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ABSTRACT
Background Mutations in the RMND1 (Required for
Meiotic Nuclear Division protein 1) gene have recently
been linked to infantile onset mitochondrial disease
characterised by multiple mitochondrial respiratory chain
defects.
Methods We summarised the clinical, biochemical and
molecular genetic investigation of an international cohort
of affected individuals with RMND1 mutations. In
addition, we reviewed all the previously published cases
to determine the genotype–phenotype correlates and
performed survival analysis to identify prognostic factors.
Results We identified 14 new cases from 11 pedigrees
that harbour recessive RMND1 mutations, including 6
novel variants: c.533C>A, p.(Thr178Lys); c.565C>T,
p.(Gln189*); c.631G>A, p.(Val211Met); c.1303C>T,
p.(Leu435Phe); c.830+1G>A and c.1317+1G>T.
Together with all previously published cases (n=32), we
show that congenital sensorineural deafness, hypotonia,
developmental delay and lactic acidaemia are common
clinical manifestations with disease onset under 2 years.
Renal involvement is more prevalent than seizures (66%
vs 44%). In addition, median survival time was longer in
patients with renal involvement compared with those
without renal disease (6 years vs 8 months, p=0.009).
The neurological phenotype also appears milder in
patients with renal involvement.
Conclusions The clinical phenotypes and prognosis
associated with RMND1 mutations are more
heterogeneous than that were initially described. Regular
monitoring of kidney function is imperative in the clinical
practice in light of nephropathy being present in over
60% of cases. Furthermore, renal replacement therapy
should be considered particularly in those patients with
mild neurological manifestation as shown in our study
that four recipients of kidney transplant demonstrate
good clinical outcome to date.

INTRODUCTION
Mitochondrial disease is clinically and genetically
heterogeneous and often causes multisystem mani-
festations. Defects in mitochondrial protein

synthesis secondary to mutations in mitochondrial
tRNA synthetases, mitochondrial ribosomal pro-
teins and mitochondrial elongation factors are
increasingly recognised and identified through
next-generation sequencing.1 Mutations in the
RMND1 (Required for Meiotic Nuclear Division
protein 1) gene cause multiple mitochondrial
respiratory chain deficiencies and were first linked
to human disease in 2012.2 3 Recent findings
suggest that RMND1 plays an important role in
mitochondrial translation by anchoring or stabilis-
ing the mitochondrial ribosome near the site of
mRNA maturation.3 4

The clinical phenotypes associated with RMND1
mutations are expanding, ranging from a fatal, infant-
ile encephalomyopathy with lactic acidosis2 5 to a less
severe phenotype characterised by developmental
delay, congenital sensorineural deafness, hypotonia
and renal disease.4 6 In this study, we identified new
patients harbouring recessive mutations in RMND1
from several metabolic clinics and research centres
across Europe (UK, Ireland, Italy, Denmark, Spain
and Czech Republic) and the USA. We aimed to
describe the phenotype–genotype correlate and
determine the prognostic factors in survival by com-
bining all other previously reported cases.

SUBJECTS AND METHODS
Subjects
Clinical and laboratory data were collated using a
standardised data collection form. We also con-
ducted a literature review to ascertain previously
published cases, approaching respective authors for
additional data wherever required. This study was
performed in accordance with the World Medical
Association’s Declaration of Helsinki, research and
ethical guidelines issued by each of our institutions.

Mitochondrial histochemistry
For patients who underwent muscle biopsy,
oriented muscle blocks were subjected to cyto-
chrome c oxidase (COX), succinate dehydrogenase
(SDH) and sequential COX/SDH histochemical
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reaction to evaluate the numbers of COX-deficient fibres as a
marker of mitochondrial respiratory chain deficiency.7 The SDH
reaction was also used to determine the number of ‘ragged-blue’
fibres, whereby such muscle fibres exhibit increased levels of this
enzyme activity in the subsarcolemmal region. The same histo-
chemical studies were applied to study the cardiac and kidney
tissues.

