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mediate the TGF[ tumor suppressive effects
in human cutaneous melanoma
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Abstract

real time PCR and luciferase reporter assays.
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Background: Cutaneous melanoma is the most lethal skin cancer and its incidence in developed countries has
dramatically increased over the past decades. Localized tumors are easily treated by surgery, but advanced melanomas
lack efficient treatment and are associated with very poor outcomes. Thus, understanding the processes underlying
melanoma development and progression is critical. The Transforming Growth Factor beta (TGFR) acts as a potent
tumor suppressor in human melanoma, by inhibiting cell growth and preventing cellular migration and invasion.

Methods: In this study, we aimed at elucidating the molecular mechanisms underlying TGF3-mediated tumor
suppression. Human cutaneous melanoma cell lines, derived from different patients, were used to assess for cell cycle
analysis, apoptosis/caspase activity and cell migration. Techniques involved immunoblotting, immunohistochemistry,

Results: We found the leukemia inhibitory factor (LIF) to be strongly up-regulated by TGF@ in melanoma cells,
defining LIF as a novel TGF( downstream target gene in cutaneous melanoma. Interestingly, we also showed that
TGFB-mediated LIF expression is required for TGFf-induced cell cycle arrest and caspase-mediated apoptosis, as well
as for TGFB-mediated inhibition of cell migration. Moreover, we found that TGFp-mediated LIF expression leads to
activation of transcription of the cell cycle inhibitor p21 in a STAT3-dependent manner, and further showed that p21 is
required for TGF/LIF-mediated cell cycle arrest and TGFf-induced gene activation of several pro-apoptotic genes.

Conclusions: Together, our results define the LIF/p21 signaling cascade as a novel tumor suppressive-like pathway in
melanoma, acting downstream of TGF[3 to regulate cell cycle arrest and cell death, further highlight new potential
therapeutic strategies for the treatment of cutaneous melanoma.
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Background

Skin cancer is the most common type of cancer world-
wide, with an annual occurrence of almost 3 million
cases. Cutaneous melanoma is one of the most aggres-
sive and lethal human tumor, accounting for 75-80% of
skin cancer-related deaths [1]. Melanoma incidence has
dramatically increased over the past decades and it is
now the most common cause of cancer deaths among
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young people between the age of 20-35 [2]. Melanomas
have been classified into four clinical grades on the basis
of their histology and prognosis. Grade IV melanomas
are highly metastatic and refractory to conventional che-
motherapeutic and biological reagents. Most patients
have localized disease at the time of the diagnosis and
are cured by surgical excision of the primary tumor, but
melanomas can be highly malignant, and can metastasize
to various organs including skin, lung, liver, brain and
bone [2]. The fifteen-year survival for stage I melanoma is
85% whereas it is only 5% for stage IV melanoma. [1].
Melanoma display multifactorial etiology, yet its genetic
and immunological background have not been elucidated.
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Thus, understanding the molecular and signaling mecha-
nisms underlying melanoma formation and progression is
a prerequisite for the development of more efficient treat-
ments. At the molecular level, several signaling pathways
have been implicated in the control of melanoma tumor
formation, including the Ras-Raf-Mek-Erk cascade, which
often exhibits activating mutations in cutaneous malignant
melanoma [3]. Other signaling pathways potentially impli-
cated are PI3K/AKT, Wnt, NF-«B, Jnk/c-Jun, JAK/STAT
and TGF( [4]. Contrary to frequent BRAF mutations
which occur at a frequency of 50-80% [4], no genetic alter-
ations of TGFp signaling molecules have been identified
in melanomas that could explain their resistance [5].

TGEp signaling is initiated by the type II receptor (TBRII),
a constitutively auto-phosphorylated serine/threonine
kinase, which upon ligand binding recruits and transpho-
sphorylates the type I receptor (TPRI), thereby activating
its kinase activity [6]. Activated TBRI then phosphorylates
mediators known as receptor-regulated Smads (R-Smads),
Smad2 and 3, and allows subsequent heterotrimerization
with a common partner, Smad4 [7,8]. The Smad hetero-
trimer translocates to the nucleus where it can bind DNA
and regulate transcription, along with transcription fac-
tors, co-activators or co-repressors [6].

