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Abstract: The dynamics and diversity of human gut microbiota that can remarkably influence the
wellbeing and health of the host are constantly changing through the host’s lifetime in response
to various factors. The aim of the present study was to determine a set of parameters that could
have a major impact on classifying subjects into a single cluster regarding gut bacteria composition.
Therefore, a set of demographical, environmental, and clinical data of healthy adults aged 25–50 years
(117 female and 83 men) was collected. Fecal microbiota composition was characterized using
Illumina MiSeq 16S rRNA gene amplicon sequencing. Hierarchical clustering was performed to
analyze the microbiota data set, and a supervised machine learning model (SVM; Support Vector
Machines) was applied for classification. Seventy variables from collected data were included in
machine learning analysis. The agglomerative clustering algorithm suggested the presence of four
distinct community types of most abundant bacterial phyla. Each cluster harbored a statistically
significant different proportion of bacterial phyla. Regarding prediction, the most important features
classifying subjects into clusters were measures of obesity (waist to hip ratio, BMI, and visceral fat
index), total body water, blood pressure, energy intake, total fat, olive oil intake, total fiber intake,
and water intake. In conclusion, the SVM model was shown as a valuable tool to classify healthy
individuals based on their gut microbiota composition.

Keywords: gut microbiota; nutrition; obesity measures; lifestyle parameters; clustering; machine
learning

1. Introduction

The human gut microbiota is a complex and dynamic community of bacteria, viruses, fungi,
protozoa, and archaea, which coexist in symbiosis with the host [1]. Due to the relative abundance
of the Bacteria domain and its role in health and disease of the host this part of gut microbiota has
been widely studied. The density of bacterial community along the gastrointestinal (GI) tract varies
and is the highest in the colon that harbors 1012 bacteria/gram of intestinal content [2]. A significant
contribution of gut bacteria in the functionality of immune, GI, and nervous system has been observed,
including (i) maturation and regulation of the immune system [3], (ii) intestinal mucosal barrier
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maintenance [4], (iii) protection against pathogens [5], and (iv) balancing energy metabolism and
hormone levels [6]. Moreover, the disturbance in the gut microbiota homeostasis has been associated
with gastrointestinal disorders [7], metabolic diseases [8], as well as with neurological disorders [9].

Although individually specific, the gut microbiota of a healthy adult is composed mainly of
two dominant bacterial phyla Firmicutes and Bacteroides (90%) followed by other phyla, including
Actinobacteria (mainly Bifidobacterium), Proteobacteria, Fusobacteria, and Verrucomicrobia in lower
proportion [10]. While the key events of gut microbiota development are set already in early life [11],
the microbial community can daily be influenced by a wide range of environmental and inter-individual
variables, including diet, medications, and a wide range of anthropometric measurements [12]. The gut
bacteria composition, diversity, and/or functional richness of a healthy individual have been shown
before to be correlated with variables such as age and sex [12,13], obesity [14,15], diet (e.g., fiber
intake, a diet rich in carbohydrates or proteins) [16,17]. Although diet and medications, specifically
antibiotics, are recognized as the most important factors modulating the diversity and function of the
gut microbiota, this explains only a small proportion of variations [12,18,19]. Interestingly, a negligible
influence of host genetics on fecal microbiome composition was observed [20]. The last suggests that
interventions on microbiota composition with the aim of beneficial health outcomes may be carried
out across diverse genetic backgrounds [12].

However, it is still an open question which of the gut microbiota-associated variables could serve
as predictors of phyla and genera abundance in healthy individuals. It is conceivable that the gut
microbiota composition could then yield important information about the physiological state of the
host. The classification from microbiome data has already been performed recognizing the support
vector machines (SVM) as one of the most effective and accurate machine learning techniques [21].
The first aim of the present study was the clustering of healthy subjects according to the bacteria
phyla abundance. Secondly, we aimed to determine which subject’s characteristics, such as age,
gender, BMI (body mass index), macro- and micronutrient intakes, level of physical activity, alcohol
consumption, daily sleeping hours, and others are of the highest importance in allocating healthy
individuals into a single cluster, using SVM. The obtained data could provide us with a comprehensive
check on microbiota-associated variables that simultaneously influence the allocation of healthy subjects
into clusters.

2. Materials and Methods

2.1. Study Design

The present study was a part of a larger project on the effect of alcohol consumption on gut
microbiota (ALMICROBHOL). This cross-sectional study has been approved by the Slovenian National
Medical Ethics Committee (No. 53/03/2015) and was performed according to the Declaration of
Helsinki (the latest amendment in Fortalesa, Brasil, 2013) at the Faculty of Health Sciences, University
of Primorska, Izola, Slovenia, between October 2014 and December 2016. Prior to the study, all of the
participants submitted a written informed consent.

The participants who met the inclusion criteria followed a two-visit schedule. In the first visit,
participants completed questionnaires about physical activity, alcohol consumption and macro- and
micronutrient intakes. Anthropometrical measurements, blood pressure, and questionnaires about
overall health status and quality of life were performed in a second visit. All questionnaires were filled
in by a trained investigator in personal interviews with the participant. In addition, all questionnaires
were validated and translated into English and from English to the Slovenian language. For gut
microbiota analysis, each participant brought a fresh stool sample that was collected in a sterile
container at home the day before an in-person visit. The samples were immediately stored at −80 ◦C
and collectively transported on dry ice to the Spanish Institute of Food Science, Technology and
Nutrition (ICTAN, Madrid, Spain) for further analysis.
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2.2. Study Subjects

For this cross-sectional study, 261 healthy individuals (Caucasian origin) from the general
population were recruited by advertisement (internet forums, e-mail and newspaper advertisements).
Only subjects who met the following inclusion criteria were eligible to participate: (a) aged 25–50 years;
(b) body mass index (BMI) between 18.5 and 35 kg/m2; (c) healthy with no cardiovascular, endocrine,
GI, or acute or chronic inflammatory diseases; (d) not taking nonsteroidal anti-inflammatory drugs or
antibiotics 90 days prior to the study; and (e) reporting a stable weight within the last three months.
Among 261 potential subjects, 61 were excluded from the study because of the missing questionnaire
data or stool sample for microbiota analysis.

