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The collection ofmedical data for research purposes is a challenging and long-lasting process. In an effort to accelerate and facilitate
this process we propose a new framework for dynamic aggregation of medical data from distributed sources. We use agent-based
coordination between medical and research institutions. Our system employs principles of peer-to-peer network organization and
coordination models to search over already constructed distributed databases and to identify the potential contributors when
a new database has to be built. Our framework takes into account both the requirements of a research study and current data
availability. This leads to better definition of database characteristics such as schema, content, and privacy parameters. We show
that this approach enables a more efficient way to collect data for medical research.

1. Introduction

Research studies that use retrospective medical data have
become a major source of contributions to the biomedical
science literature [1]. Clinical data repositories are promising
resources for the development of personalizedmedicine, clin-
ical trials, epidemiology, and public health [2]. Unfortunately,
the collection ofmedical data is notoriously time-consuming.
Data collection in one medical institution may take several
years [3]. In order to accelerate this process, or when required
data are diverse and cannot be collected on site, multiple
medical institutions may collaborate to aggregate the data.
However, distributed medical data aggregation is challenging
as it requires solving privacy and data quality issues, as well
as enabling interoperability between medical systems.

According to the data protection legislation in Europe
and US, collecting and sharing personal data require signed
consent from the patient to allow using data for research
purposes [4, 5]. Not all patients are willing to provide

a consent because of the sensitive nature of their medical
data. For example, if the data become publicly available
insurance companiesmay infer that a person is suffering from
a chronic disease and may refuse an application or reject the
renewal of their insurance policy. An employer may try to
infer healthcare information about potential employees and
based on the sensitive information (a serious health condition
or a chronic disease susceptibility) may discriminate the
candidate.

As an alternative to the consent collection, the data can
be anonymized to be used in clinical research [4, 5]. This
could be done by applying existing privacy protection mech-
anisms [6–9]. However, mobility of the patients and a will
or sometimes a necessity to visit more than one medical
institution can introduce another privacy threat. It has been
shown that in the case of the independent release of locally
anonymized datasets that contain information about the
same patients their reidentification is still possible (e.g., in
the case of a composition attack first described in [10]). In
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order to counter these privacy threats, several models in
the area of distributed privacy-preserving data publishing
have already been proposed (i.e., pseudonymization [6, 7],
secure multiparty computations [8], microaggregation [9],
and cloning [10]). However, those models can significantly
affect the quality and, therefore, the utility of data, since they
do not take into account data availability, content, structure,
and representation.

Both the structure and the representation of the health
data that need to be aggregated for the research purposes
depend on the requirements of a study. Therefore, it is not
possible to specify a unique static schema of the database that
will fit different clinical studies. In order to guarantee the data
utility and patients’ privacy, the database schema and privacy
parameters have to be adjusted based on the clinical study, for
which the database will be employed.

Building multiple databases for different research studies
is, for example, particularly relevant to one of the key con-
cepts of personalized medicine: therapeutic drug monitoring
(TDM) [11]. TDM transformed drug therapy by providing the
ability to characterize sources of variability in drug disposi-
tion and response to individualize drug dosing [12]. TDM is
based onmodels that allow the computation of the character-
istics of a particular drug based on the patient’s covariates. In
order to build these models, population healthcare data are
needed. The data requirements vary for different drugs and
populations (e.g., neonates or adults), and therefore multiple
databases need to be constructed.

We aim to develop a system that will connect researchers
and medical institutions and will allow them to collaborate
with each other. This paper presents a multiagent system
(MAS) for dynamic data aggregation in medical research.
We use agents as the problem requires a distributed and
autonomous system, where participants can join the network
and decide what to search for and what to share inde-
pendently from the other participants of the network. The
participants do not necessarily know each other and may
use different ways to structure their data. By representing
participants as autonomous agents in a distributed network,
we can then focus on defining all the mechanisms for
coordinating the participants to find each other and to share
the data in a meaningful way. The system (i) enables the
connection of research and medical institutions into a peer-
to-peer (P2P) network and (ii) provides an environment to
negotiate and define the characteristics of the database such
as schema, content, and privacy parameters based on the data
requirements and availability.

