–5.5 g/dL] 2.8 ± 0.7 (1.5–3.6) 3.8 ± 0.4 (3.4–4.4) 0.003
INR [0.8–1.2] 1.23 ± 0.13 (1.0–1.4) 1.13 ± 0.21 (0.9–1.7) 0.051
Creatinine [0.6–1.3 mg/dL] 1.13 ± 0.54 (0.6–1.84) 0.90 ± 0.23 (0.54–1.34) 0.477
Administered drugs Dopamine, dobutamine, epinephrine, lidocaine, sodium 

nitroprusside, vasopressin, cephalosporines, gentamycin, 
vancomycin, clindamycin, mannitol

Sevoflurane, propofol, rocuronium, 
fentanyl, oxycodone, midazolam
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of the samples were previously used [12]). The collected 
liver tissues did not show any signs of inflammation or 
necrosis as confirmed by histological examination. The 
study was carried out in accordance with the Declaration 
of Helsinki and the study protocol was approved by the 
local Bioethics Committee at the Pomeranian Medical 
University.

mRNA quantification

Total RNA was isolated from 20 mg of tissue specimen by 
means of mirVana kit (ThermoFisher Scientific, USA—
donors’ group) or Direct-zol RNA MiniPrep kit (Zymo 
Research, USA). The sample storage time varied from 1 
to 42 months. RNA quality was verified by RIN (RNA 
integrity values) with 2100 Bioanalyzer (Agilent, USA) 
prior to further analysis. Reverse transcription was per-
formed using SuperScript VILO Master Mix (Thermo 
Fisher Scientific, USA), using 500 ng of total RNA for 
20 µL of reaction volume, according to a protocol from the 
supplier. Relative expression of transporter gene expres-
sion was determined by means of real-time PCR, using 
ViiA 7 Real-Time PCR System (Life Technologies, USA), 
TaqMan Fast Advanced Master Mix and pre-validated 
TaqMan assays (Thermo Fisher Scientific, USA). Thresh-
old values were equal for all the genes, and CT values were 
used to calculate relative transcript concentrations (ΔCT 
method). Mean CT value of five reference genes: GAPDH, 
PPIA, HMBS, RPLP0, and RPS9 was used as a reference 
for quantification of relative expression of the investigated 
DMEs genes. Details of TaqMan assays are provided in 
Supplementary Table 1.

Genotyping

Genomic DNA was extracted from liver samples by means 
of Tissue DNA Purification Kit (EURx, Poland). All sam-
ples were genotyped for the presence of the most relevant 
variants, associated with activity of the studied enzymes 
(polymorphisms with previously established functional con-
sequences with minor allele frequency MAF > 0.05 in the 
studied population). Genetic analysis was performed with 
the use of ViiA 7 Real-Time PCR System, pre-validated 
Drug Metabolism TaqMan Genotyping Assays and TaqMan 
GTXpress Master Mix (Thermo Fisher Scientific, USA) in 
6 µL reaction volume. Fluorescence data was captured after 
40 cycles of PCR. Details of the investigated single nucleo-
tide polymorphisms (SNPs) and assays are given in Supple-
mentary Table 2. The UGT1A1*28 allele status was deter-
mined by means of pyrosequencing, using PyroMark Q48 

Autoprep instrument (Qiagen, USA) and primer sequences 
previously described by Sukasem et al. [13].

Protein quantification by LC–MS/MS

Protein quantification of CYP450 and UGT enzymes 
(CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, 
CYP2D6, CYP2E1, CYP3A4, CYP3A5, UGT1A1, 
UGT1A3, UGT2B7 and UGT2B15) was performed by 
means of mass spectrometry-based targeted proteomics using 
a validated LC–MS/MS method, as recently described [14, 
15]. In brief, about 40 mg of pulverized tissue was added to 
1 mL lysis buffer (0.2% SDS, 5 mM EDTA) containing 5 µL/
mL Protease Inhibitor Cocktail (ProteoExtract-Native Mem-
brane Extraction Kit; Merck, Darmstadt, Germany), and 
manually homogenized using a Dounce homogenizer, and 
subsequently incubated for 30 min at 4 °C. After determina-
tion of the protein concentration (Pierce BCA Protein Assay 
Kit; Thermo Fisher Scientific, Germany), a volume corre-
sponding to 100 µg protein was subjected to the established 
method of filter-aided sample preparation. The obtained data 
were normalized to the respective mass of tissue lysate used 
in the tryptic digest. LC–MS/MS analyses were conducted 
on API4000 triple quadrupole mass spectrometer (AB Sciex, 
Foster City, CA, USA) coupled to a Shimadzu LC (SLC-
10A VP) system (Shimadzu, USA) and an HTS PAL LEAP 
autosampler (LEAP Technologies, USA). The details of the 
procedure, used peptides and mass transitions were previ-
ously described elsewhere [15].