The role of TGFp in cancer is complex and ranges
from cell growth inhibition to regulation of cell migra-
tion and invasion [6,9,10]. In several types of cancer,
such as breast cancer, TGF[ exerts a dual role: while it
acts as a potent cell cycle inhibitor and a pro-apoptotic
factor in normal and premalignant states, these tumor
suppressive effects are lost in more advanced tumors
and replaced by tumor promoting effects leading to me-
tastasis [6,9-11]. In melanocytic systems, the role of
TGEp is different. While TGFB acts as a potent tumor
suppressor in normal melanocytes through the regula-
tion of the plasminogen activation system, it also inhibits
cell migration and cell invasion in melanoma of various
stages [12,13]. Regarding cell growth inhibition, it has
been reported that normal melanocytes in culture
are sensitive to the growth-inhibitory effects of TGEp,
whereas melanoma cell lines demonstrate various de-
grees of resistance to these effects [14,15]. However,
TGEP is perfectly capable of inducing Smad signaling
and Smad-dependent transcription in melanomas, sug-
gesting that desensitization to the anti-proliferative ac-
tivity of TGEP is highly specific to cell cycle progression
[12,16]. Also, several studies have shown an increased
expression and secretion of the TGEP isoforms in
melanoma cell lines compared to normal melanocytes,
suggesting that TGFp signaling is still active in these
cells [14,17-20]. While it seems that TGEP acts as a
potent tumor suppressor in melanocytic systems, the
TGEP tumor suppressive mechanisms have not been
thoroughly investigated in melanoma [21].
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Previous work from our lab showed that TGFf inhibits
human cutaneous melanoma cell migration and invasion
through regulation of the plasminogen activator system
[12]. We found by analysis of the transcriptome of two
human melanoma cell lines, WM793B (Vertical growth
phase melanoma, VPG, Stage I) and WM278 (VPG,
Stage II), that one particular gene, the leukemia inhibi-
tory factor (LIF), appeared to be strongly upregulated by
TGEP. Two previous studies have reported the induction
of LIF mRNA and/or protein by TGFf in Schwann cells
[22] and glioblastoma [23] and shown this upregulation
to be Smad-dependant by binding to a Smad binding
element in LIF promoter. LIF is a member of the inter-
leukin 6 (IL-6) family of cytokines, which includes IL-11,
IL-27 and Oncostatin M (OSM) [24-26]. LIF signals
through LIF receptor (LIF-R) which shares the gp130
subunit with other members of its class and which acti-
vates the JAK-STAT pathway [24-26]. LIF is expressed at
the embryo stage and in many adult cell types and has
been shown to be crucial for blastocyst implantation,
maintenance of hematopoietic stem cells, differentiation,
cell growth, inflammation, cachexia in animals, mam-
mary gland involution after lactation, neurogenesis, and
tissue regeneration [25,26]. Its role in cell growth is un-
clear as it was shown to both positively and negatively
regulate proliferation [24-26], suggesting that these ef-
fects may be tissue-specific. Promotor studies and CHIP
assays have shown that members of the LIF family such
as Oncostatin M and IL-6 upregulate p21 expression
through the Jak/STAT pathway, but this has not yet been
investigated in melanoma cells [27,28].

TGEP has been shown to regulate the expression of
p21, to suppress the expression of genes important for
cell cycle progression and to induce the expression of
genes important for senescence [9,11]. However, the role
of p21 in apoptosis is paradoxical and more investiga-
tions are needed [29-35]. Several studies have reported
that p21 was detected in primary melanomas and meta-
static lesions, while p21 levels were low or undetectable in
melanocytic nevi. p21 might play an important role in
melanoma progression, but the mechanisms are unknown.

In the present study, we aimed to understand the mo-
lecular mechanisms underlying TGEP growth inhibition
and apoptosis in human melanoma cells.

Methods

Reagents

Recombinant human TGFp and LIF were purchased from
Peprotech (Dollard des Ormeaux, Quebec, Canada).
Tissue culture medium RPMI1640 was from Hyclone
(Logan, UT, US). FBS, antibiotics (penicillin/streptomycin)
and Lipofectamine 2000 were from Life Science (Grand
Island, NY, USA). Antibodies against LIF, p15, p21, c-myc,
p-Stat3 (Tyr705), Stat3 and p-tubulin were from Santa
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Cruz Biotechnologies (Santa Cruz, CA, USA). Scrambled,
p21 and LIF siRNAs were from Sigma (Oakville, ON,
Canada). D-luciferin and Lumi-light plus were from Roche
Diagnostics (Laval, Qc, Canada). MMLV reverse tran-
scriptase and random primers were from Life Science
(Grand Island, NY, USA).

Cell culture
Cutaneous melanoma cell lines WM793B and WM?278
cell lines were isolated from the primary tumors of a
37-year-old male patient and a 62-year-old female pa-
tient and were kindly provided by Dr Louise Larose
(McGill University, Montreal, Canada). The WM278 cell
line harbors a V60OE mutation in the BRAF gene, and a
hemizygous deletion of PTEN. NRas and CDK4 are wild
type. WM793B cells are positive for a V6OOE BRAF mu-
tation and carry a W274X mutation as well as a hemizy-
gous deletion of PTEN. This cell line also has a mutation
K22Q of CDK4. NRas is wildtype.

Cells were cultured at 37°C in RPMI1640 medium
supplemented with 10% FBS and antibiotics under a hu-
midified atmosphere of 5% CO,.

Cell cycle analysis

Melanoma cells were plated in 24-well plates, serum
starved overnight, and treated or not with TGE-f (200
pM) for 24 hours in a medium containing 2% FBS. Cells
were washed in PBS and fixed in ethanol 70% for
2 hours. When ready for analysis, cells were resuspended
in a solution containing 50 pg/ml propidium iodide,
50 pg/ml RNAse A and 0.1% Triton X-100. Cell cycle ana-
lysis was measured using an Accuri C6 flow cytometer
(BD Biosciences, Mississauga, ON, Canada).

Quantitative real time PCR

Total RNAs were extracted with Trizol (Life Science,
Grand Island, NY, USA) according to the manufacturer’s
instructions. One pg of RNA was reverse transcribed
using M-MLV reverse transcriptase and random primers.
Amplification of cDNA was performed by quantitative
real time PCR (qPCR) (Bio-Rad iQ Sybr Green super-
mix, Mississauga, ON, Canada and RotorGene Corbett,
San Francisco, CA, USA). Human GAPDH was used as
a housekeeping gene. The qPCR conditions were: 3 mi-
nutes 95°C, then 40 cycles of 10 seconds at 94°C, 10 sec-
onds at 60°C and 20 seconds at 72°C.