We evaluate our system using patients data collected in
the neonatal intensive care unit over 5 years within the frame
of a routineTDMprogram [3].The advantages of our solution
are the following:

(i) A research study can be conducted faster, as the time
needed to aggregate the required amount of data is
dramatically decreased in the case of using our system
with respect to the time needed for data collection in
a medical center.

(ii) Multiple databases (satisfying the requirements of
different research studies) can be shared between the

users of the proposed system: medical and research
institutions.

(iii) The sensitive nature of medical data is considered
during every step of data aggregation in order to
achieve trade-off between privacy and utility.

(iv) The system is “fair” in the following sense: if all users
participate in data aggregation, every user will be able
to gain access to approximately the same amount of
data as he/she contributes. It means that every user of
the system can benefit from the data collection. We
believe that this will motivate medical and research
institutions to join the system and participate in data
aggregation.

The rest of the paper is organized as follows. In Section 2.1,
we provide a use-case scenario and a general description of
our framework. In Section 2.2 we demonstrate dynamicity
of our system: we present in detail the process of P2P
network organization and the agents’ negotiation phase. We
also provide the necessary background about existing coor-
dination models we build our negotiation mechanism on. In
Section 2.3, we discuss privacy and security concerns. We
provide the description of the implementation and evaluation
results of the system in Section 3. In Section 4, we compare
our approach with the related work. We conclude and list the
directions of our future research in Section 5.

2. Materials and Methods

2.1.MASFramework. In this sectionwe showhowour system
could be used by medical and research institutions. We
also present the architecture of the system and describe
functionalities of its elements.

2.1.1. Use-Case Scenario. There is growing interest and a
strong need to share individual patient data for secondary
purposes, particularly for research [13].The system presented
in this paper will facilitate and accelerate the data sharing
and aggregation. We assume the following scenario. Users of
the system are research institutions and medical doctors or
healthcare institutions that possess the medical data. Users
may have the following goals: (1) to access anonymized
medical data and use them in particular research study
and (2) to contribute to the development of research by
sharing patient data. For simplicity we assume that there is
no economical competition between different research and
medical institution.

2.1.2. MAS Architecture. Figure 1 presents an architecture of
our multiagent system for dynamic data aggregation and its
components and their relationships with each other and with
the environment. It consists of a publish/subscribe broker
that serves as a lookup system and the nodes that represent
users of the system. Based on the user’s requirements, one
or several agents could be initialized by the node. Agents are
used at different stages of the process of building a research
database (RSDB) from distributed local sources (LDB), first,
to find the contributors to the database and, second, to adjust
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Figure 1: Architecture of the multiagent system.

the structure and representation of the data depending on
the requirements of a particular research question, current
availability of the data, and privacy considerations. These
steps require coordinating the participants, interactions, and
reasoning; therefore, we employ agent-based approach.

An RSDB is a database with anonymized data to be used
for research purposes. Each RSDB will be constructed taking
into account the requirements of a particular research study;
for example, in case of TDM this could be the concentration
measurements of a specific drug in the patient’s blood. The
information about already constructed RSDB (metadata of
RSDB) will be shared within the network; therefore, there is
no need to aggregate the data again if a similar research study
has to be conducted. A user will be notified if there exists a
database that satisfies the user’s requirements.

LDB contains patients’ data collected in a medical center.
This information will only be aggregated after coordination,
agreement on the characteristics of the database, and applying
privacy and security mechanisms. Metadata of LDB consist
of the information that describes medical data stored in LDB
and used to identify the potential sources for an RSDB. No
sensitive information can be shared during organization of
P2P network and agents coordination.