Identification of pathogenic RMND1 mutations
The selection criteria of patients with suspected mitochondrial
disease for whole exome sequencing (WES) and the interpret-
ation of results have been described elsewhere.6 8 9 Sanger
sequencing was applied to verify the RMND1 mutations and
study segregation within the pedigree. Where the RMND1
mutation(s) were identified by candidate gene sequencing, the
coding region (11 coding exons) and intron–exon boundaries of
the RMND1 gene were amplified using M13-tagged primers,
and the resultant Sanger sequencing chromatograms were com-
pared with the RMND1 reference sequence (GenBank Accession
Number NM_017909.2). Ensembl was used to investigate
amino acid conservation of novel RMND1 variants.

Statistical analysis
Kaplan-Meier analysis and Cox-regression analysis were applied
to determine the survival and associated prognostic factors. All
analyses were performed using SPSS software (V.22.0) and sig-
nificance level (p value) was determined at ≤0.05 level.

RESULTS
Clinical phenotypes
The clinical features of 32 patients (male:female=12:20) from
21 pedigrees are summarised in table 1. Fourteen patients from
11 families (P1–P9, P10.1, P10.2, P11.1) are new cases; their
clinical details are provided in online supplementary
data 1. Authors from the previously published cases5 6 8 (P11.2,
P12–P18.2) also completed the case report form and provided
additional data for this study (P11.2, P12–P16, online supple-
mentary data 1). Clinical data were extracted from the literature
for the remaining eight patients (P19 to P21.5).2–4 10 The
frequencies of individual clinical features are outlined in table 2.

Antenatal and birth history
Oligohydramnios was identified in five pregnancies and polyhy-
dramnios was detected in one pregnancy. Intrauterine growth
retardation affected two pregnancies. All but three pregnancies
were full term (≥37 weeks) except P1, P3 and P20.2; the earliest
delivery (P3) was at 31 weeks gestation. Eight patients required
respiratory resuscitation at birth. One patient was stillborn at
34 weeks gestation (P21.5).

Neurological
The most common clinical features associated with RMND1
mutations were hypotonia (n=24, 75%) and global develop-
mental delay (n=24, 75%) followed by sensorineural hearing
loss (n=23, 72%) that was most frequently identified at neo-
natal hearing screening. Other common neurological features
that prompted medical referral and investigations were failure to
thrive (n=17, 53%), seizures (n=14, 44%), microcephaly
(n=13, 41%) and peripheral spasticity associated with central
hypotonia (n=6, 19%). Strabismus was detected in four patients
(P5, P6, P8 and P16) and two underwent corrective surgery.

Brain imaging was available for analysis in 22 patients, reveal-
ing abnormalities in 17 patients. White matter abnormalities
were identified in 14 patients, of whom four of them had

additional cystic changes in the cerebral lobe(s) (figure 1A–D).
Basal ganglia calcification was identified on CT head in three
patients. Acute ischaemic infarct involving the unilateral par-
ietal–temporal area was identified in one patient (P12). No
brainstem abnormalities were observed and five patients had a
normal cranial MRI.

EEG was available for review in 10 patients. The EEG
changes were non-specific with a variable degree of background
slowing and low amplitude being the most common findings
(n=6) and epileptic discharge was captured in four patients.
Three patients had febrile seizures (P4.1, P4.2 and P18.2) of
whom only one developed on-going epilepsy (generalised
seizure and myoclonus, P18.2). Infantile spasm was reported in
two patients (P1 and P8) though typical pattern of hypsarrhyth-
mia was not present in one of them (P8).

Metabolic derangement and renal involvement
Lactic acidaemia (2.2–29 mmol/L, normal range <2.2 mmol/L)
was documented in 20 patients (63%). CSF lactate level was
measured in seven patients and was generally lower (1.5–
5.9 mmol/L) than the serum lactate level except in one patient.
Renal involvement was evident in 21 patients (66%). The mani-
festations of kidney disease included different stages of chronic
kidney disease (CKD, n=17), arterial hypertension (n=15), per-
sistent hyponatraemia and hyperkalaemia (which were suggest-
ive of renal tubular acidosis type 4, n=13), dysplastic or
hypoplastic kidneys (n=8, figure 1E) and normocytic anaemia
(n=9). Hypouricosuric hyperuricaemia was identified in three
patients (P1, P7.1 and P7.2). Two patients had metabolic acid-
osis without evidence of lactic acidaemia (P7.1 and P7.2).
Urinary electrolyte levels were available in three cases, which
showed high urinary sodium and low potassium levels. Results
of short-synacthen test were available in two patients and were
normal. Tubulointerstitial changes were identified in three renal
biopsies.