Immunoblotting

Cells were lysed for 30 minutes at 4°C in RIPA buffer
(50 mM Tris-HCL pH 7.4, 150 mM NaCl, 1% triton
X-100, 1 mM EDTA, 1 mM EGTA, 1 mM DTT) supple-
mented with protease inhibitors (1 mM PMSE, 10 pg/ml
leupeptin and aprotinin and 2 pg/ml of pepstatin A). For
analysis of phosphorylation, 100 mM sodium fluoride,
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10 mM sodium pyrophosphate and 100 mM sodium
ortho-vanadate were added. For analysis of LIF ex-
pression, conditioned media were concentrated using
Amicon® Ultra-15 Centrifugal Filter Unit with Ultracel-30
membrane (Billerica, MA, USA). Total lysates or con-
centrated media were immunoblotted by SDS-PAGE
against specific antibodies. Immunoreactivity was revealed
by chemiluminescence using Lumi-light PLUS (Roche,
Mississauga, ON, Canada). Protein levels were quantified
by densitometric analysis (ImageJ software, http://rsb.info.
nih.gov/nih-image/).

Apoptosis assay

Melanoma cells were plated in 96-well plates, starved
overnight, then treated or not for 72 hours with TGFp
(200 pM) in medium supplemented with 2% FBS. Caspase
3/7 activity was measured by luminescence using Caspase
3/7 assay (Promega, Madison, WI, USA) according to the
manufacturer’s instructions.

Promoter-reporter constructs transfection and luciferase
assay

The p21-luc and p2linr-luc constructs were kindly pro-
vided by Dr Xiao Fan Wang. For transient transfection,
WM278 or WM793B cells were plated in 6-well dishes in
RPMI1640, 10% FBS (1-4 x 10° cells per well), and incu-
bated overnight. The next day, cells were transfected with
Lipofectamine reagent with 80nM siRNA. After 24 hours
cells were transfected with 1 pg of promoter-reporter con-
struct and 0.5 pg of Renilla luciferase construct per well.
The following day, cells were serum-starved in RPMI over-
night and cultured with or without 100 pmol TGF-f for
16 h. Cells were washed in PBS and lysed in 250 pl of pas-
sive lysis buffer (25 mM glycylglycine, 15 mM MgSO,,
4 mM EGTA, 1 mM DTT and 1% Triton X-100) on ice.
Supernatants were collected by centrifugation (12,000 rpm,
20 minutes, 4°C). Luciferase activity was measured in a
Fluostar Optima luminometer (BMG Labtech) using 45 pl
of cell lysate and D-luciferin. Firefly luciferase activity was
normalized to Renilla luciferase activity.

Immunohistochemistry

Tissue sections (5 um) from a melanoma microarray slide
(ME1004a, US Biomax) were stained for p-Smad3 and LIF
at the Goodman Cancer Research Histology core la-
boratory (McGill University, Montreal, Canada). LIF
staining was revealed using Bajoran purple chromogen
and p-Smad3 was developed using 3,3"-Diaminobenzidine
(DAB) staining. The staining was scored from 0 to 4,
where 0 means no staining while 4 means a strong
staining. Representative pictures were taken at 40X
magnification.



Humbert et al. BMC Cancer

Migration assay

Cells were plated on top of 24-well cell culture Trans-
well inserts (BD Biosciences, Mississauga, ON, Canada)
and stimulated or not with TGFp (200 pM) for 48 hours
after an overnight serum starvation. The bottom cham-
bers contained medium supplemented with 10% FBS as
a chemoattractant. The migratory cells located on the
filter of the bottom chamber were fixed for 10 minutes
in paraformaldehyde and stained with 0.5% crystal violet.
Images were taken using phase contrast light microscopy
and migratory cells were counted using Image] software.

Ethics and consent

This study did not require any ethics statement or any
written informed consent for participation from partici-
pants, as no participant, patient tissue samples but only
cell lines in culture were used in the study.
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Results

TGFp induces cell cycle arrest and apoptosis in human
cutaneous melanoma cell lines

We previously found TGEP to decrease cell viability in
multiple melanoma cell lines, isolated from different pa-
tients [12]. To further investigate the mechanisms by
which TGEp regulates cell growth, we analyzed its effects
on both cell cycle regulation and apoptosis. First, we an-
alyzed the cell cycle profile of two cutaneous melanoma
cell lines, WM793B and WM278, treated or not with
TGEP for 24 h. Following ethanol fixation of the cells
and propidium iodide staining, the cell cycle profile was
analyzed by flow cytometry. As shown in Figure 1A,
WM793B and WM278 responded well to TGFP showing
a significant induction of G1 arrest. These results
indicate that, while TGFB growth inhibitory responses
are lost in some melanomas, this growth factor still
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Figure 1 TGFp exerts strong growth inhibitory effects in various cutaneous melanoma cell lines. A, WM793B and WM278 cells were
treated or not with TGFf3 and their cell cycle distribution was analyzed by propidium iodide staining. Data is graphed as the mean of the
percentages of cells in each phase for at least 3 independent experiments. The error bars are the standard errors of the mean. For statistical
analysis the t-test was performed compared to the non-treated control (***p < 0.001, *p < 0.05). B, WM793B and WM278 cells were treated or not
with TGF(3 and apoptosis was determined by measuring the caspase3/7 activity. Data is graphed as the geometric mean of relative luciferase units
normalized to the non-treated control for at least 3 independent experiments. The error bars are the standard errors of the mean. For statistical
analysis the z-test was performed compared to the non-treated control (***p < 0.001).
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efficiently induces cell cycle arrest. We then analyzed
the TGEp effects on the regulation of apoptosis in these
melanoma cell lines. Briefly, melanoma cells were treated
or not with TGEp for 72 h and caspase 3/7 activity was
measured using a luminescent assay. Interestingly, as
shown in Figure 1B, TGEp significantly induced cell
death, indicating that it acts as a pro-apoptotic factor in
human melanoma and that its tumor suppressive effects
are mediated through both cell cycle arrest in the G1
phase and caspase-mediated cell death.