The nodes can interact with publish/subscribe broker
to either publish the availability of the data or make a

subscription based on the requirements of a research study.
If a new database has to be constructed we need to identify
the sources of the data and to connect them. For this we
use the publish/subscribe paradigm to discover the nodes
with relevant data instead of multicasting a request. More
information about the process of P2P network organization
is provided in the next section. Nodes can have access to their
LDBs and can use the functionality of the following mecha-
nisms: Query/Exchange Data and Negotiate. Query/Exchange
Data is used to publish and subscribe using the broker,
to query and exchange the metadata, and to transfer the
data to an RSDB. Negotiation mechanism is based on the
TuCSoN coordination model [14] and aims at adjusting the
characteristics of RSDB (e.g., the schema of the database,
required number of records to be collected, and privacy
parameters). We will focus on coordination between agents
in the next section. As a part of the negotiation process a
semantic agreement between schema of different databases
and different data representations needs to be established.
This is out of the scope of our work; we assume that existing
ontologies and schema matching solutions [15, 16] can be
employed.

To ensure authenticity, integrity, and anonymity of the
data that are being aggregated, we developed the following
modules: cryptographic module, anonymization module,
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Figure 2: Process of peer-to-peer network organization.

and degeneralization module. The functionalities of the
cryptographic module are (i) to create pseudonyms with
which the data about the patient will be uploaded to RSDB
and (ii) to generate the signature before data transfer in
order to ensure the authenticity and integrity of the data.
The anonymization module uses generalization algorithms
that allow replacing the exact values of the data with a range
within which these data fall. This guarantees k-anonymity
property in a distributed environment and therefore ensures
the data privacy.The algorithms are described in detail in [17].
Degeneralizationmodulewill be implemented to improve the
quality of the data with the growth of RSDB bymitigating the
data losses due to applying anonymization algorithms.

The dynamics of a system is characterized by constant
change, activity, or progress (https://en.oxforddictionaries
.com/definition/dynamic). The term dynamicity in the con-
text of complex open and distributed systems can be intu-
itively defined as the ability for a system to be configured,
developed, maintained, and modified at runtime, without
compromising its integrity and ongoing processes [18]. We
use the term dynamicity in the following sense. First, we
assume that the number of agents participating in the data
aggregation is not static: that is, an agent may join and leave
the network. Second, we use term dynamicity to specify that
there is no need to have fixed static description of the data
to be aggregated. It can be adjusted during negotiation phase.
Dynamicity allows one to accelerate data collection process.
Hereafter, we describe two main interaction processes: a
publish/subscribe mechanism, which helps agents to get
organized in a P2P network (Section 2.2.1), and negotiation:
a process that allows agents to find an agreement on the
data representation as well as security and privacy parameters
(Section 2.2.2).

2.2. Dynamicity of MAS

2.2.1. P2P Network Organization. We use a publish/subscribe
paradigm to organize the nodes in the P2P network. It allows
delivery of the data from their producers (publishers) to their
consumers (subscribers) in the distributed environment in
a decoupled fashion [19]. This means that publishers can
introduce the data into the system (publish/subscribe broker)
being unaware of the subscribers. Subscribers can register
their interests by subscriptions, which filter relevant events
to the subscribers. The broker enables publication of context
information by publishers, so that the relevant information
becomes available to subscribers.

The role of a publish/subscribe broker in our system is
to support dynamicity and to allow the node (i) to register
availability of a certain kind of medical information within
the network and (ii) to subscribe for a notification if a certain
type of information has been published. This is done to
avoid performing active discovery of peers or forcing the
publishing nodes to broadcast the network to demonstrate
data availability each time when there are new peers joining
the network. Figure 2 illustrates the P2P network organiza-
tion mechanism used in our framework. It shows how we
structure the messages that are used during the interactions
between the broker and the nodes.