2.2.1. Dietary Assessment

Study subjects first underwent baseline energy intake assessments, including a three-day accurate
food recording and an assessment of a 30-day validated food frequency questionnaire. The last
estimates the amount and consumption frequency of 209 food items including both foods, water intake
and beverages over the past one-month period [22]. One week prior to stool sample collection the
subjects were instructed to record and weigh their food intake for three consecutive days (two days
during the week and one weekend). Where possible, subjects were asked to include food labels and
recipes for mixed dishes and were encouraged to avoid any alterations to their normal diet. They were
taught to weigh and record all food and beverages immediately before eating and to weigh and
describe any leftovers. Dietary data (energy values and macro- and micronutrient content) were
analyzed using a freely accessible online dietary assessment and planning tool, named Open Platform
for Clinical Nutrition (http://www.opkp.si/en_GB/cms/vstopna-stran). Moreover, adherence to the
Mediterranean diet was investigated according to the 14-item Mediterranean diet adherence score
used in the PREDIMED study. Based on the gained score, subjects adherence to the Mediterranean diet
was classified as low (0–7), moderate (8–10), or high (11–17) [23]. In addition, the specific consumption
of alcoholic beverages was determined by an ad-hoc modified questionnaire of the SUN study [24].

2.2.2. Body Composition Measurements

Subjects’ height, weight, waist and hip circumference, as well as blood pressure were measured
using a standardized protocol. All measurements were performed by the same examiner between 7 a.m.
and 9 a.m. The height and weight of participants were measured in light indoor clothing without shoes
with a precision of 0.1 cm and 0.1 kg. The waist measurements were performed in a standing position
halfway between the coastal edge and iliac crest, whereas for hips the greatest circumference around
the buttocks as measured. BMI was calculated by the formula BMI = (weight in kg)/(height in m)2 and
waist to hip ratios by the formula WHR = waist (cm)/hip (cm). Body composition (total percentage of
body fat (% BF) and percentage of trunk fat (% TF) were assessed by bioelectrical impedance analysis
(BIA) using a Tanita BC 418MA, followed by data analysis in software provided by the manufacturer
(Tanita Corporation, Arlington Heights, IL). Although there is a correlation between % BF and % TF,
visceral fat is better presented by % TF. In addition, the same analysis provided also the visceral fat
rating data.

2.2.3. Overall Health Status and Quality of Life

Overall health status, diagnosed diseases, symptoms, drug administration, and sleep quality
were evaluated through the interview. Socio-economic status (academic background, incomes,
economic supports, and family members) and daily activities (hours spent for personal hygiene,
shopping, cooking, and cleaning and tidying the house) were assessed by the modified AFINOS
study questionnaire [25]. Subjective self-perception of physical and emotional health and pain were
determined by the Short Form-36 Health Survey questionnaire [26]. In addition, the physical activity of
participating subjects was assessed using the Minnesota Leisure Time Physical Activity Questionnaire.

http://www.opkp.si/en_GB/cms/vstopna-stran
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EER was estimated according to Institute of Medicine of the National Academies, accessible online:
https://www.nap.edu/read/10490/chapter/1.

2.2.4. Gut Microbiota Composition

The gut microbiota composition was determined using the MiSeq Illumina system (Illumina, San
Diego, CA, USA) as previously described [27]. Briefly, after the bacterial DNA extraction using an
optimized protocol [28], the DNA was recovered with the commercial QIAamp DNA Stool Mini Kit
(Qiagen N.V., Venlo, The Netherlands) following the manufacturer’s instructions and stored at −80 ◦C
for further analysis. DNA concentration was measured by UV absorbance at 260 nm, and the DNA
quality was also assessed by the 260/280 nm ratio using a Nanodrop ND-1000 spectrophotometer
(Thermo Fisher Scientific, Wilmington, DE, USA). Subsequently, Picogreen analysis of double-stranded
DNA was performed by a QuantiFluor ST fluorometer (Promega, Madison, WI, USA), and all samples
were diluted to a final concentration of 0.5 ng/µL for the amplification of the V3–V4 variable regions
of the 16S RNA gene. DNA amplicon integrity was checked by 1.5% agarose gel electrophoresis
(Pronadisa, Madrid, Spain), and libraries were normalized and pooled. Sequencing was performed by
the MiSeq Illumina system (Illumina, San Diego, CA, USA) using the V3 kit on a 2× 270 paired-end runs.

The taxonomy classification was performed with the MiSeq Reporter software (v2.3, Illumina) in
several steps, including demultiplexing and FASTq file generation, as described before [27]. Sequences
were then clustered into operational taxonomic units (OTUs) with Classify Reads, a high-performance
implementation of the Ribosomal Database Project (RDP) based on the Greengenes database, obtaining
26 phyla, 605 genera, and 1790 species (Classify Reads accuracy was 100%, 99.97%, and 98.65%,
respectively) [29]. Taxa with relative abundance <0.002% of total reads and also those with a prevalence
of <10 subjects were removed for the statistical analysis. For the present study, the data about relative
abundance was obtained from the Illumina 16S Metagenomic Report of the gut microbiota from an
individual stool sample, provided by the ICTAN (Madrid, Spain). Data with relative abundances of
phyla and genera of 200 subjects that were included in the present study are presented as Supplementary
Material (Table S1).