Twelve patients developed end-stage renal failure (ESRF),
which was fatal for seven of them. Four patients (P5, P6, P18.1
and P18.2) have been treated with dialysis followed by renal
transplant.

Gastrointestinal
Fifteen patients were established on enteral feeding for failure
to thrive and/or dysphagia. Two patients had recurrent pancrea-
titis with a history of diarrhoea and abdominal pain (P1 and
P19). Abdominal ultrasound showed hyperechogenic pancreas
in two patients (P1 and P7.2). A patient who was born prema-
turely developed necrotising enterocolitis required laparotomy
and bowel resection (P3).

Cardiac
Hypertrophic cardiomyopathy/left ventricular hypertrophy was
identified in four patients (P2, P3, P6 and P19) and one patient
had dilated cardiomyopathy (P12). Congenital cardiac defects
including small ventricular septal defect (n=1) and patent
ductus arteriosus with pulmonary hypertension (n=1) were also
identified. Of the nine patients with a homozygous
c.1349G>C, p.(*450Serext*32) mutation, clinically significant
bradycardia (variable degrees of heart block, figure 1F) was
present in seven cases, of whom two required emergency
cardiac pacing (P10.1 and P10.2).

Other findings
Dysmorphic features or congenital abnormalities were identified
in 13 patients: bilateral equinus foot deformity (n=4),
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Table 1 Summary of all cases (n=32)

Patient Ethnicity
Onset/current
age (year) SNHL DD FTT MC Sz Tone Renal HTN Cardiac ↑ Lact

MRC deficiency
(muscle) RMND1 mutation (cDNA/aa change)

1 (F) Italian At birth/4 + + + + + C CD, RTA, ESRF, A + − + CIV c.713A>G p.(Asn238Ser); c.1303C>T p.
(Leu435Phe)

2 (M) Caucasian 0.17/10.4 + + − n.
s.

− C ESRF + HCM + CIV c.713A>G p.(Asn238Ser); c.565C>T p.(Gln189*)

3 (F) Irish At birth/*3.1 + + + + − Normal RTA, ESRF + HCM, PDA, PT + CI, CIV c.713A>G p.(Asn238Ser); c.533C>A p.(Thr178Lys)
4.1 (M) Caucasian 0.5/8 + + − − + C, P − − − − n.d. Homozygous c.713A>G p.(Asn238Ser)
4.2 (M) Caucasian At birth/6 + + − − + C, P − − − − n.d. Homozygous c.713A>G p.(Asn238Ser)
5 (F) Caucasian, native

American
At birth/9 + + + + + C, P CD, ESRF, Tx + − + n.d. Homozygous c.713A>G p.(Asn238Ser)

6 (M) European, Mexican At birth/7.67 + + + − − C CD, RTA, ESRF, Tx + Mild LVH + CI, CIII, CIV c.713A>G p.(Asn238Ser); c.1317+1G>T, p.?
7.1 (F) Caucasian 1/11 + + − − − Normal CKD stage 2, A − − MA n.d. c.713A>G p.(Asn238Ser); c.1250G>A p.

(Arg417Gln)
7.2 (F) Caucasian 1/8 + + − − − Normal CKD stage 3, A − − MA n.d. c.713A>G p.(Asn238Ser); c.1250G>A p.

(Arg417Gln)
8 (F) Caucasian At birth/3.75 + + + + + Normal RTA, CKD stage 4 + Normal + CIV c.631G>A p.(Val211Met); c.830+1G>A p.

(Met244Glyfs*20)
9 (M) Pakistan 0.11/*6 + + + + + C RTA, CKD + HB + n.d. Homozygous c.1349G>C p.(*450Serext*31)
10.1 (F) Bangladesh 0.3/*0.94 + + + − − C RTA, ESRF, A + Pericardial effusion,

HB
+ CI, CIV Homozygous c.1349G>C p.(*450Serext*31)