After registering at the broker the node subscribes to
a certain type of data by specifying a set of keywords
(KW = [kw1, . . . , kw𝑛]) that describe the data the node is
interested in. Similarly, for a node that possesses the data, it
is sufficient to publish the description of the data using the
keywords. If the keywords match corresponding subscriber
will be notified by the broker and provided with the list of
the addresses of the nodes with relevant data available. The

https://en.oxforddictionaries.com/definition/dynamic
https://en.oxforddictionaries.com/definition/dynamic
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Figure 3: States of the negotiation process.

semantic description of the data has to be provided by the
users of the system. This is why we have chosen a simple
keyword approach. In the future work we plan to improve the
mechanism for P2P network organization.

2.2.2. AgentsNegotiation. Negotiation is a process initiated by
a node in order to obtain a certain number ofmedical records
to build an RSDB for a particular research study. It is followed
by the process of discovery of the nodeswith the relevant data.
Negotiation is built on interactions between agents within the
TuCSoN coordination model [14] that is happening through
tuple-centers (TCs). TCs can be seen as a shared system such
as blackboard system [20] where the information is being
exchanged in form of tuples.The templates of the tuples need
to be specified with respect to their structure. An ontology
model could also be employed to interpret the information
transferred by the tuples. We will describe the structures of
the tuples at different states of the negotiation below.

Using the tuple-center, an agent can, for instance, write
(out operation), read (rd operation), or consume (in oper-
ation) the tuples. Figure 3 presents a state diagram for the
negotiation process proposed in the paper and implemented
as a part of our framework. It demonstrates the states and the
transitions between them.

The node that initiates the process of data collection
creates a Negotiating Agent (host) to start the process of
negotiation. Next, the host creates a TC within its own node,
where the negotiation will take place. Once the TC has been
successfully created, the agent injects a script that controls the
state of the negotiation. The script is written using the first-
order logic language ReSpecT [21] and allows programing the
behavior of a TC.The following states are possible during the
negotiation process:

(i) Started. The host writes into the TC a tuple with
respect to the predefined template that consists of a
list of agents (𝑡1 = invited(AgentList)) that will be
invited to take part in the negotiation.When an agent

from the list arrives to the TC, it writes a tuple 𝑡2 =
hello(AgentId).

(ii) Active. When all the agents write the tuple 𝑡2, a
reaction that sets the state toActive is triggered.At this
stage, the node proposes the conditions of the negoti-
ation and the peers evaluate them using the rules. In
the case of building the database, the conditions could
be the schema of the database (attributes and their
ranges), number of records needed (𝑁), and privacy
parameters if required. A node writes the following
tuple specifying𝑚 attributes (attr), number of records
𝑁, and keywords:

𝑡3 = parameters (KW,
{(attr1,min1,max1) , . . . , (attr𝑚,min𝑚,max𝑚)} ,𝑁) .

(1)

Then, the conditions have to be evaluated by the other
nodes using rules; for example, the agent 𝐽 reads the
tuple from the agent 𝐼 and evaluates it as follows:

(KW𝐼 ⊂ KW𝐽) ∧ [(attr𝐼𝑝 = attr𝐽𝑝) ∧ (min𝐽𝑝 ≤ min𝐼𝑝)
∧ (max𝐽𝑝 ≥ max𝐼𝑝) , 𝑝 ∈ [1,𝑚]] ∧ (𝑁𝐽 ≥ 0) .

(2)

If the conditions are satisfied then the agent will write
the following tuple:

𝑡4 = answer (AgentId, �̃�) , (3)

where �̃� is a number of records an agent (with
corresponding AgentId) can contribute to the RSDB.
We provide an example of the tuples and conditions
that we used during evaluation in Section 3. A
threshold for the peers to respond is used to bound
the maximum duration of this state.
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(iii) Renegotiate/Failure. If the conditions of data exchange
proposed by the host are not accepted by one or more
peers, it is possible to either terminate the negotiation
by setting it into the Failure state and marking the
TC as reusable or set the state to Renegotiate. At this
state the list of participants could be changed, and
the peers can modify the parameters of the tuples.
Currently, acceptance of the terms is based on the
user engagement. When the Failure state is reached,
all agents terminate.