LIF upregulation by TGF is required for TGFB-mediated
cell cycle arrest and apoptosis

Transcriptome analysis of WM793B and WM278 cells
revealed that one particular gene, the leukemia inhibi-
tory factor (LIF), appeared to be strongly upregulated by
TGEFp (data not shown). This was further confirmed and
quantified at both mRNA and protein levels. As shown
in Figure 2A and B, TGFp potently induced LIF expres-
sion both at the mRNA and protein levels in WM793B
and WM278 cells, suggesting a role for LIF in mediating
the TGFp effects in melanoma cells. Both cell lines
showed a 5 to 6 fold increase in protein levels, as quanti-
fied by densitometry analysis. Our results highlight LIF
as a TGFP target gene in melanoma, suggesting that it
may play a role downstream of TGFp-mediated growth
inhibition in melanoma. As shown in Figure 2C, while a
control scrambled siRNA showed no effect, blocking LIF
expression was able to almost completely block the
TGEP effect on the induction of G1 arrest, indicating
that LIF plays a major role in the TGEpB-induced cell
cycle arrest. We then tested the effect of silencing LIF
gene expression on the induction of caspase-mediated
apoptosis by TGFp in WM278 cells. As shown in
Figure 2D, blocking LIF expression almost completely
inhibited the TGFp-mediated induction of apoptosis,
showing that LIF is required for TGFB-mediated apop-
tosis. Efficiency of the LIF siRNA knockdown was assessed
by qPCR (Figure 2E). These results highlight the involve-
ment of LIF in cell cycle arrest and caspase-mediated cell
death upon TGEp stimulation.

TGFp exerts its tumor suppressive effects in melanoma
through regulation of the cyclin-dependent kinase
inhibitor p21

To further understand how TGEFB/LIF regulate growth
inhibition in melanomas, we examined the expression
levels of several cell cycle regulators that have been
shown to be involved downstream of TGFp-mediated
growth arrest in other tissues. These include p1l5 and
p21 that were shown to be induced by TGFp [36-38]
and the oncogene c-MYC that was found to be down-
regulated by TGEp in keratinocytes [39]. We examined
the TGEP effects on the expression levels of these

Page 5 of 16

downstream mediators in WM793B and WM278 cells.
As observed by immunoblot analysis in Figure 3A, while
there was no change in the protein expression levels of
pl5 or c-MYC, TGFp significantly induced p21 protein,
suggesting that p21 may act as the main cell cycle
regulator downstream of TGFp in human melanoma. To
further address the role of p21 in these effects, we trans-
fected WM278 cells with a specific p21 siRNA or a
scrambled sequence as a negative control and examined
the TGEFp effects on cell cycle arrest. As shown in
Figure 3B, TGFp significantly induced G1 arrest in the
mock and scrambled siRNA conditions. However, when
p21 expression was silenced, the TGFp effect was com-
pletely abolished, suggesting that p21 not only is re-
quired downstream of TGFp to mediate cell cycle arrest
in melanoma cells but also plays a central role in the
regulation of these events. The efficiency of the p21
siRNA was demonstrated by Western blot, using a spe-
cific p21 monoclonal antibody (Figure 3C). p21 has also
been linked to the apoptotic process, however its exact
function remains unclear and controversial, as it was
shown to inhibit apoptosis in lymphoma cells [29], pri-
mary fibroblasts [30], and hepatoma cells [31], while it
promotes apoptosis in ovarian cancer cells [32], hepato-
cytes [33] and hepatocarcinoma cells [34], and thymocytes
[35]. Thus, we investigated whether TGFf-mediated p21
expression in melanoma cells was required for the me-
diation of the TGFp pro-apoptotic effects. As shown in
Figure 3D, silencing p2l expression with a specific
siRNA almost completely blocked TGFB-mediated caspase-
mediated cell death, defining a new role for p21 in mela-
noma as a pro-apoptotic factor. While the mechanisms
through which p21 regulates the cell cycle have been rela-
tively well documented, its effects on apoptosis are poorly
understood. In order to elucidate how p21 promotes apop-
tosis downstream of TGFp, we analyzed the expression of
several pro-apoptotic genes known to be regulated by
TGEFP (Bax, Bim, Bak and Apaf-1) [40]. As shown in
Figure 3E, TGFp induced the expression of all tested genes
in melanoma cells. However, using a RNA interference ap-
proach, while we found TGF(3-mediated Bax and Bim gene
expression to be p2l-dependent, regulation of Bak and
Apaf-1 by TGEP does not involve p21. This indicates that
p21 mediates some of the pro-apoptotic effects of TGEP by
inducing the expression of specific pro-apoptotic genes in
melanoma. Together, our results highlight p21 as an im-
portant regulator of both TGFB-mediated cell cycle arrest
and apoptosis in human melanoma.