10.2 (F) Bangladesh 0.75/*3 + + +. − − C RTA, ESRF, A + HB and had PPM + n.d. Homozygous c.1349G>C p.(*450Serext*31)
11.1 (F) Pakistan 0.67/*1.33 + + + + − C CD (autopsy) − HB + n.d. Homozygous c.1349G>C p.(*450Serext*31)
11.2 (F) Pakistan 0.25/*1 + + + + − C RTA, A − Normal + CI, CIV Homozygous c.1349G>C p.(*450Serext*31)
12 (F) Pakistan 1.5/*6.67 + + + + − C CD, RTA, ESRF n.s. DCM − CI, CIII, CIV Homozygous c.1349G>C p.(*450Serext*31)
13 (F) Pakistan 0.5/*0.53 + + + + − C RTA + Small VSD, HB + CI, CIII, CIV Homozygous c.1349G>C p.(*450Serext*31)
14 (M) Pakistan 0.5/*5.8 + + + − − C CD, RTA, ESRF + HB + CI, CIII, CIV Homozygous c.1349G>C p.(*450Serext*31)
15 (F) Pakistan 0.08/*2 + + + + − C CD, ESRF n.s. HB − CI, CIII, CIV Homozygous c.1349G>C p.(*450Serext*31)
16 (F) Irish 0.11/*3.4 + + + + + P RTA, CKD stage 4 + − + CI, CIV c.713A>G p.(Asn238Ser); c.829_830

+2het_delGAGT p.?
17.1 (M) Sudanese At birth/*0.92 − + n.s. + + C,P − − − + CI, CIII, CIV Homozygous c.1250G>A p.(Arg417Gln)
17.2 (M) Sudanese At birth/*4 days − n.

s.
n.s n.

s.
+ C, P − − − + n.d. Homozygous c.1250G>A p.(Arg417Gln)

18.1 (F) Caucasian 1.17/17 + + + − − C Proteinuria, ESRF,
Tx

+ − n.d. CI, CIII, CIV c.713A>G p.(Asn238Ser); c.1003delG p.
(Ala335Leufs*2)

18.2 (F) Caucasian At birth/14 + + + − + C Proteinuria, ESRF,
A, Tx

+ − n.d. CI, CIII, CIV c.713A>G p.(Asn238Ser); c.1003delG p.
(Ala335Leufs*2)

19 (M) Caucasian At birth/*4.25 + + + − + C RTA, A, CD
(autopsy)

+ LVH + CI, CIV c.613G>T p.(Asp205Cysfs*4); c.713A>G p.
(Asn238Ser)

20.1 (F) n.s. 0.17/*1.08 n.s. n.
s.

n.s. + + C − n.s. n.d. + n.d. Homozygous c.1250G>A p.(Arg417Gln)

20.2 (F) n.s. Day 6/*0.42 n.s. n.
s.

+ + + C − n.s. n.d. + Low CIV in
fibroblast

Homozygous c.1250G>A p.(Arg417Gln)

21.1 (M) Saudi Arabian At birth/*1.5 n.s. n.
s.

n.s. n.
s.

+ C − n.s. n.d. + CIV Homozygous c.504+1G>A, p.?
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hypertrichosis (n=2), anteriorly rotated ears, tent mouth and
rocker bottom feet (n=1), inverted nipples and stellate irises
(n=1), developmental dysplastic hip (n=1), large anterior fonta-
nelle, small toes and small suboptimally curved pinna (n=1) and
a non-specific dysmorphic appearance (n=3). Five patients had
skin changes including hypopigmented lesions (n=2), pale and
doughy skin (n=1), pigmented skin rash in trunk and dry, thick-
ened skin (n=1), as well as intermittent cutis marmorata
suggestive of dysautonomia (n=1). Two siblings with hypopig-
mented lesions also had pili torti (P7.1 and P7.2).

Findings of muscle biopsies, fibroblast studies and other
tissues
Histopathological and histochemical description of muscle biop-
sies was available in 11 patients: variation in fibre size (n=4/6),
type I fibre grouping (n=3/6), increased lipid content (n=3/6),
ragged-red fibres (n=5/10) and COX-deficient fibres (n=8/9)
(figure 2A). None of the muscle biopsies showed inflammatory
changes. Measurement of mitochondrial (mt) DNA copy
number was performed in eight patients and it showed either
normal (n=6) or increased (n=2) mtDNA copy number.

Biochemical studies of muscle biopsy material were per-
formed in 17 patients; 7 had combined complex I, III and IV
deficiencies, 5 had complex I and IV deficiencies and 5 had an
isolated CIV deficiency.