2.3. Data Analysis

The resulting data in the context of the survey questioners and gut microbiota analysis were
entered into a database. Frequencies were compiled for all variables and are presented as percentages
for nominal and as mean or median and standard deviation (SD) for numeric variables. Quantitative
data analysis with the application of statistical software was performed in SPSS software version
23 (IBM, Armonk, NY, USA). An R package version 3.5 was used for pre-processing data and for
performing hierarchy clustering using Ward’s linkage method. The caret package in R was used to
build the Support Vector Machine (SVM) classifier. For the SVM classification model, the variable
importance was calculated by computing the area under the Operating Characteristic (ROC) curve.
The Variable importance function, which is a part of the caret package in R, automatically scales the
importance scores to be between 0 and 100.

2.3.1. Cluster Analysis of Gut Microbiota

Hierarchical clustering using Ward’s linkage of the correlation coefficient as a distance measure was
performed to analyze the microbiota data set. For clustering, the data that met the next criteria were used:
most abundant phyla with more than 50% of the data above detection limit. According to the criteria,
data of five phyla (Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Verrucomicrobia) of
200 healthy individuals were used. Before the analysis, the data set were scaled so that all variables
have zero mean and unit variance.

Pearson correlation distance was used as a similarity measure (distance) between variables.
The correlation distance (D) is defined as D = 1 − R, where R is the Pearson correlation coefficient.
We choose correlation distance as a similarity measure because the main interest was to inspect the

https://www.nap.edu/read/10490/chapter/1
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strength of the linear relationship between variables. The Ward’s linkage, a minimal increase of
sum-of-squares, was used to calculate the distance between clusters. Hierarchical clustering results
in a clustering structure consisting of nested partitions. In an agglomerative clustering algorithm,
the clustering begins with singleton sets of each point. That is, each data point is its own cluster. At a
single time step, the most similar cluster pairs are combined according to the chosen similarity measure,
and this step is repeated until predetermined criteria are met.

2.3.2. Predicting Microbiota Clusters Using Support Vector Machine

Support Vector Machine (SVM) is a supervised machine learning technique that is widely
used for classification challenges. The SVM algorithm performs classification by constructing
multidimensional planes that define decision boundaries. In this study, the Radial Basis Function
(RBF) kernel was applied to discriminate four cluster classes. Seventy variables from data collected on
demographics, anthropometrics, lifestyle, and socio-economic status were included to build the SVM
model. The detailed description of variables is presented in the Table S2 of the Supplementary Materials.
The variables were selected (1) to illustrate RBF performance when dealing with a high-dimensional
biomedical problem combining continuous and categorical traits and (2) to uncover potentially
unknown predictors of microbiota composition. Variable selection was also guided by biological
plausibility and was limited to variables with less than 5% missing data. The SVM model was validated
using a Leave-one-out cross-validation setup, which is a special case of cross-validation. Leave-one-out
cross-method performs training on the whole data set minus single observation. The single observation,
which is not a part of the training set, is used for the validation. Leave-one-out cross-validation is
repeated k-times where k is the number of observations in the original sample. RBF has two main
parameters: C controls the cost of miss-classification, and gamma determines the radius of influence of
the support vectors. Thus, the systematic grid search in a combination of Leave-one-out cross-method
was performed for the search of best C and gamma values. The values of C and gamma where the
highest accuracy was achieved were selected as the optimal parameter set. The optimal parameters C
and gamma were 7 and 0.03, respectively. The performance of the model was additionally estimated
by a calculation of confusion matrix that shows in which way the model is confused when it makes
predictions. The accuracy of the model was 0.70, where a 95% confidence interval was between 0.62
and 0.75. Furthermore, the balanced accuracy, which considers the imbalance between classes and is
defined as the arithmetic mean of sensitivity (true positive rate) and specificity (false positive rate),
was 0.783, 0.796, 0.791, and 0.712, for Cluster 1, Cluster 2, Cluster 3, and Cluster 4, respectively.

3. Results

3.1. Characteristics of the Study Subjects

A total of 200 healthy Caucasian adults (117 females and 83 males) were included in the present
study of whom basic characteristics are provided in Table 1. The average age of the participants was
35.4 ± 7.0 years and most of them had a university degree (63.5%). The participants slept on average
7.7 ± 0.8 of nightly hours. Regular cigarette smoking was reported by 27% of them, and the average
alcohol consumption was 14.5 ± 13.6 g/day. Regarding obesity parameters, the average BMI was
24.2 ± 3.5 kg/m2, WHR = waist (cm)/hip (cm) was 0.87 ± 0.07, and visceral fat index was 4.7 ± 2.9%.
The mean Estimated Energy Requirements (EER) of participants was shown to be 3093 ± 776 kcal,
and the estimated daily energy intake was 1892 ± 1000 kcal/day, followed by total fat intake of
32.07 ± 9.96%; 49.05 ± 10.18% of carbohydrates and 18.14 ± 6.48% of proteins. The average amount of
consumed fiber was 19.37 ± 13.67 g/day. In the context of the Mediterranean diet, the adherence of
most (59%) participants was moderate and for 11% high.
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Table 1. Basic characteristics of the participants included in the study (n = 200).