Statistical methods

Distribution of the analyzed variables (i.e. mRNA and 
protein abundance) was tested for normality using Shap-
iro–Wilk test. Due to a significant deviation from normal 
distribution, differences between study groups were further 
evaluated by means of non-parametric Mann–Whitney U 
test. The correlations were measured with Spearman’s rank 
(R2) correlation coefficient. All calculations were performed 
using Statistica 13.1 software package (TIBCO Software 
Inc., Palo Alto, CA, USA).

Results

Among investigated CYP450 enzymes, CYP2E1, CYP3A4, 
CYP2C9, CYP2C8, and CYP1A2 proteins were present at 
the highest concentrations in the liver tissues in both study 
groups (i.e. organ donors and metastatic colon cancer 
patients), while CYP2D6, CYP2B6 and CYP2C19 protein 
content were distinctly lower. Total abundance of all the 
analyzed CYP proteins was about 25% higher in the meta-
static livers. Although the rank order of particular CYPs 
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proteins was different in the study groups [decreasing abun-
dance order—mean values: CYP2E1 (43%) > CYP1A2 
(15%) > CYP2C9 (13%) > CYP3A4 (12%) > CYP2C8 
(9%) > CYP2D6 (3%) > CYP2B6 (3%) > CYP2C19 (1%) 
in donors, and CYP2C9 (32%) > CYP2E1 (25%) > CYP3A4 
(13%) > CYP1A2 (12%) > CYP2C8 (8%) > CYP2D6 
(4%) > CYP2C19 (2%) > CYP2B6 (2%) in metastatic 
patients], significant differences were only observed in 
case of CYP2C9 (U = 12, N1 = 11, N2 = 13, p = 0.0002) and 
CYP2D6 (U = 29, N1 = 11, N2 = 13, p = 0.0129) (higher mean 
and median values in the metastatic livers, Figs. 1 and 2). 
Quantitative analysis of mRNA did not reveal any signifi-
cant differences in the expression of CYP genes between 
the study groups. Nevertheless, a significant correlation 
between mRNA and protein content for most investigated 
CYPs, except for CYP2E1 and CYP2C9 (combined analysis 
of all study samples) was observed (Table 2).

As for CYP3A5, it is known that a common genetic 
variant (CYP3A5*3) causes alternative splicing and pro-
tein truncation, finally resulting in complete absence of 
CYP3A5 activity [16]. Since only three individuals inherited 
a functional CYP3A5*1 allele (all in the metastatic group), 
CYP3A5 was excluded from the comparison and subse-
quently analyzed only in the context of genotype impact on 
mRNA and protein quantity.

As for UGT enzymes, UGT1A1 and UGT2B7 demon-
strated the highest abundances in both study groups, fol-
lowed by UGT2B15, and a minor content of UGT1A3. 
There was a significantly increased abundance of hepatic 
UGT2B7 (U = 29, N1 = 11, N2 = 13, p = 0.0129) in meta-
static patients when compared to the organ donors, which 
was also observed in mRNA analysis (U = 21, N1 = 11, 
N2 = 13, p = 0.0025) (Fig.  3). A significant correlation 
between mRNA and protein content was noted in the case of 
all analyzed UGTs. Details of mRNA and protein quantita-
tive analysis is presented in Figs. 1, 2, 3 and Supplementary 
Tables 3 and 4.