(iv) Success. If the terms are accepted by all the peer
agents, the data transfer occurs. When each
node finishes data transfer to the host, the host
marks the agent as finished writing a tuple 𝑡5 =
finishedAgent(AgentId). When all the agents from
the invite list have been marked as finished, Success
state is triggered, effectively ending the negotiation
process as all agents terminate when this state is
reached.

In the end of this process, either the host agent will obtain
a sufficient amount of data or it will be waiting for other
(or existing) peers to join the negotiation again to complete
aggregation of data. The host will be notified by the broker if
an agent publishes at the publish/subscribe broker informa-
tion about the availability of the data. Then the agent will be
able to join the negotiation process. The state will return to
Active, repeating this cycle until the host obtains the desired
amount of data.

For the sake of simplicity we do not present the structure
of all the tuples that we use tomodel the reactions in the cases
such as removing an agent from an active negotiation process
or changing the status of the negotiation process.

2.3. Data Security and Privacy. Hereafter we discuss privacy
and security requirements to the medical data before they
could be transferred in the case of distributed data aggrega-
tion for the research purposes. We also describe how we are
going to address the need for privacy and utility trade-off in
our system.

2.3.1. Need for Security and Privacy. In order to be sure that
the research database contains only veritable medical data,
it is very important to provide integrity and authenticity
of the data, that is, to insure that the data are correct, the
data source is a real medical institution, and it is possible
to recontact the doctor that provided the data (if needed).
Therefore, the certification authority needs to be deployed
and every time the data are sent to the research database
the use of digital signature [22] is required. These methods
are standardized, and their functionality can be provided
through the cryptographic module at every node.

As already mentioned it is impossible to have one fixed
data structure for different types of medical research. There-
fore, privacy-preserving mechanisms need to be adapted for
different datasets. In [23] authors proposed the notion of
k-anonymity: ensuring privacy by constructing a set of 𝑘
records indistinguishable in terms of QID quasi-identifiers,
a set of the attributes that can (in combination) identify a

person. This approach is based on applying generalization
functions to QID and suppression to uniquely identifiable
patients data. 𝑘-anonymity guarantees that the probability to
deidentify a person towhoma record belongs does not exceed
1/𝑘, where 𝑘 is the cardinality of the set of indistinguishable
records.

2.3.2. Privacy-Utility Trade-Off. Anonymization certainly
affects the data utility [24]; therefore it is of high importance
to be able to adapt privacy parameters taking into account
the format of the data that will be collected.The utility expec-
tations should be specified depending on the requirements
of a particular research question. And this will be base for
defining privacy parameters and the generalization functions
for each of the attributes from QID.

In our MAS the values of the privacy parameters can
be seen as one of the conditions specified by host based
on the utility expectations. Every contributor can propose
to modify the parameters during the process of agents
negotiation described in Section 2.2.2. In [17] we proposed
algorithms that allow the release of medical data for the
research purposes from different LDBs independently, while
preserving the anonymity property of RSDB. Generaliza-
tion rules are expressed as binary trees and are used to
achieve 𝑘-anonymity andmaximum utility without revealing
nonanonymized QID values to the system. We ensure that
given the consent of the patient caregivers will be able to
update RSDBwith the data about the patient without creating
multiple entries that correspond to the same person. Our
solution also relies on pseudonyms and provides a possibility
to recontact the patient through a caregiver that uploads the
data. This functionality can be used by an agent that can now
employ anonymization before making a contribution to the
RSDB.

2.3.3. Data Transfer. Before the data are transferred the
anonymization algorithms [17] are applied. This guarantees
that 𝑘-anonymity of RSDB is preserved, and, therefore,
patient privacy will not be violated. The data are transferred
using a separate web service. When a new RSDB is con-
structed, its metadata are sent to the broker and are kept
updated. This allows one to reuse the database if needed or
populate it withmore records, keeping the data consistent and
private.