Characteristics

Age years (mean ± SD) 35.4 ± 7.0
Gender
Female 117 (58.5%)
Male 83 (41.5%)

Level of education
Primary education 5 (2.5%)

Secondary education or high school 68 (34%)
University degree (Bachelor’s, Master’s, Doctor’s) 127 (63.5%)

BMI kg/m2 (mean ± SD) 24.2 ± 3.5
Weight (kg) (mean ± SD) 73.1 ± 15.4

WHR = waist (cm)/hip (cm) (mean ± SD) 0.87 ± 0.07
Visceral fat index 4.7 ± 2.9

Blood pressure
Systolic 125.8 ± 13.2
Diastolic 81.3 ± 9.8

Hours of sleep (mean ± SD) 7.7 ± 0.8
Smoker

Yes 54 (27%)
No 146 (73%)

Alcohol consumption habits (mean g/day ± SD) 14.5 ± 13.6
Up to 5 g/day 78 (39%)

5–12 g/day (W) and 5–20 g/day (M) 60 (30%)
>12 g/day (W) and >20 g/day (M) 62 (31%)

Dietary intake
EER kcal (mean ± SD) 3093 ± 776

Energy intake (kcal/day) 1892 ± 1000
Total fat (%) 32.07 ± 9.96

Carbohydrate (%) 49.05 ± 10.18
Protein (%) 18.14 ± 6.48

Fiber (g/day) 19.37 ± 13.67
MEDAS (mean ± SD) 7.7 ± 2.4

0–6 points 60 (30%)
7–10 points 118 (59%)

11–14 points 22 (11%)
Physical activity (kcal/week) 4219 ± 335

Data are presented as mean values ± SD or N (%). Estimated Energy Requirements (EER); Mediterranean diet
adherence (MEDAS).

3.2. Microbiota Composition

To characterize the bacterial microbiota composition, 16S rRNA gene sequencing on collected
fecal samples was performed. In the present cohort study, the microbial profiles of 200 individuals
were analyzed. The abundances of 8 bacterial phyla (Figure 1A) and 23 genera (Figure 1B) that were
found in more than 10% of study participants are presented in Figure 1. Firmicutes, Bacterioidetes,
and Proteobacteria phyla were detected in the microbiota of all participants. Firmicutes was the
predominant group at the phylum level (71.02 ± 11.45) followed by Bacteroidetes (13.85 ± 10.20),
Proteobacteria (3.52 ± 3.33), Actinobacteria (2.80 ± 3.25), and Verrucomicrobia (0.28 ± 2.87). Moreover,
Firmicutes was the most dominant phylum in the vast majority of individuals (98%). Regarding
taxonomic classification, the most abundant genera also belonged to Firmicutes phyla (Blautia,
Faecalibacterium, Ruminococcus, and Clostridium). In addition to this, most of the bacterial population
belonged to the Blautia genus (11.79 ± 5.84), followed by Faecalibacterium (8.59 ± 5.09), Bacteroides
(7.97 ± 8.05), Ruminococcus (6.51 ± 3.17), and Clostridium (4.79 ± 3.48).
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3.3. Microbiota Cluster Analysis

Hierarchical clustering was performed to analyze the microbiota phyla data set. In the tradeoff

between having a higher number of clusters, where better focus is achieved but clusters can contain
too few variables, and a lower number of clusters with excessive variations, four clusters were
selected. Choosing four clusters also resulted in interpretable results. The numbers of members (study
participants) in each cluster were 80, 55, 34, and 31 for C1, C2, C3, and C4, respectively. The hierarchical
clustering of microbiota data is presented by a tree diagram (dendrogram) in Figure 2.

3.3.1. Microbial Abundance over Clusters

The cluster analysis suggested the presence of four distinct community types (Figure 2).
All statistically significant differences between clusters regarding bacterial phyla and genera are
presented in Figure 3; Figure 4. Based on the cluster distribution of phyla (Figure 3), the highest
abundance of Firmicutes in the C2 cluster was observed, followed by C3, C4, and C1. Moreover, the C2
cluster has been characterized by a significantly lower abundance of Bacterioidetes, Proteobacteria,
and Verrucomicrobia phyla. Among all, the C1 cluster was characterized by the highest proportion of
Bacteroidetes and at the same time by the lowest proportion of Firmicutes and Actinobacteria phyla.
The C4 cluster has been characterized by the highest proportion of Proteobacteria and Verrucomicrobia.
Furthermore, the abundance of Actinobacteria phyla was significantly higher in C3, followed by C2,
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C4, and C1. Additionally, the C3 cluster was characterized also by a significantly higher proportion of
the Bifidobacterium genus (Figure 4) when compared to other clusters C1 (p = 0.041), C2 (p = 0.010),
and C4 (p = 0.027).Nutrients 2020, 12, x FOR PEER REVIEW 8 of 19 
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model measure of variable importance. The most important variables (top five) for classifying 

subjects into clusters were measures of obesity (WHR, BMI, and visceral fat index), blood pressure, 

Figure 3. The cluster distribution of five most abundant bacterial phyla. Relative abundance per cluster
of the five most abundant bacteria phyla present in our cohort. Each box shows the median plus
interquartile range of the relative abundance of bacterial phyla. Colors show the cluster. Statistical
significance differences (p < 0.05) between clusters in each phylum are presented with symbols a, b, c,
d, e, and f: a, statistical significance (p < 0.05) between C1 and C2. b, statistical significance (p < 0.05)
between C1 and C3. c, statistical significance (p < 0.05) between C1 and C4. d, statistical significance
(p < 0.05) between C2 and C3. e, statistical significance (p < 0.05) between C2 and C4. f, statistical
significance (p < 0.05) between C3 and C4.