Respiratory chain function was evaluated in cultured fibro-
blasts of nine patients. Normal respiratory chain activities were
identified in three patients, isolated complex IV deficiency was
present in five patients and only one patient had multiple
respiratory chain deficiencies.

Histochemical studies of postmortem cardiac and renal tissues
from P16 (figure 2D–I) revealed extensive COX deficiency.

Pathogenic variants in RMND1 gene
Thirteen pathogenic variants were identified of which seven had
been reported previously c.1349G>C, p.(*450Serext*32*);
c.713A>G, p.(Asn238Ser); c.829_830+2het_delGAGT, p.?;
c.1250G>A, p.(Arg417Gln); c.504+1G>A (aberrant splicing),
c.1003delG, p.(Ala335Leufs*2) and the remaining six were
novel: c.533C>A, p.(Thr178Lys); c.565C>T, p.(Gln189*);
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Table 2 Frequency of clinical features associated with RMND1
mutations (n=32)

Clinical features

Percentage

Present Absent Not stated

Neurological and developmental
Hypotonia 75 16 9
Sensorineural hearing loss 72 6 22
Developmental delay 75 – 25

Seizure 44 44 12
Failure to thrive 53 19 28
Microcephaly 41 34 25
Peripheral spasticity 19 56 25
Lactic acidaemia 62 19 19
Renal 66 34 –

Gastrointestinal 47 25 28
Dysmorphic appearance/
congenital deformity

41 28 31

Hypertension 47 25 28
Cardiac 38 41 21
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c.631G>A, p.(Val211Met), c.1303C>T, p.(Leu435Phe);
c.830+1G>A and c.1317+1G>T splicing variants (figure 3).
The p.Thr178, p.Val 211 and p.Leu435 variants are highly con-
served, supportive of pathogenicity. Three RMND1 mutations
(p.(*450Serext*32), p.(Asn238Ser) and p.(Arg417Gln)) were
identified in multiple families; the remaining nine mutations
were unique to individual families. The missense mutation
c.1349G>C, p.(*450Serext*32) was exclusively found in South
Asian ethnicities (seven Pakistani and one Bangladesh families),
while the c.713A>G, p.(Asn238Ser) variant was identified in 10
Caucasian families. All novel RMND1 variants have been sub-
mitted to ClinVar (submission ID numbers: SCV000258932—
SCV000258940).

Associated factors for survival
The median age of disease onset was 29 days (Q1=at birth,
Q3=0.5 year, range at birth to 1.5 years, P21.5 excluded from
analysis) and all of them presented before 2 years old; 20
patients were deceased with nine of these aged under 1 year.
The median survival time was 6.0 years for patients with renal
involvement (95% CI 2.8 to 9.2 years) but only 8 months for
those without renal disease (95% CI at birth to 1.4 years)
(log-rank test, p=0.009), as illustrated in figure 4.

The presence of renal disease (p=0.017) and later disease
onset (p=0.028) were associated with a longer survival (n=27,
five cases excluded due to incomplete data) using Cox regression
multivariate analysis (median duration of follow-up was

Figure 1 Radiological imaging. (A–D) Axial T2-weighted MRI head from P1. (A) There were prominent T2 hyperintensities in the white matter
suggestive of delayed myelination and (B) basal ganglia appeared normal at 6 months. Repeat imaging (C) showed improvement of the white-matter
abnormality but there were new, symmetrical changes in the basal ganglia (D) at 2 years old. (E) Renal ultrasound showed dysplastic kidney in P1.
(F) Twelve-lead ECG of P10.2 showed atrioventricular (AV) dissociation and bradycardia (heart rate 39 bpm).

Figure 2 Histopathological and
histochemical studies. (A–C) Skeletal
muscle biopsy from P2; (D–F)
postmortem cardiac tissue from P16;
(G–I) postmortem kidney tissue from
P16. Marked c oxidase (COX)-deficient
muscle fibres (c) and renal tubules (i),
lesser extent of COX deficiency in
cardiomyocytes was identified through
sequential COX/succinate
dehydrogenase (SDH) histochemical
reaction.
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3.4 years, range: 0.01–17.0 years). Seizure (p=0.066), hypo-
tonia (p=0.996) and gender (p=0.102) were not associated
with survival.