3. Results and Discussion

In this section we provide the details about development
and virtualization environment that has been built in order
to implement the MAS described above. We describe the
datasets that have been used to evaluate consistency, per-
formance, and scalability of the system. The results of the
evaluation are discussed in Section 3.4.

3.1. Development and Virtualization Environment. For the
system development the Java language has been chosen based
on the following reasons: the programmingAPI of TuCSoN is
written in Java, a high-level language is required to program
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Figure 4: Virtualization environment.

the complex tasks the agents perform, and execution is
reasonably fast. The machine used for development runs
GNU/Linux, specifically, Xubuntu 14.04. The system runs on
top of a VT-x capable Intel XeonCPUwith 8 logical cores and
16GB of RAM.

To test the system, a virtualized environment was set up
with VirtualBox 5.0.1 used as virtualization engine. As shown
in Figure 4 the virtualization environment is comprised of
several virtual machines and a host-only network, which
isolated the virtual machines and the external network
environment to avoid unsolicited traffic interfering with
the virtualization environment. Outbound access from this
network was routed through a virtual machine hosting a
DHCP server and DNS server. All the virtual machines were
running with a KVM-compliant paravirtualization layer and
hardware-assisted virtualization through Intel VT-x. Virtual
machines running FreeBSD as guest OS had a Hyper-V layer
instead. Table 1 illustrates the setup of the virtualization
environment.

Table 1 shows the functionality and characteristics of
each virtual machine used in the implementation. One
has to notice that for the evaluation we deployed a single
MySQL instance into which each node operates using its own
database. In a real-life scenario, each nodewould have its own
storage backend located at each node.

3.2. Dataset. The dataset is comprised of two separate
databases, one with 8898 records (called Gentamicin large)
and a second one with the extended schema, contain-
ing more health information within 224 records (called
Gentamicin small), the database with 9122 medical entries
in total. The data has been collected in preterm and term
newborns treated with Gentamicin (an antibiotic) in the
neonatal intensive care unit at the University Hospital Center
of Lausanne and has been used both for the treatment and
later on for the research purposes in the framework of
the ISyPeM2 project (http://www.nano-tera.ch/projects/368
.php). The data had been previously statically anonymized
in the hospital as it is impossible to deidentify patients.
The attributes of a record are the following: a pseudonym
of the patient, body weight, gestational age, postnatal age,
gender, and various information related to the concentration
measurements of an antibiotic in the patient’s blood. Based
on the semantics of the data we annotated the dataset
with the following keywords: “Gentamicin” and, “neonates”.
The following attributes have been chosen: body weight
(BW), gestational age (GA), postnatal age (PNA), gender,
and concentration. We discarded some records that had
missing values corresponding to any of the attributes listed
above. This reduced the size of the resulting dataset to 8922
records.

http://www.nano-tera.ch/projects/368.php
http://www.nano-tera.ch/projects/368.php
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Table 1: Functionality and characteristics of virtual machines.

Name Functionality Guest OS CPU RAM Disk

VM Router
(router.virtualbox)

Routing traffic from the
virtualization

environment to the
Internet, hosting a

DHCP server and DNS
server

FreeBSD 10.1 x86 1 core 512GB 8GB

Orion Context
Broker Instance
(orion.virtualbox)

Hosting an instance of
the Orion Context

Broker

CentOS 6
amd64/RHEL 6

amd64
2 cores 4GB 20GB

TuCSoN Node
(tucsonX.virtualbox)

Representing a node in
the network (also

requires JRE 8 to run
Java code)

Debian 8 amd64 2 cores 1 GB 8GB

Database
(mysql.virtualbox)

Acting as a MySQL
server as a storage

backend for medical data

FreeBSD 10.1
amd64 2 cores 2GB 20GB

To diversify subscriptions and the data that the nodes
have we added some synthetic datasets annotated with the
keywords “Malaria”, “adults”, “cancer” with the attributes age
and gender.