LIF is required for TGFB-mediated p21 upregulation

Our results indicate that both p21 and LIF play an impor-
tant regulatory role downstream of TGEp in regulating
melanoma growth inhibition. Interestingly, Oncostatin M,
a member of the LIF family had previously been shown to
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Figure 2 TGFf mediates its effects through LIF regulation. A, WM278 cells were treated or not with TGFpfor 24 h and LIF expression was
analyzed by gPCR. Error bars are standard deviations and z-test was performed (***p < 0.001). B, WM278 and WM793B cells were treated or not
with TGF@ for 24 h and LIF expression was analyzed by Western blot (left panel) after concentration of conditioned media. 3-tubulin was used as
control. Right panel: Densitometric analysis of LIF protein levels. Error bars are standard errors of mean and t-test was performed compared to
non-treated control (***p < 0.001). C, WM278 cells transfected with scrambled or LIF SiRNA 48 h earlier were treated or not with TGF( for 24 h
and apoptosis was determined by caspase3/7 activity. Error bars are standard errors of mean and z-test was performed compared to non-treated
control (**p < 0.01, ***p<0.001). D, WM278 cells transfected with scrambled or LIF siRNA 48 h earlier were treated or not with TGF@ for 24 h and
apoptosis was determined by caspase3/7 activity. Data is graphed as the geometric mean of relative luciferase units normalized to non-treated
control for at least 3 independent experiments. Error bars are the standard errors of mean and z-test was performed compared to non-treated control
(*p < 001). E, WM278 cells transfected with scrambled or LIF siRNA 48 h earlier were treated or not with TGF{ for 24 h. LIF expression was analyzed
by gPCR. Data is graphed as the mean of fold induction of gene expression in response to TGFf3 for at least 3 independent experiments. Error bars are
the standard errors of mean and t-test was performed compared to mock and scrambled siRNA treated conditions (**p < 0.01).
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Figure 3 (See legend on next page.)

A WM278 WM793B
. . WM278 WM793B
TGFB - + - + I Ll 1
LIF e —— S50
£ 40 [ ] Non treated
p21 e e g M Treated with TGFB
£ 30
pls s —_— — g 2.0
e 10
c-MYC B - e 2
& 0
[] L IL 1 L IL 1
B-tubulin = e—— —_— « LIF  p21 LIF  p21
5100 Scrambled  p21 ~ 5 *
2 e Mock _siRNA _ siRNA 3~ E—
& g2 1
2 6 TGFp - + - + - + 5«213
S P21 § %
54 2z
2B B-tubulin £8 I—'
€ &
Z 0 0
Mock Scrambled — p21 Mock Scrambled — p21
siRNA siRNA siRNA  siRNA
[ INontreated [l Treated with TGFB
E Bax Bim
2,0 2,0
*
: — —
2
@ 1.5 1,5
2
S
>
o Lo 1,0
2
=
&) 0,5 0,5
0,0 0,0
Mock  Scrambled  p21 Mock  Scrambled — p21 ] Non treated
siRNA siRNA siRNA siRNA M Treated with TGFp
Bak Apaf-1
2,0 3.0
=] 2,5
£ 15
8 2,0
o
>
S 1,0 L5
(]
2
E 1,0
U 05
~ 0,5
0,0 0,0
Mock  Scrambled p21 Mock  Scrambled p21
siRNA siRNA siRNA siRNA




Humbert et al. BMC Cancer Page 8 of 16

(See figure on previous page.)

Figure 3 TGFf mediates its effects through p21 regulation. A, WM278 and WM793B were treated or not with TGF@ for 24 h and expression
of LIF, p21, p15, and c-MYC was analyzed by Western blot(left panel). B-tubulin was used as control. Right panel: Densitometry of LIF and p21
protein levels. Error bars are standard errors of mean and t-test was performed compared to non-treated control (***p<0.001). B, WM278 cells
transfected with scrambled or p21 siRNA 48 h earlier were treated or not with TGF for 24 h and cell cycle distribution was analyzed by propidium
iodide staining. Data is graphed as mean of percentages of cells in G1 phase for 3 independent experiments. Error bars are standard errors of mean
and t-test was performed compared to non-treated control (**p < 0.01, *p < 0.05). C, WM278 cells transfected with scrambled or p21 siRNA 48 h earlier
were treated or not with TGF for 24 h and p21 expression was analyzed by Western blot. 3-tubulin was used as control. D, WM278 cells transfected
with scrambled or p21 siRNA 48 h earlier were treated or not with TGF(3 for 24 h and apoptosis was determined by caspase3/7 activity. Data is graphed
as geometric mean of relative luciferase units normalized to non-treated control for at least 3 independent experiments. Error bars are the standard
errors of mean and z-test was performed compared to non-treated control (*p < 0.05). E, WM278 cells transfected with scrambled or p21 siRNA 48 h

scrambled siRNA treated conditions (*p < 0.05).