Apart from quantitative comparison of two reference liver 
tissues, an analysis of common functional genetic variants 
within DMEs genes was performed in all 24 study sam-
ples. Among the studied variants, a significant impact of 
CYP2C19*2 and CYP3A5*3 alleles was observed. The car-
riers of CYP2C19*2 variant were characterized by decreased 
mRNA levels and protein abundance of CYP2C19 enzyme, 
and the genotype-dependent difference was significant at 
protein level (H = 6.4, N1 = 10, N2 = 4, N3 = 10, p = 0.0417), 
as three of four CYP2C19*1/*2 individuals ware charac-
terized by a protein abundance below level of detection of 
the applied method of quantification (Fig. 4). Similarly, 
mRNA and protein content in CYP3A5*3 (U = 0, N1 = 3, 
N2 = 21, p = 0.001) homozygotes were markedly lower 
compared than in carriers of wild-type CYP3A5*1 allele. In 
case of CYP2D6, carriers of the non-functional CYP2D6*4 

allele were not significantly affected by the polymorphism 
(p = 0.075 for protein content). However, an individual with 
CYP2D6*4/*4 homozygous genotype represented the only 
case with undetectable CYP2D6 protein. Contrary to the 
aforementioned variants, resulting in splicing defect and pro-
cessing of non-functional protein, none of the other investi-
gated genetic polymorphisms (missense SNPs or located in 
promoters/introns) showed any association with gene expres-
sion or protein abundance of the investigated DMEs (Sup-
plementary Tables 5 and 6). Although UGT1A1*28 associa-
tion with decreased gene expression and Gilbert syndrome is 
well documented, and could be observed in the current study 
(Fig. 4), the inter-genotype differences were not significant, 
possibly due to a relatively small number of samples and 
considerable interindividual variability.

Finally, we have analyzed mRNA relative quantity and 
protein abundance of DMEs in relation to a patient’s age 
and sex. A significant impact of age on UGT1A1 protein 
abundance was observed, with decreasing UGT1A1 liver 
levels in elderly subjects (R2 = 0.234, p = 0.017, Fig. 5). No 
other age-dependent associations were shown. Similarly, we 
did not observe any significant differences between men and 
women, neither in mRNA quantity, nor in protein abundance 
(Supplementary Tables 7 and 8).

Discussion

In the current study, we compared for the first time the 
expression of DMEs genes of two sets of liver samples, i.e. 
non-tumoral liver tissue from patients undergoing resection 
of colon cancer metastases and liver samples from organ 
donors (liver donors), that are widely used as reference sam-
ples, presumably healthy livers [4–9]. Gene expression was 
measured both at mRNA and protein levels. Several signifi-
cant differences between the aforementioned types of liver 
tissues were identified.

As for CYP450 enzymes, significantly higher protein 
content of hepatic CYP2C9 and CYP2D6 was noted in 
metastatic patients, when compared with organ donors. 
CYP2C9 is mainly regulated by nuclear receptors: the con-
stitutive androstane receptor (CAR) and pregnane X receptor 
(PXR), that control transcription of many CYP450 genes 
[17]. It was demonstrated that pro-inflammatory cytokines 
(e.g., IL-1, IL-6, and TNF-α) downregulate hepatic expres-
sion of CYP1, CYP2, CYP3, and CYP4 families. Since the 
inflammatory process is usually present in cancer patients, 
both in the tumor microenvironment and systemically, one 
could rather expect decreased CYP2C9 expression in meta-
static patients [18]. However, it was shown that CYP2C9 
was downregulated by IL-6 and TGF, but not significantly 
affected by TNF, IFN, or IL-1 in human hepatocytes, con-
trary to CYP3A4 and CYP2C8, which were downregulated 
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Fig. 1  The mRNA and protein 
abundance of CYP1A2, 
CYP2B6, CYP2C8, CYP2C9, 
and CY2C19 in livers from 
organ donors (D) and patients 
undergoing metastatic tumor 
resection (M). Horizontal bars 
represent median values for 
each group. Values for mRNA 
are shown as relative quantity 
in relation to mean expres-
sion of five housekeeping 
genes (GAPDH, PPIA, HMBS, 
RPLP0, and RPS9). Significant 
p values are marked with aster-
isks ***p < 0.001)
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by all aforementioned cytokines. Those data suggest that 
cytokine-related regulatory process may be more complex 
and gene-specific.