3.3. Evaluation Scenario. To the best of our knowledge there
is no system to benchmark with since existing systems do
not provide the same functionality or work in different
environments (see Section 4 for comparison with existing
solutions). Therefore, we proposed the following evaluation
scenario. We first test consistency, performance, and scal-
ability of our system. Second, we would like to prove our
initial assumption that the system is “fair” meaning that an
agent that participates as a data provider can also obtain the
data it needs. And the more the system is used the closer to
the equality the amount of data an agent could provide and
obtain.

We defined a set of 20 hardcoded conditions that differ
from each other in values and combinations of body weight,
gestational age, and gender. For example, ({“Gentamicin”,
“neonates”}, {(“BW”, 2000, 3000), (“GA”, 38, 42), (“gender”,
any), (“concentration”, any)}, 6000) expresses the conditions
for the dataset containing 6000 records about neonates with
bodyweight between 2000 g and 3000 g, gestational age from
38 to 42 weeks, and any gender and any concentration value.

To test consistency we would like to compare the results
of using the same condition (selected randomly from the
predefined set) in the case of querying the database directly
(equally to 1 agent or to having data locally) and in the case
when the data are distributed between 3, 5, and 10 agents. We
make a realistic assumption that the number of participants
for populating one database would rather not exceed 10;
however, the number of data publishers is not limited by
our system. We assume that there is always 1 agent that acts
as a subscriber and all the other agents are publishers. The
subscribermay also possess the data andmake a contribution
to the database. We evaluate performance and scalability by
measuring the time of a system run, 𝑡run(𝑛), for different

number of agents, 𝑛, that are ready to provide the data. We
consider the running time as a time between the moment
when subscriber in P2P network receives the notification
about the data available and the moment of the dataset
creation.

We evaluate “fairness” of our system by estimating “gain”
and “loss” for every agent, participating in the data exchange
for different number of agents. We simulate the settings in
which every agent randomly selects a condition from the
predefined set and initiates the process of dataset creation.
We split the data randomly between 10 nodes: we populated
each node’s database with approximately 800 records. We
then calculated an average difference between the number of
records obtained and the number of records provided by a
single agent while using our system after different number of
runs. To avoid contingency we averaged out the results over
all the nodes participating in the data exchange.

3.4. Evaluation Results. As expected for each condition,
the numbers of records obtained from the databases from
distributed sources, including the database of the initiator,
always sum up to the number of cases obtained from the
querying database before splitting the data. Therefore there
is no data loss and the system is consistent.

The results obtained while evaluating scalability and
performance are presented in Table 2. Table 2 shows that
the system is scalable, and yet the time of the system run
increases with the number of agents; it does not exceed one
minute in the case of 10 agents. Important notice is that
before aggregation is possible, the data have to be available
locally: already collected by a medical center. Nevertheless,
our system significantly decreases the amount of time needed
to collect the required amount of data. Hereafter we compare
the time of data collection performed entirely on site (in
one medical institution) with the time needed to collect the
same amount of data using our system that allows connecting
𝑛 different medical institutions. We also discuss the results
presented in Table 2.
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Table 2: Evaluation of performance and scalability.

Number of agents, 𝑛 1 3 5 10
Time of a system run, 𝑡run(𝑛), sec 1.3 21.6 25.6 46.1
Time of local data collection, 𝑡loc,
months 60 — — —

Time of distributed data
collection, 𝑡dist(𝑛), months — 20 12 6

The required amount of data that need to be collected for
a specific research question can be expressed as a number
of records, corresponding to different patients, or in case of
TDM as a number of concentration measurements of a spe-
cific drug in the patient’s blood. (If we consider differentmed-
ical records we should take into account that the information
about the same patient can be stored inmultiple databases. To
avoidmultiple entries in the RSDB corresponding to the same
patient cryptographic and anonymization modules have to
be used.) Let us consider that we are interested in obtaining
𝐷 measurements. We can assume for simplicity that each
medical center or laboratory performs at least some certain
number of tests per month, 𝑟. Then the time 𝑡loc needed to
collect 𝐷 measurements in one medical institution can be
expressed as

𝑡loc = 𝐷𝑟 . (4)

If we have access to multiple data sources (𝑛 local databases)
then during one month there will be 𝑛 × 𝑟 tests available.
Therefore, we can define the time needed to obtain 𝐷
measurements from 𝑛 databases, 𝑡dist(𝑛) (taking into account
the time of a system run, 𝑡run(𝑛)). Then we can compare
it with the time 𝑡loc needed to collect the same amount of
measurements in one medical institution.