earlier were treated or not with TGF{3 for 24 h and gene expression was analyzed by gPCR. Data is graphed as mean of fold induction of gene
expression in response to TGF for at least 3 replicates. Error bars are standard errors of mean and t-test was performed compared to mock and

induce p21 expression in osteoblastic cells [27,28]. This
led us to investigate whether LIF could also regulate p21
gene expression, thereby linking LIF and p21 to TGEB-
mediated cell growth inhibition. We first assessed the link
between LIF and p21 by treating WM278 cells with LIF
and showed that LIF stimulation led to p21 upregulation
comparable to TGFp treatment (Figure 4A). To then in-
vestigate whether TGFB-mediated p21 gene expression
was LIF-dependent, we silenced LIF gene expression in
WM278 cells and analyzed the effect of p21 regulation by
TGFB on both mRNA and protein levels. While p21
mRNA and protein expression were upregulated by TGEp
in the mock and scrambled siRNA conditions (Figure 4B
and C), blocking LIF expression using a siRNA completely
blocked this effect, indicating that LIF is required for
TGFpB-mediated p21 upregulation. Furthermore, we found
this effect to take place at the transcriptional level, as LIF
gene expression knockdown using a specific LIF siRNA
completely blocked TGFpB-induced p21 gene promoter ac-
tivity. Indeed, as shown in Figure 4D, in WM278 and
WM793 cells transfected with the p21-luciferase reporter
construct (p21-luc) in the presence or the absence of a
scrambled or LIF specific siRNA, the TGFB-induced lucif-
erase activity was completely blocked when LIF expression
was knockdown. As LIF signaling is mediated through ac-
tivation of the transcription factor STAT3, and as the p21-
luc construct contains a STAT3 binding element [27], we
next assessed whether TGFB-induced p21 expression in
melanoma was STAT3-dependent. For this, we used a sec-
ond reporter construct (p2linr-luc) in which the STAT3
binding element has been removed [41]. Interestingly,
TGEFB was unable to activate the p21 gene promoter in
the absence of the STAT3 binding element (Figure 4D).
These results indicate that LIF and its downstream ef-
fector STAT3 are required for TGEp to induce p21 gene
expression at the transcriptional level. STAT3 is the major
effector of LIF and as shown in Figure 4E, stimulation of
WM278 cells with LIF rapidly induces phosphorylation of
STAT3. As we found TGEP to increase LIF expression
levels, we then investigated whether TGFp could lead to

STATS3 activation. As shown in Figure 4F, TGEp stimula-
tion of WM278 cells resulted in a significant increase in
STAT3 phosphorylation, thus indicating that STAT3 is a
downstream effector of the TEGP pathway in these cells.
Finally, to show that this increase in STAT3 activation by
TGEP was mediated through LIF, we treated WM278 and
WM793B cells with LIF siRNA and treated or not with
TGEP. As shown in Figure 4G, knocking down LIF
blocked the phosphorylation of STAT3 by TFGp, further
demonstrating that LIF is required for this regulation.

LIF is required for the anti-metastatic effects of TGF in a
p21-independent manner

We previously showed that TGEf is not only a tumor
suppressor in cutaneous melanoma but also acts as an
anti-metastatic agent, inhibiting both the migratory and
invasive properties of melanoma cells [12]. Recent litera-
ture showed that LIF-R is a metastasis suppressor in
breast cancer [42]. We thus investigated whether LIF
signaling might also play such a role in melanoma, by
regulating the TGFp-mediated inhibition of migration
and invasion. We thus aimed at determining whether
TGEB-mediated LIF gene expression could also mediate
the TGEP anti-migratory/invasive activities. For this, we
assessed cell migration using the Transwell assay, as pre-
viously described [12]. As shown in Figure 5A, TGEP
strongly inhibited cell migration in melanoma cells.
Moreover, treatment with LIF mimicked this TGEp ef-
fect, indicating that LIF, in addition to mediate the
TGEB-mediated growth inhibition, may also be involved
in the TGFpP anti-metastatic effects. This was confirmed
using a specific LIF siRNA: while a scrambled siRNA
showed no effect, blocking LIF expression significantly
inhibit the TGFp effect on melanoma cell migration by
about 60% (Figure 5B). We then assessed if p21 had a
role in this process using a specific p21 siRNA. Interes-
tingly, blocking p21 expression had no effect on migra-
tion, indicating that LIF mediates TGFp anti-migratory
activities independently of p21 (Figure 5B). Overall these
results demonstrate that LIF is not only involved in the
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(See figure on previous page.)

Figure 4 TGFf-mediated LIF upregulation regulates p21 expression at the transcriptional level. A, WM278 cells were treated or not with
TGFB and LIF for 24 h and p21 expression was analyzed by Western blot. 3-tubulin content was used as a control. B, WM278 cells transfected
with a scrambled or a LIF siRNA 48 h earlier were treated or not with TGF@ for 24 h and p21 expression was analyzed by gPCR. Data is graphed
as the mean of the fold induction of p21 gene expression in response to TGFR for at least 3 biological replicates. The error bars are the standard
errors of the mean. For statistical analysis the t-test was performed compared to the mock and scrambled siRNA treated conditions (*p < 0.05,
**p<0.01). C, WM278 cells were transfected with a scrambled or a LIF siRNA 48 h earlier were treated or not with TGF for 24 h and p21 expression
was analyzed by Western blot. 3-tubulin content was used as a control. D, WM278 and WM793B cells transfected with a scrambled or a LIF siRNA 24 h
earlier were transfected with the p21 luciferase reporter and the Renilla luciferase constructs, treated or not with TGF3 for 24 h, lysed and assessed
for luciferase activity. Data is graphed as the arithmetic mean of relative luciferase units normalized to Renilla luciferase activity for 3 independent
experiments. The error bars are the standard errors of the mean. For statistical analysis the t-test was performed compared to the non-treated control
(**p<0.001). E, WM278 cells were treated with LIF (100 ng/mL) or F, with TGF(3 for different period of times or G, with scrambled or LIF siRNA in the

presence or absence of TGF@, and phosphorylation of STAT3 was analyzed by Western blot. Total STAT3 content was used as a control.

tumor suppressive effects of TGFp but also in its anti-
metastatic activities, and that different pathways down-
stream of LIF are involved in these processes.