Regarding the most abundant genera of participants gut microbiota, a significantly (p < 0.05)
higher proportion of Clostridium and Blautia was observed in C2 than in the C1, C3, and C4 clusters
(Figure 4). In addition, a significantly (p < 0.05) higher proportion of Bacteroides, and a significantly
lower proportion of Ruminococcus was observed in C1 than in the C2, C3, and C4 clusters (Figure 4).
When considering less abundant genera of gut bacteria, there was also a statistically significant higher
abundance of the genera as follows: Prevotella in the C1 cluster compared to C3 or C2; Cyanobacteria in
the C1 cluster compared to C2 or C4 and Erysipelothrix in the C4 cluster compared to C1, C2, or C3
(data not shown). Nevertheless, a dominant genus can be assigned to an individual cluster as follows:
Bacteroides to C1, Blautia and Clostridium to C2, Bifidobacterium to C3, and Erysipelothrix to the C4 cluster.
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Figure 4. The cluster distribution of six most abundant bacterial and genera. Relative abundance per
cluster of the six most abundant bacteria genera present in our cohort. Each box shows the median plus
interquartile range of the relative abundance of bacterial genera. Colors show the cluster. Statistical
significance differences (p < 0.05) between clusters in each genus are presented with symbols a, b, c, d,
e, and f: a, statistical significance (p < 0.05) between C1 and C2. b, statistical significance (p < 0.05)
between C1 and C3. c, statistical significance (p < 0.05) between C1 and C4. d, statistical significance
(p < 0.05) between C2 and C3. e, statistical significance (p < 0.05) between C2 and C4. f, statistical
significance (p < 0.05) between C3 and C4.

3.3.2. The Most Important Variables for Classifying Subjects into Clusters

Table 2 lists the top 15 ranked representative variables for each cluster according to the relative
model measure of variable importance. The most important variables (top five) for classifying subjects
into clusters were measures of obesity (WHR, BMI, and visceral fat index), blood pressure, total body
water, energy intake, total fat and olive oil intake, and total fiber intake and total water intake. Total fat
intake was shown as the most important variable for classifying subjects into cluster 3; indeed, a score of
importance was 91.0 for C3, 68.7 for C2, 64.0 for C1, and 60.5 for C4. The most important predictor with
the highest score of importance (88.2) of the C2 cluster was BMI, a known measure of obesity. The BMI
was also the second most important predictor for C1 (81.2) and the third for C3 (81.3). Furthermore,
total fiber intake gained the highest score of importance (86.1) for classifying subjects into C1 and
was the second most important for the C4 cluster. In addition, water intake with the highest score
of importance (100) was the most important predictor for classifying subjects into C4. Among the
15 most important variables of the present prediction model were also sleeping hours, age, gender,
metabolic age, EER, MEDAS, and dietary intake as follows: vitamins A, B9, and E; protein; saturated
fatty acids; monounsaturated fatty acids; olive oil; vegetable fiber; carbohydrate; and milk and milk
products intake, respectively (Table 2).
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Table 2. The list of demographical, social, nutritional, and medical predictors of four clusters by relative
value of importance.

Clusters of Subjects

C1 C2 C3 C4
Predictor and Relative Value of Importance

1 Total fiber
intake 86.1 BMI 88.2 Fat intake 91.0 Water intake 100

2 BMI 81.2 Blood pressure 81.7 Water intake 90.2 Total fiber
intake 86.1

3 Water intake 81.1 Total body
water 77.7 BMI 81.3 Visceral fat

index 77.7

4 Blood pressure 77.4 Waist/hip ratio 76.5 Energy intake 81.1 Energy intake 77.4

5 Energy intake 76.4 Visceral fat
index 73.8 Visceral fat

index 77.7 Olive oil
intake 74.8

6 Olive oil
intake 74.1 Fat intake 68.7 Vitamin A

intake 76.7
Milk and milk

products
intake

74.4

7 Visceral fat
index 73.5 Saturated fatty

acids intake 68.7 Vitamin B9
intake 75.2 BMI 68.8

8 Waist/hip ratio 68.0 Waist/hip ratio 64.9 Sleeping hours 73.5 Carbohydrates
intake 68.4

9
Milk and milk

products
intake

67.9 Gender 64.7 Age 68.0 Fat intake 67.9

10 Fat intake 64.0 Energy
requirements 64.7 Gender 67.7 Age 60.5

11 Saturated fatty
acids intake 63.3 Legume intake 63.5 Saturated fatty

acids intake 64.3 MEDAS 57.7

12 Gender 62.1 Protein intake 60.8
Monounsaturated

fatty acids
intake

63.0
Monounsaturated

fatty acids
intake

57.7

13 Energy
requirements 58.2 Vegetable fiber

intake 60.2 MEDAS 62.1 Protein intake 57.3

14 Carbohydrates
intake 57.7 Metabolic age 59.8 Vegetable fiber

intake 60.3 Vegetable fiber
intake 56.6

15 Age 57.7 Carbohydrates
intake 59.3 Vitamin E

intake 59.9 Energy
requirements 56.2

Moreover, for most of the highly ranged cluster predictors, there were statistically significant
differences between clusters (Table 3). According to the most important parameters, there were
significant differences in anthropometric parameters between clusters, whereas participants in C2 had
significantly higher BMI, WHR, blood pressure, and visceral fat index, especially in comparison to
participants in C1 (Table 3). The majority of the participants in C2 were overweight (BMI between
25 to 29.9 kg/m2), and 20% of the participants in C2 had two components of metabolic syndrome.
When considering nutritional intake, the higher energy, fat, and saturated fat intake but lower
carbohydrates intake were significant for C2 in comparison to subjects in other three clusters (Table 3).
However, there were no statistically significant differences in total fiber or olive oil intake between the
subjects in C1 and C4, and it was higher for both when compared to subjects in C2 and C3. On the
other hand, subjects in C3 had significantly lower fat and saturated fat intake and higher carbohydrates
intake in comparison to other clusters. Moreover, subjects in C3 had the highest consumption of milk
and milk products (Table 3). Regarding gender, the majority of females can be found in the C1 cluster,
whereas C2 was representative for males. The C2 cluster was also represented by the lowest number of
average sleeping hours (7.5 ± 0.7). Nevertheless, the youngest participants (32.6 ± 6.1) were clustered
in C3.
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Table 3. Differences in the top ten predictors (gender, obesity parameters, energy intake, physical
activity, and nutrient intakes) between four clusters.