Although genetic polymorphism is the main contributor 
to the interindividual variability of CYP2D6 activity, it does 
not explain all the observed differences. It was previously 
documented the urinary metabolic ratio of dextromethor-
phan or debrisoquine (CYP2D6 substrates) varied greatly 
among individuals carrying the wild-type CYP2D6 alleles 
[19]. However, contrary to most of the DMEs of the CYP450 

system, it is not regulated by CAR nor PXR. Potential tran-
scriptional regulation may involve hepatocyte nuclear factor 
4a (HNF4a), small heterodimer partner (SHP) and hepatic 
concentration of retinoids [19], but the current knowledge is 
still very limited and does not allow to define mechanisms 
underlying the observed differences between the groups in 
the current study.

Although the rank of CYP450 enzymes arranged based 
on decreasing abundance differed between the two groups, 
four enzymes detected at the highest quantity were the same, 

Fig. 2  The mRNA and protein 
abundance of CYP2D6, 
CYP2E1, and CYP3A4 in liv-
ers from organ donors (D) and 
patients undergoing metastatic 
tumor resection (M). Horizontal 
bars represent median values 
for each group. Values for 
mRNA are shown as relative 
quantity in relation to mean 
expression of five housekeeping 
genes (GAPDH, PPIA, HMBS, 
RPLP0, and RPS9). Significant 
p values are marked with aster-
isks (**p < 0.01)
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i.e. CYP2E1, CYP1A2, CYP2C9 and CYP3A4 (all over 10% 
of the analyzed CYP450 fraction in both groups). This is 
in concordance with data presented in the paper of Prasad 
et al. for control tissue from organ donors [5], except the 
high content of CYP2A6 enzyme reported by those authors. 
As CYP2A6 is usually not considered as pharmacologically 
relevant, it was not included in the current study. Similarly, 
CYP3A, CYP2C (without discrimination between individual 
members) and CYPA2 were pointed as major hepatic frac-
tion of CYP450 “pie” in the paper by Michaels and Wang 
[11]. Those authors reported a high content of CYP4F 
protein, but again, it was not included in the current study, 
which was focused on pharmacologically relevant enzymes. 
As for the CYP2E1, lower protein content was reported in 
the aforementioned paper (6.6%), but it might be related 
with the fact that CYP2E1 is more prone to degradation 
and thus sensitive to prolongation of sample harvesting and 
processing time, as it was discussed before [20].

As for UGTs, the only significant difference at the protein 
level was noticed in case of UGT2B7. Contrary to mem-
bers of the UGT1A family, encoded by a single locus et 
2q37 (sharing common exons), UGT2B7 is located at chro-
mosome 4 and its expression seems not to be regulated by 
xenobiotics via CAR/PXR/AhR, but is rather controlled by 
toxic bile acids (mainly lithocholic acid, LCA) via FXR [21]. 
LCA is a product of conversion of chenodeoxycholic acid by 

intestinal bacteria. As both increased LCA level and altered 
gut microbiota are risk factors for colorectal cancer, this can 
be a potential reason of higher UGT2B7 expression in the 
livers from metastatic patients compared to deceased organ 
donors [22]. However, bile acid concentrations should be 
measured to verify that hypothesis.

The two patient groups differed in relation to drugs 
administered before liver sample collection (Table  1). 
Some of those drugs are extensively metabolized in liver 
in reactions catalyzed by the enzymes investigated in the 
current study, e.g. midazolam (CYP3A4 and UGT1A4) or 
oxycodone (CYP3A4, CYP2D6) [23]. However, none of 
the drugs is a significant enzymatic inducer or inhibitor, so 
the observed differences in mRNA/protein content of drug-
metabolizing enzymes are unlikely related to pharmacologi-
cal treatment.