DISCUSSION
RMND1 encodes a protein composed of 449 amino acids that is
targeted to the inner mitochondrial membrane.2 It belongs to
the evolutionarily conserved sif2 family of proteins that share
the DUF155 domain.3 Recent studies have suggested that
RMND1 acts to anchor or stabilise the mitochondrial ribosome
near the sites of mRNA maturation, spatially coupling post-
transcriptional handling of mRNAs with their translation.3 4

Recessive mutations in RMND1 result in a generalised mito-
chondrial translation defect and multiple mitochondrial respira-
tory chain deficiencies.

The main findings of our study are as follows: (1)
hypotonia, developmental delay and congenital sensorineural
deafness are cardinal clinical features of this disease; (2) there
is a continuum of clinical phenotype and severity associated
with RMND1 mutations, ranging from, at the most severe
end, infantile encephalomyopathy with early death to
childhood-onset nephropathy associated with longer survival;
the oldest patient is currently 17 years; (3) while renal disease
progressed to ESRF in 12 patients, kidney transplant appears
to be helpful, with four patients remaining well without sig-
nificant progression of their existing neurological deficit fol-
lowing transplantation; (4) bradycardia has been observed
only in patients who harbour a homozygous c.1349G>C, p.
(*450Serext*32) variant, which likely represents a South
Asian founder mutation (eight families); (5) the c.713A>G,
p.(Asn238Ser) variant has only been identified in Caucasian
families (n=10), to date; (6) multiple respiratory chain defi-
ciencies were the most frequently identified biochemical
abnormality in muscle, although uncommon in patient fibro-
blasts, with abnormal respiratory chain activities being
observed in only one of eight patients.

Global neurodevelopmental delay affects more than
two-thirds of the patients. The delay in gross motor develop-
ment frequently occurs with the presence of hypotonia, which is
most likely mediated centrally. This is supported by the identifi-
cation of white-matter abnormalities in MR imaging,4 which is
suggestive of delayed myelination. In addition, five patients with
initial hypotonia subsequently developed peripheral hypertonia
and spasticity. Some of these clinical pictures and radiological
findings are similar to the congenitally acquired TORCH
(Toxoplasmosis, Other (Syphilis), Rubella, Cytomegalovirus and
Herpes Simplex Virus) infection,11 but this can be rapidly
excluded with serological testing. The language developmental
delay is, in part, confounded by severe sensorineural deafness
and correction with hearing aids or cochlear implants results in
some improvement. The degree of learning disability is variable
among the older patients, ranging from those with
mild-to-moderate disability and attending special school (P2, P6,
P7.1, P7.2, P18.1 and P18.2) to verbalisation of only a few
words at age 9 (P5).

Figure 3 Pathogenic variants in RMND1 gene (n=13). Six novel variants are depicted in red font.

Figure 4 Kaplan-Meier curves comparing survival between patients
with and without renal involvement. Censored data (represent the
number of patients that are still alive at their most recent clinical
review) are shown as crosses. The median survival time in patients with
renal involvement (green) is significantly longer than those without
renal involvement (blue), 6.0 years versus 8 months (log-rank test,
p=0.009).
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There are a number of clinical and biochemical features of
RMND1 mutations, for example, congenital sensorineural deaf-
ness, lactic acidaemia, hypotonia and multiple mitochondrial
respiratory chain deficiencies, which are also described in other
genetic causes of mitochondrial disease with renal involve-
ment.12 While this is true, clinical features are emerging that are
suggestive of a particular aetiology—our case series shows that
RMND1 mutations are associated with both renal tubular acid-
osis type 4 (hyponatraemia and hyperkalaemia) and cystic/hypo-
plastic kidneys. In contrast, recessive mutations in RRM2B are
associated with proximal tubulopathy (hyponatraemia and hypo-
kalaemia),13 while steroid-resistant nephrotic syndrome (glom-
erular disease) is more commonly associated with primary
coenzyme Q10 deficiency.14 Furthermore, normal mtDNA copy
number in RMND1 mutations is another important distinction
compared with the nuclear genes that are responsible for
mtDNA maintenance disorders such as PEO1, RRM2B and TK2.
The clinical presentation of RMND1 mutations may also mimic
HUPRA syndrome (hyperuricaemia, pulmonary hypertension,
renal failure in infancy and alkalosis) caused by mutations in
SARS2.15 However, pulmonary hypertension was only identified
in two of our patients, one had congenital heart defect (patent
ductus arteriosus, P3) and the other developed pneumothorax
at birth (P6) both of which would be risk factors for the devel-
opment of pulmonary hypertension. In addition, metabolic acid-
osis was prevalent among those with renal disease and transient
alkalosis was only identified in a patient (P1) who was negative
for SARS2 mutations.