Low response to TGFB and low LIF expression correlate
with melanoma aggressiveness

Having highlighted the TGFpB/LIF pathway as a potent
tumor suppressor in melanoma, we then assessed the
clinical relevance of these findings. For this, we analyzed
phospho-Smad3 and LIF expression levels by immuno-
histochemistry in a tissue microarray consisting of 24
benign tumors, 56 malignant tumors, and 20 metastatic
melanomas. Phospho-Smad3 was measured as an indica-
tor of TGFp signaling activity in these tumors. As shown
in Figure 6, neoplastic cells in benign tumors showed
high levels of phosphorylated Smad3, indicative of high
TGEP signaling activities. However, phospho-Smad3
levels were reduced in malignant tumors and even fur-
ther diminished in the metastatic tissue samples. This is
consistent with previous findings showing that normal
melanocytes in culture are sensitive to the growth in-
hibitory effects of TGEP, whereas melanoma cell lines
demonstrate various degrees of resistance to TGFp in-
hibitory effects, proportional to the tumor progression
stage [14,15]. Interestingly, LIF expression levels exhib-
ited a similar pattern, showing very high levels of expres-
sion in benign tumors, with a progressive decrease in
malignant and metastatic tumors. These results indicate
that while the TGFpB/LIF signaling axis acts as tumor
suppressor pathway in the early stages of melanoma pro-
gression, it is partially disrupted in advanced stages, fur-
ther emphasizing its essential role in the prevention of
melanoma development and progression.

Discussion

As illustrated in Figure 7, in this study, we showed that
TGEP regulates cell growth in melanoma not only by
acting as a cell cycle inhibitor but also as a potent
inducer of caspase-mediated cell death. We further dis-
sected the intracellular mechanisms underlying these ef-
fects and found that the leukemia inhibitory factor (LIF)

plays a critical role in mediating these tumor suppressive
effects. Our results define LIF as a novel target down-
stream of TGEP in melanoma cell lines and indicate that
TGEFB-induced expression of LIF is a prerequisite for the
TGEB tumor suppressive effects, including cell cycle ar-
rest and apoptosis as well as the inhibition of cell migra-
tion. In addition, we found that the cyclin-dependent
kinase inhibitor p21 plays a significant role in mediating
both G1 arrest and apoptosis, but not cell migration
downstream of TGEB. Moreover, we found that TGEp-
mediated p21 gene expression can induce expression of
pro-apoptotic genes, such as Bax and Bim, leading to
cell death. Our study defines a novel regulatory pathway
mediated by the TGFp/LIF/p21 signaling axis that
controls tumor formation and tumor progression in
melanoma.

The role of p21 as a cell cycle inhibitor has been well
characterized in other tissues and cell types [37,43,44].
Through its amino-terminal CDK-cyclin inhibitory do-
main, p21 binds to both the cyclin subunit and the CDK
subunit of CDK-cyclin complexes, preventing them from
binding to p107, p130, and Rb, which are involved in cell
cycle progression. p21 also directly inhibits DNA syn-
thesis by disrupting DNA-polymerase binding to DNA.
Nonetheless, the exact function of p21 in regulating
apoptosis remains unclear and even controversial, as
both pro- and anti-apoptotic p21 activities have been
previously reported [45,46]. Many studies are indicative
of an anti-apoptotic role for p21 in different target tis-
sues. For example, p21-deficient lymphomas with a p53
deficient background showed a higher apoptotic rate
than p21-proficient lymphomas, indicating a protective
role for p21 against apoptosis [29]. Similarly, p21 deple-
tion in human embryonic fibroblasts was reported to in-
duce cell death in these cells [30]. In hepatoma cells,
p21 was found to bind caspase 3, thereby preventing
caspase activation and Fas-induced apoptosis [31]. In
addition, p21 was also found to inhibit stress-induced
apoptosis [47]. Indeed, p21 prevents stress-induced
apoptosis mediated by the JNK and p38 signaling path-
ways by binding to and inhibiting the activity of the



Humbert et al. BMC Cancer

Page 11 of 16

40 -
20 ' . i
0 T T T

TGFf LIF 100 LIF 500

Migratory cells (% non treated)
(=)
(=]

Non
treated

TGFB

Mock

Scrambled
sIRNA

p21 \
SIRNA

LIF
siRNA

= +

Figure 5 LIF mediates the TGFf-dependent inhibition of melanoma cell migration. A, WM278 cells treated with LIF (100 or 500 ng/mL)

or B, transfected with a scrambled or a LIF or a p21 siRNA 48 h earlier were plated in starvation medium on top of 24-well cell culture Transwell
inserts, stimulated or not with TGF{ for 48 h, and the migratory cells were labeled with crystal violet, photographed using phase contrast light
microscopy. A representative image is shown for each cell line (left panel). Migratory cells were counted using the ImageJ software and graphed
(right panel). Data is graphed as the mean of at least 3 biological replicates. Error bars are the standard errors of the mean. For statistical analysis
the t-test was performed compared to the non-treated mock condition (*p < 0.05).