It is generally accepted that genetic variation is one of 
the major determinants of interindividual and ethnic differ-
ences in activity of DMEs in humans [24]. Despite that fact, 
many studies related to hepatic expression of DMEs genes, 
protein quantification or enzymatic activity did not include 
genetic analysis. In the current paper, we observed a signifi-
cant impact of CYP2C19 genotype on protein abundance, 
with significant decrease of protein abundance in patients 
heterozygous for *2 allele. The rs4244285 polymorphism, 
defining the CYP2C19*2 allele, creates an exon 5 aberrant 
splice site, altering the reading frame of the mRNA and lead-
ing to a premature stop codon and formation of a non-func-
tional protein [25]. A more recent study has demonstrated, 
that another SNP (rs12769205 in intron 2, also found in all 
CYP2C19*2 alleles) leads to intron 2 retention, and may pro-
duce complete loss of CYP2C19 protein [26]. Since allele 
*2 is quite common, especially in Asian populations, geno-
typing should be definitely included in the studies related 
to CYP2C19 variable expression in humans. Contrary, we 
did not confirm an association of CYP2C19*17 (promoter 
variant), previously pointed as a gain-of-function allele, with 
increased transcriptional activity, which does not support 
its major significance in relation to CYP2C19 abundance 
in the liver [27].

Another important genetic factor that should be defi-
nitely included in DME studies is the common *3 variant 
of CYP3A5 gene. CYP3A5*3, the main determinant of that 
CYP expression levels in most populations, is characterized 
by the presence of rs776746 SNP in intron 3, which leads to 
alternative splicing, the insertion of an intronic sequence into 
mRNA, protein truncation and complete loss of activity [16]. 
The frequency of CYP3A5*3 allele is very high, reaching 
over 90% in Europeans (www. pharm gkb. org). The mRNA 
assay used in the current study could detect both wild-type 
(*1) and *3 transcripts, due to location in exons 2–3. The 
peptide used for protein quantitation by MS is located in 
exon 8, so should not detect signal in case of CYP3A5*3. 

Table 2  Correlation between RNA and protein abundance of CYP450 
and UGT enzymes in human liver samples

Spearman coefficient values are given
M non-tumorous liver samples from patients with metastatic colon 
cancer, D liver samples from organ donors
*p < 0.05
**p < 0.01
***p < 0.001
a Patient deficient for CYP2D6 (*4/*4 genotype) was excluded from 
analysis

mRNA vs. protein D
n = 11

M
n = 13

All samples
n = 24

CYP1A2 0.845** 0.775** 0.744***
CYP2B6 0.773** 0.593 0.790***
CYP2C8 0.909*** 0.786** 0.790***
CYP2C9 0.764** 0.802*** 0.381
CY2C19 0.601 0.884*** 0.763***
CYP2D6a 0.664* 0.525 0.493*
CYP2E1 − 0.036 0.258 0.138
CYP3A4 0.845** 0.780** 0.851***
CYP3A5 0.691* 0.676* 0.744***
UGT1A1 0.609* 0.626* 0.722***
UGT1A3 0.236 0.527 0.430*
UGT2B7 0.782** 0.670* 0.799***
UGT2B15 0.355 0.813*** 0.492*

http://www.pharmgkb.org
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Fig. 3  The mRNA and protein 
abundance of the most phar-
macologically relevant UGT 
enzymes (UGT1A1, UGT1A3, 
UGT2B7, and UGT2B15) 
in livers from organ donors 
(D) and patients undergoing 
metastatic tumor resection 
(M). Horizontal bars represent 
median values for each group. 
Values for mRNA are shown as 
relative quantity in relation to 
mean expression of five house-
keeping genes (GAPDH, PPIA, 
HMBS, RPLP0, and RPS9). 
Significant p values are marked 
with asterisks (*p < 0.05; 
**p < 0.01)
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Fig. 4  The impact of genotype 
on mRNA and protein abun-
dance of drug-metabolizing 
enzymes (CYP2C19, CYP3A5, 
CYP2D6, and UGT1A1) in all 
study participants (n = 24). Hor-
izontal bars represent median 
values for each group. Values 
for mRNA are shown as relative 
quantity in relation to mean 
expression of five housekeeping 
genes (GAPDH, PPIA, HMBS, 
RPLP0, and RPS9). Significant 
p values are marked with aster-
isks (*p < 0.05; ***p < 0.001)
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However, it was presented that the chimeric CYP3A pro-
teins, characterized by CYP3A43 exon 1 joined to distinct 
sets of CYP3A4 or CYP3A5 exons are present in the human 
liver [28], which may explain weak signal detected by our 
method in samples homozygous for CYP3A5*3 allele. In 
one of previous studies we have reported that CYP3A5 is 
present at very low levels in the human liver, and constituted 
only about 1% of liver CYP content [15]. The current study 
revealed that CYP3A5 protein abundance may be much 
higher (nearly comparable with that of CYP3A4), but this 
is limited to so-called CYP3A5 “expressers”, i.e. individu-
als possessing at last one functional allele of the CYP3A5 
gene Fig. 4). Similarly, results of other studies referring to 
CYP3A5 could possibly not reflect the real status of the 
enzyme as the patients were not genotyped for CYP3A5*3 
allele [5, 10, 11].