Clusters
Predictors C1 (n = 80) C2 (n = 55) C3 (n = 34) C4 (n = 31)

Gender: n (F/M); % (F/M) 54/26; 68/32 a,b 21/34; 38/62 d,e 19/15; 55/45 f 22/9; 71/29
Age (years) 36.0 ± 7.4 b 36.4 ± 6.2 d 32.6 ± 6.1 f 35.8 ± 6.2
Obesity parameters
BMI (kg/m2) 23.1 ± 3.3 a,b,c 25.5 ± 3.4 d,e 24.7 ± 3.3 24.0 ± 3.3
BMI > 25 kg/m2: n; % 20; 20% a,b,c 31; 56% d,e 14; 41% 12; 39%
Waist to hip ratio 0.85 ± 0.08 a 0.89 ± 0.06 e 0.87 ± 0.07 0.85 ± 0.05
Visceral fat index 3.9 ± 2.8 a,b,c 5.7 ± 2.9 d,e 4.8 ± 2.7 4.6 ± 3.0
Total body water (%) 55.6 ± 4.1 c 55.8 ± 5.8 e 54.2 ± 6.1 52.5 ± 4.3
Blood pressure (mmHg) 122 ± 12/78 ± 9 a,c 130 ± 13/84 ± 10 d 125 ± 12/81 ± 9 128 ± 13/84 ± 9
Presence of two metabolic syndrome
components: n; % 6; 7.5% a 11; 20% d,e 1; 2.9% 3; 9.7%

Nutrition
Energy intake (kcal/day) 1700 ± 433 1720 ± 486 1590 ± 1165 1666 ± 614
Water intake (g) 1080 ± 435 b 1029 ± 322 d 840 ± 553 f 1097 ± 615
Fat intake (%) 30.7 ± 9.6 a 36.2 ± 10.1 d,e 28.7 ± 9.3 31.8 ± 8.7
Saturated fat intake (%) 8.3 ± 4.6 a,b 8.8 ± 4.8 d,e 7.2 ± 4.0 f 8.3 ± 4.8
Carbohydrates intake (%) 50.0 ± 9.0 46.4 ± 11.4 d 52.2 ± 10.4 48.2 ± 8.2
Total fiber intake (g/day) 21.0 ± 14.0 a,b 17.0 ± 8.8 e 16.4 ± 12.2 f 22.1 ± 13.1
Vitamin A (µg/day) 1352 ± 1837 b 1420 ± 1585 d 960 ± 630 1243 ± 1178
Vitamin B9 (µg/day) 408 ± 249 a 338 ± 283 d,e 412 ± 222 374 ± 208
Olive oil intake (g/day) 26 ± 24 a,b 19 ± 21 e 18 ± 13 f 28 ± 23
Milk and milk products 108 ± 101 a,b 162 ± 149 e 174 ± 129 f 124 ± 119
Other parameters
Sleeping hours (hours/day) 7.7 ± 0.7 7.5 ± 0.7 d 8.0 ± 0.7 8.0 ± 0.9

Female (F); Men (M); BMI, body mass index; EER, Estimated Energy Requirement. a Statistical significance (p <
0.05) between C1 and C2. b Statistical significance (p < 0.05) between C1 and C3. c Statistical significance (p < 0.05)
between C1 and C4. d Statistical significance (p < 0.05) between C2 and C3. e Statistical significance (p < 0.05)
between C2 and C4. f Statistical significance (p < 0.05) between C3 and C4.

4. Discussion

Gut microbiota is a diverse consortium of microorganisms that can remarkably influence the
wellbeing of the host. Although the adult-like microbiota establishes already in the first six years of a
children’s life [30], composition and diversity can be affected by many factors further in life. The studies
investigating various demographic, environmental, clinical, and genetic factors in correlation to
microbial community diversity, composition, and/or function showed promising results. However,
most of the variables were investigated individually not taking into consideration the collateral role
of other individual-specific variables that often leads to inconsistent results [20]. Therefore, in this
cross-sectional study, an extensive data set of 200 healthy Slovenian individuals was obtained with the
aim of elucidating the variables that could predict the allocation of the subjects into clusters according
to their gut microbiota composition. Regarding the distribution of major bacterial phyla and genera
of healthy Slovene individuals in this study, it was comparable with previous population-based core
microbiome studies [17,20,31]. Our data were consistent with Firmicutes and Bacteroidetes phyla
covering the vast majority of the dominant human gut bacteria [32] with the relative abundance of
Firmicutes 71.02 ± 11.45%, followed by 13.85 ± 10.20% of Bacteroidetes (Figure 1). In the hierarchical
clustering of gut microbiota data set, five bacteria phyla with the highest abundance were included.
The optimal number of clusters was set by the value four among which there were statistically
significant differences in bacterial phyla abundance, and each cluster had a group representative
(Figure 3). Namely, Bacteroidetes phylum was the most prevalent in the C1 cluster, Firmicutes in C2,
Actinobacteria in C3, and in the C4 cluster Proteobacteria and Verrucomicrobia phyla. As expected,
four (4/5) of the most abundant bacteria genera belonged to the Firmicutes, the dominant phylum in
the vast majority of individuals (98%). However, representative genera of the individual clusters were
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Bacteroides and Prevotella in C1, Blautia and Clostridium in C2, Bifidobacterium in C3, and Erysipelothrix in
the C4 cluster (Figure 4).