120
=
2
(] 4 —
g 100 — i}
5 ]
S 80
S
> 60 -
Ei
40 -
o]
2
£ 20 1
.20
E 0 T T
Mock  Scrambled  p21 LIF
siRNA siRNA siRNA
O Non treated
®Treated with TGFp

J

MAP3K5 (ASK1; MEKKS5) in human rhabdomyosar-
coma cells [48] and by binding to JNK kinases, further
preventing their activation by upstream kinases [49]. On
the other hand, multiple reports have also documented a
pro-apoptotic role for p21. For instance, p21 overexpres-
sion in ovarian cancer cells was found to enhance

susceptibility to cisplatin-induced apoptosis [32]. Reports
showed that p21 could also facilitate deoxycholic acid-
induced apoptosis in primary mouse hepatocytes [33]
and ceramide-induced apoptosis in human hepatoma
cells [34]. Similarly, thymocytes from mice carrying a
p21 transgene targeted for restricted expression in the T
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which consequently induces p21 gene expression, which elicits its inhibitory effect on cell cycle progression. Moreover, p21 induces apoptosis in
a Caspase3/7 dependent manner. On the other hand, TGF3-mediated activation of LIF inhibits migratory behavior in melanoma cell lines. Taken

together, these results show the TGFB/LIF-mediated tumor suppressive role in melanoma.

cell lineage were found to be hypersensitive to radiation-
induced programmed cell death [50]. These studies sug-
gest that p21 can also act as a cell death inducer even
though the molecular mechanisms underlying these
effects are not fully elucidated. Altogether, these studies
highlight the fact that the role of p21 in regulating cell
death is clearly context-dependent. Our study indicates
that, in the context of human cutaneous melanoma, p21
acts as a potent pro-apoptotic factor. We also showed
that p21 acts downstream of the TGEFPB/LIF signaling
cascade and that it promotes caspase-dependent cell
death though induced-expression of pro-apoptotic mole-
cules, such as Bax and Bim.

Similarly, the role of LIF in cell growth regulation has
not been clearly established. Evidence shows that LIF
inhibits the differentiation of embryonic stem cells
to maintain their pluripotentiality [51] and positively

regulates the proliferation of germ cells, hematopoietic
progenitors, megakaryocytes, myoblasts, and neural cells
[52]. Conversely, LIF inhibits proliferation and induces
differentiation of leukemic myeloid cells [53], promotes
differentiation of adipocytes [54], cardiac muscle cells
[55], and cardiac stem cells [56]. Exogenous LIF was re-
ported to act as a growth factor for melanoblasts and me-
lanocytes [57], yet another study showed that LIF did not
exert any growth stimulatory effect in melanoma cells
[58]. Our results clearly indicate that LIF inhibits mela-
noma cell growth downstream of the TGEP signaling
pathway. We found that LIF mediates both TGFB-induced
G1 arrest and apoptosis in melanoma, indicating a tumor
suppressor-like role for this cytokine. This is also con-
sistent with previous reports indicating that LIF could in-
duce G1 arrest in medullary cancer cells [59] and retinal
microvascular endothelial cells [60]. In terms of cell death,
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LIF has been reported to induce apoptosis in mammary
epithelial cells [61], but was found to inhibit apoptosis in
other cell types, such as olfactory sensory neurons [62]
and myoblast cells [63,64]. Thus, similar to p21, LIF func-
tion as a regulator of apoptosis appears to be cell type-
and tissue-specific.

Mounting evidence show that increased nuclear pSTAT3
expression in various solid tumors, such as lung [65], breast
[66], head and neck [67], as well as thyroid [68,69], is corre-
lated with either reduced tumor size, reduced aggressive-
ness or enhanced survival outcomes thus pointing towards
a rather tumor-suppressive role of pSTAT3 in these
cancers. Our results support these findings and show that
that TGFB-induced LIF expression through activation of
STATS3 further leads to p21 gene transcription and TGFp-
mediated cell cycle arrest and apoptosis in melanoma.

Moreover, our study shows that in addition to its role
in mediating TGEP tumor suppressor effects, LIF also
acts downstream of TGFp to prevent tumor progression
by inhibiting cell migration, in a p21-independent man-
ner. This indicates that LIF is a major regulator of the
TGEp effects in cutaneous melanoma, not only relaying
TGFB-mediated cell cycle arrest and apoptosis but also
TGEP-mediated cell migration inhibition. Thus, our re-
sults define LIF signaling as a potent tumor suppressor
and as a potential suppressor of metastasis in human
melanoma. In fact, this is consistent with a recent study
showing that LIF receptor (LIF-R) also acts as a meta-
stasis suppressor in breast cancer [42]. In that context,
LIF-R acts downstream of the microRNA miR-9 but up-
stream of Hippo signaling [42]. The authors further
found that loss of LIF-R expression in non-metastatic
breast cancer cells induced a metastatic behavior. Con-
sistently, we show here that LIF itself also contributes to
prevention of tumor metastasis in melanoma, by media-
ting the TGFp inhibitory effects on cell migration.

Conclusion

Collectively, our results indicate that the TGFp/LIF/p21
signaling axis plays a major role in controlling tumor for-
mation and tumor progression in melanoma. Interestingly,
a recent clinical study from Tas et al., examining 60 pa-
tients with a pathologically confirmed diagnosis of mela-
noma, revealed that chemotherapy-responsive melanoma
patients have higher levels of serum TGFp compared to
chemotherapy-refractory patients [70]. Moreover, melan-
oma patients with high levels of serum TGEFp also showed
favorable overall survival compared to patients with lower
levels [70]. These findings are in agreement with our re-
sults showing that TGFp, via LIF/STAT3 activation, leads
to the suppression of the invasive phenotype in melanoma
and highlight TGFp as a favorable prognosis marker and
protective growth factor against tumor metastasis in hu-
man melanoma.
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