The hepatic CYP2D6 protein abundance varies dramati-
cally from person to person mainly due to its genetic poly-
morphism [29]. In case of CYP2D6, the presence of a sin-
gle *4 allele was not significantly associated with decreased 
levels of CYP2D6 mRNA or protein, which could be due to 
relatively small number of subjects in the current study. For 
the same reason, we did not detect any copy number varia-
tion of CYP2D6 gene among the study participants, so the 
effect of gene deletion/multiplication could not be verified. 
However, an individual with *4/*4 homozygous genotype 
was the only case with undetectable CYP2D6 protein level, 
which supports the necessity of genotyping subjects involved 
in CYP450 expression/activity studies.

Additional analyses of mRNA and protein content were 
performed in relation to a patient’s age and sex. We were 
not able to confirm previously reported differences in 
CYP3A4, which is considered is to be female predominant 
[10]. We have observed an inverse correlation between 

patients age and UGT1A1 protein content, but it is not 
in concordance with the previous studies on activity of 
UGT1A enzymes [30, 31]. However, due to limited sample 
size and potential influence of other factors, the results of 
these analyses should be treated with a special caution.

Although some significant observations were reported 
in the current study, it should be clearly stated that there 
are some important limitations. First of all, only limited 
number of samples was included, which does not allow 
detection of some minor differences. It is known that 
some diet components may inhibit enzymatic activity (e.g. 
grapefruit juice in case of CYP3A4), while nicotine is an 
inducer of CYP1A2, but no data on cigarette smoking or 
diet was available in the current study. Additionally, rare 
functional genetic variants were not analyzed in the cur-
rent study, so their presence in the study subjects cannot 
be excluded.

It should also be emphasized that not the mRNA con-
tent or protein abundance finally determine drug metabo-
lism in an individual patient, but the enzymatic activity. 
Even if there is a significant correlation between mRNA/
protein content and activity measurements in case of many 
DMEs, the correlation is not full [32]. Secondary, not all 
the DMEs are regulated at transcriptional level, e.g. the 
induction of CYP2E1 seems to be regulated posttrans-
lationally by protection against the rapid degradation of 
protein in the liver [33]. In relation to pharmacogenetic 
issues, not all the functional polymorphisms of DME 
genes affect gene expression or protein abundance, what 
has been also observed in the current study. It was previ-
ously documented that some missense variants (like in 
case of CYP2C9 *2 and *3 or CYP2B6*6 alleles) do not 
influence protein content nor stability, but modify enzy-
matic activity and substrate specificity [34, 35]. Thus, if 
possible, phenotype should be assessed in drug metabo-
lism studies, as the best determinant of drug response.

Finally, the current study revealed differences in mRNA 
and protein levels of DMEs between the donor livers 
and the non-tumorous tissue from metastatic livers. Our 
results show, that in case of some enzymes, i.e. CYP2C9, 
CYP2D6 and UGT2B7, the selection of a control group 
for the study is important and may affect certain conclu-
sions. On the other hand, genetic variation is an impor-
tant determinant of some enzymes’ gene expression and 
protein content, which is the most pronounced in case of 
CYP2C19, CYP2D6 and CYP3A5. The latter observation 
supports the necessity of genotype analysis incorporation 
into all studies on DMEs.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s43440- 021- 00337-w.

Fig. 5  Linear regression analysis of the relation between patient’s age 
and UGT1A1 protein abundance in the human liver
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