Several non-genetic variables, including demographic, lifestyle and environmental factors were
associated with fecal microbiome diversity in healthy individuals [20]. Regarding the relative index as
a measure of the variable importance in our SVM model, obesity measures (BMI, WHR, and visceral
fat index), blood pressure, total body water, and dietary variables (energy intake, total fat and olive oil
intake, total fiber intake, and water intake) were among first five in classifying subjects into clusters
(Table 2). A lower abundance of Bacteroidetes with a proportional increase of bacteria belonging to
Firmicutes phylum was observed in individuals with obesity [33], confirming our model since all three
measures of obesity are significantly higher for subjects in the C2 cluster. Moreover, the differences in
Firmicutes/Bacteroidetes ratio, which has great importance in the development of obesity, was shown to be
influenced by the grade of obesity [34]. It is clear that our model identified several previously reviewed
variables of gut microbiota, including blood pressure. Although only asymptomatic individuals
were included in our study, subjects in the C2 cluster had higher blood pressure in comparison to
subjects in other clusters (Table 3). In addition, 20% of the subjects in the C2 had two components
of the metabolic syndrome (large waist circumference and increased blood pressure). However,
only two out of five criteria for metabolic syndrome were measured in this study; fasting glucose
and lipids were not assessed. Therefore, it was not possible to determine how many patients met
the criteria of metabolic syndrome. Nevertheless, C2 was characterized by a significantly higher
Firmicutes/Bacteroidetes (F/B) ratio when compared to other clusters, supporting previous results, e.g.,
for hypertensive individuals [35]. Moreover, high blood pressure was associated with gut microbiota
dysbiosis, both in animal and human hypertension [36].

It is clear that the composition of the human gut microbiota fluctuates in response to the nutritional
composition of the diet through life [37,38]. Due to its geographical location, the dietary pattern of most
Slovenian people follows the guidelines of the Mediterranean diet. Accordingly, our result showed
that most of the participants (59%) had moderate or even high (11%) adherence to the Mediterranean
diet. Such dietary pattern consists of a high variety of vegetables and fruits, legumes and whole
grains, olive oil as a main source of fat and is coupled with moderate consumption of red wine [39].
Fiber, mono- and poly-unsaturated fatty acids, antioxidants, and polyphenols rich Mediterranean diet
has demonstrated beneficial modulation of the gut microbiota in humans as well as in experimental
animal models [40]. The last could also be observed on the basis of this study results since the
assignment of subjects in clusters is highly predictable by the consumption of dietary parameters
characterizing the Mediterranean diet (Table 2). MUFAs such as the oleic acid present in extra virgin
olive oil are among the main components of the “Mediterranean diet”. A recent systematic review [41]
showed that high-MUFA diets have no effect on richness/diversity indexes, phylum distribution,
or Bacteroidetes/Firmicutes ratio. However, at family and genera level, MUFA-rich diets could be
positively correlated with Parabacteroides, Prevotella, and Turicibacter genera and Enterobacteriaceae family,
and with a lower number of Bifidobacterium genus. In our model, olive oil intake was one of the most
important predictors for classifying subjects in C1 and C4, where subjects had significantly higher olive
oil intake and also a higher abundance of Prevotella.

By changing eating habits, the alternations in gut microbiota can be observed already after a single
day, while the animal-based diet was showed to have a greater impact than the plant-based diet [16].
Correlations between dietary consumption parameters (e.g., fried products, raw fruits, and fish) and
gut microbiome have previously been shown in the Milieu intérieur (MI) cohort—a population-based
study of 1000 healthy individuals of western European ancestry, evenly stratified by sex and age [42].
Among dietary consumption parameters of the present study, total fat intake was the most important
variable for classifying subjects into C3 with a score of importance 91.0, followed by 68.7 for C2,
64.0 for C1, and 60.5 as the C4 cluster predictor. Moreover, several studies described a decrease in
Bacteroidetes and an increase in Firmicutes and Proteobacteria phyla in response to high-fat diet (HFD),
specifically saturated fatty acids (SFAs) consumption [43]. In accordance, a higher abundance of
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Firmicutes was observed in C2, where subjects had statistically significant higher (p < 0.05) fat and
saturated fat intake when compared to C1, C4, or the C3 cluster (Table 3). Accordingly, there was also
a higher proportion of Blautia in C2 as it had already been shown before that high intake of SFAs was
positively associated with the abundance of that genus [44]. In accordance with the present results,
where a higher abundance of Bifidobacterium and Bacteroides and lower fat intake in C1 and C3 was
observed, the same pattern was recognized by a recent systematic review [41] in the case of low fat/high
carbohydrate diets in adults at increased risk of metabolic syndrome. The higher intake of total energy
and a higher amount of carbohydrates in the diet has also been associated with lower gut microbiota
diversity [12]. Furthermore, the growth and activity of preferred bacterial strains that can confer a
beneficial physiologic effect on the host can be selectively stimulated by the dietary fiber intake [45,46].
Regarding total fiber intake in this study, subjects in the C1 and C4 cluster were characterized by
higher values of fiber intake that was statistically significantly different when compared to C2 or the
C3 cluster subjects. Correspondingly, the dominance of Bacteroidetes phylum in C1 was in accordance
with previous studies showing an association of fiber and plant-derived polysaccharide-rich diet in
children and adults to gut microbiota enriched in Bacteroidetes [16,47].