RMND1 mutations should also be considered as an important
differential diagnosis to other inherited renal diseases, such as
recessive Bartter syndrome type 4A (OMIM #602522) or dom-
inant Familial Juvenile Hyperuricemic Nephropathy Type 2
caused by dominant mutations in REN (PMID: 19664745)
(OMIM #613092). Although there are some overlapping clin-
ical features, oligohydramnios, hyperkalaemia, arterial hyperten-
sion, mixed metabolic and lactic acidosis and significant
neurodevelopmental delay are useful, discerning clinical pointers
to RMND1-related mitochondrial disease.

In this study, we have identified six novel variants
(c.533C>A, p.(Thr178Lys); c.565C>T, p.(Gln189*);
c.631G>A, p.(Val211Met); c.1303C>T, p.(Leu435Phe); c.830
+1G>A and c.1317+1G>T splicing variants) in the RMND1
gene. The pathogenicity of these variants has highly likely given
the following evidence: (1) the clinical phenotypes are compat-
ible with the multisystem manifestation of mitochondrial
disease, and associated with characteristic histochemical abnor-
malities and respiratory chain deficiencies in the muscle; (2)
they affect highly conserved amino acids or are predicted to
truncate the RMND1-encoded protein; (3) they are not
common in a large number of ethnically matched control DNA
samples (most variants are entirely novel, being absent on both
ESP6500 and ExAC, with the exception of three rare variants—
c.713A>G, p.(Asn238Ser) [21/120 626 alleles on ExAC and 5/
12 982 alleles on ESP6500], c.1250G>A, p.(Arg417Gln) [1/
119 954 alleles on ExAC, absent on ESP6500] and c.1349G>C,
p.(*450Serext*31) [2/121 222 alleles on ExAC, absent on
ESP6500]); (4) the parents of these patients are carriers of one
variant and are clinically unaffected, thereby confirming segrega-
tion with disease, consistent with recessive inheritance.

Statistical analysis of genotype–phenotype correlations is
limited by the small number of patients. We observe that the
homozygous c.713A>G, p.(Asn238Ser) mutation cases (n=3)
and compound heterozygous c.713A>G, p.(Asn238Ser) and
c.1250G>A, p.(Arg417Gln) mutation cases (n=2) appear to

have a more benign disease course (all are still alive, aged
>6 years) compared with the other two groups; all patients har-
bouring either a homozygous c.1250G>A, p.(Arg417Gln) (n=4)
or homozygous c.504+1G>A splicing variant (n=5) died within
12 months from birth. Disparity in clinical prognosis was most
evident for those who harboured a homozygous c.1349G>C, p.
(*450Serext*32) mutation, as three patients died within
12 months while the oldest patient survived beyond 6 years. This
is difficult to explain in relation to RMND1 protein expression,
as this appears to be ubiquitous in all tissue types. Equally, why
only certain variants such as c.1349G>C, p.(*450Serext*32)
should be linked to bradycardia is also uncertain. Clearly, there
are a wide range of clinical features associated with RMND1
mutations, but the frequency of occurrence for each clinical
feature varies enormously, with hypotonia, developmental delay
and sensorineural hearing loss being the obvious exceptions.

In summary, the clinical phenotypes associated with RMND1
mutations are more heterogeneous than that were initially
described. We show that the congenital sensorineural deafness,
central hypotonia, developmental delay and lactic acidaemia are
cardinal clinical features associated with RMND1 mutations.
Regular monitoring of kidney function and blood pressure is
imperative in the clinical practice in light of nephropathy being
present in over 60% of cases. Furthermore, renal replacement
therapy including kidney transplant should be considered par-
ticularly in those patients with mild neurological manifestation
as shown in our study that four recipients of kidney transplant
demonstrate good clinical outcome to date.

STROBE statement: STROBE guidelines were adhered to in
the write-up and analysis of this observational, cohort study.
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