The C1 was characterized also by a higher abundance of Prevotella compared to C3 and C2,
as shown before there was a positive correlation in fiber intake and this bacterial genus levels [48] and
reduced during consumption of the animal-based diet [16]. Moreover, the C1 cluster was characterized
by the lowest proportion of the Actinobacteria phylum, including low levels of Bifidobacterium genus,
also common for populations in which meat and/or dairy consumption is low to absent, such as
vegans [49]. On the other hand, the consumption of milk and milk products was significantly higher for
subjects in the C3 cluster, which correlates to the highest abundance of Bifidobacterium among clusters.
Dairy product consumption has widely been explored and was shown to increase the presence of
potentially beneficial bacteria, particularly, Bifidobacterium genus [50]. Among the first five variables
with the strongest prediction power, the water intake was also listed and was significantly higher
for subjects in C1 and C4 compared to C3 (Table 3). As shown before, quantitative or qualitative
changes in habitual water drinking habits can affect the abundance of several bacterial genera, whereas
the abundance of Bacteroides could be assigned to higher water consumption [51]. Surprisingly,
alcohol consumption and tobacco consumption were not among top-ranked variables. However,
this study’s subjects were healthy individuals with the mean age of 35.4 ± 7.0 years, and in principle,
most of them were not regular smokers or severe alcohol consumers. Nevertheless, the smokers of
the present study clustered almost equally in all clusters (data not shown). Such behaviors or health
status are however most often linked to a deviation of gut microbiota composition compared to healthy
individuals [52].

For mammalian hosts, vitamins are essential micronutrients obtained from the diet or through
the metabolism of commensal GI bacteria. In the present study, vitamins, A, B9, and E intake were
found among the first 15 strongest predicting variables of cluster classification (Table 2). All of them
were found to be crucial for the classification of subjects into the C3 cluster. Accordingly, in the C3
cluster, represented by a higher abundance of Bifidobacterium genus, subjects with a significantly lower
vitamin A intake were classified. As shown by Liu et al. (2017), vitamin A supplementation of children
with autism spectrum disorder resulted in significantly decreased Bifidobacterium [53]. Especially
for water-soluble vitamins (e.g., vitamin B family and vitamin C), it is important to consume a diet
containing the necessary amounts of these vitamins. There was a significantly higher vitamin B9 intake
for subjects in C1 and C3 compared to C2 or C4 (Table 3) supporting the research of bacterial richness,
and composition differed significantly by the consumption of folate and B vitamin group [54].

Nevertheless, gender, age, and sleeping hours were also among the first 15 most important
variables for classification; gender for C1, C2, and C3 clusters but not for C4; age for C3 and C4 clusters;
and sleeping hours for C3 cluster (Table 2). Both demographical variables were shown to be correlated
not only to microbial composition and diversity but also to functional richness [12]. The differences
in gut microbiota between males and females, such as higher levels of Bacteroides–Prevotella group



Nutrients 2020, 12, 2695 14 of 18

(Bacteroidetes phylum) in males [55] and a higher proportion of Firmicutes in females [34], were shown
before. However, due to the inter-individual heterogeneity of subjects, the results of studies describing
gender-related differences in gut microbiota have shown to be contradictory. In accordance with
Haro et al. (2016), a global pattern of the bacterial community tested by NGS Illumina platform
confirmed the lower abundance of Bacteroidetes in females as compared with males when BMI is
around 25 kg/m2 [34,56]. However, in the present study a heterogeneous group of lean, overweight,
and obese subjects were included, and in the C1 cluster where there was a greater abundance of
Bacteroidetes phylum, there was also the highest proportion of females (Figure 3).

Age-related changes of human gut microbiota, characterized by a different abundance of bacteria
in various age groups, have been shown [57–59]. Moreover, the multivariate unsupervised analysis
on genera abundance profile revealed the continuous aging progression of human gut microbiota
along with the host aging process [60]. Regardless of the narrow age group of our study, the youngest
participants were located in the C3 cluster. The last was represented also by the highest proportion
of Actinobacteria phyla, which is in accordance with a previous publication showing substantial
decrease of Actinobacteria relative abundance with age [58]. Although the data on the relationship
between sleep and gut-microbiome composition are scarce, a recent study found that total microbiome
diversity was positively correlated with increased sleep efficiency and total sleep time [61]. As shown
by Benedict et al. (2016), increased Firmicutes:Bacteroidetes ratio followed restricted sleep vs. normal
sleep [62]. Based on our study results, the increased abundance of Firmicutes was significant for the
C2 cluster where participants with the lower average sleeping hours were clustered.

According to other authors’ results [34,56], there are several factors that need to be taken into
consideration simultaneously when looking for variables linked to gut microbiota composition.
Therefore, our model shows a promising result while healthy individuals can be clustered on the
basis of gut microbiota composition, thus indicating different strong predictor parameters including
demographics, anthropometrics, lifestyle (especially dietary intake), and socio-economic status. As
the most prevalent predictors of all described clusters, measures of obesity (BMI, WHR, and visceral
fat index) and blood pressure were observed. As diet stands for one of the modifiable risk factors for
many non-communicable diseases, there is a high level of evidence supporting the efficacy of dietary
interventions for both influencing disease risk and improving disease outcomes. Nevertheless, there is
still an open window for studying micronutrition intake on gut microbiota that could have a potential
clinical/therapeutic implication in different non-communicable diseases.

5. Conclusions

The SVM model presented in this study was shown as a valuable tool to classify healthy
individuals based on their gut microbiota composition. Moreover, classification can be performed
by lifestyle parameters, such as measures of obesity and dietary consumption habits. Using a large
data set, this model could help us to predict the gut microbiota composition of a healthy individual.
However, there is a need for additional research work to investigate the accuracy of the presented
model in predicting gut microbiota of the most abundant genera and phyla on a larger group of
healthy individuals.
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