𝑡dist (𝑛) = 𝐷𝑛 × 𝑟 + 𝑡
run (𝑛) , (5)

𝑡loc
𝑡dist (𝑛) =

𝐷
𝑟 ÷ (
𝐷
𝑛 × 𝑟 + 𝑡

run (𝑛)) . (6)

Local data collection usually requires months, but as Table 2
shows the time of a system run, 𝑡run(𝑛), does not exceed a
minute up to 10 agents (𝑛 = 10). This allows us to simplify
(6), as 𝑡run(𝑛) is negligible compared to 𝑡loc:

𝑡dist (𝑛) ≈ 𝑡
loc

𝑛 . (7)

Equation (7) shows that the time required for distributed
data aggregation performed using our system, 𝑡dist(𝑛), is
approximately 𝑛 times less than the time 𝑡loc, needed for on-
site collection of the same amount of data, 𝐷. For example,
for the dataset we used for the evaluation collection of the
data in one medical institution took approximately five years
[3]. Using 10 sources of data, for instance, would allow one
to collect approximately the same amount of information we
used for the evaluation during half a year instead of five.
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Figure 5: Simulations.The graph shows how the difference between
the amounts of data provided and obtained by an agent changes with
the increasing number of system runs.

To show the “fairness” of the system the results of the
simulations with the 10 agents setup are shown in Figure 5.
We measured the difference between “gain” and “loss” for
every agent for the increasing number of runs. Negative
values indicate that after a number of runs an agent provided
more records than it obtained, while positive values show
the opposite. We noticed that some nodes do obtain or do
provide more cases than others, but on average the difference
is low. Furthermore, we can see that the average difference
between the number of records provided and the number of
records obtained during the use of the system decreases with
the increasing number of runs. Therefore, we have shown
that the more time the system is in use the closer it is to a
“fair” state, that is, when the difference between the number
of records provided and the number of records obtained by
an agent converges to zero.

4. Related Work

Comparative effectiveness research (CER) (https://www.nlm
.nih.gov/hsrinfo/cer.html) is the conduct and synthesis of
systematic research comparing different interventions and
strategies to prevent, diagnose, treat, and monitor health
conditions. In an effort to address a demand for an interin-
stitutional CER there have been new designs and imple-
mentations of informatics platforms that provide access to
electronic clinical data. Sittig et al. [25] provide an overview
of six platforms proposed as a result of collaborative work of
different organizations such as hospital systems, pharmacies,
healthcare players, and laboratory organizations.

Only one platform among six studied in [25] provides
publicly available data. However, this data can only be used
for the healthcare quality assessment. Another platform
described by Sittig et al. was presented in the survey at
its planning stage and we could not find any information
available. Four other solutions provide the platforms for the

https://www.nlm.nih.gov/hsrinfo/cer.html
https://www.nlm.nih.gov/hsrinfo/cer.html
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research projects to be conducted in collaboration between
selected medical centers on a study-by-study basis without
support of dynamicity. In this case access to the data is
granted only to the group of people involved in the particular
project only, with an exception for the project i2b2 [26] where
a deidentified training dataset can be accessed from the local
network of the organization hosting the platform.

Elger et al. in their work [6] provide an overview of
technical, practical, legal, and ethical aspects of secondary
data use and discuss their implementation in the multi-
institutional @neurIST project. In the framework of this
project the authors propose a strategy of federating data
sources in the clinical institutions for use in research and
in advancing clinical practice based on a real-life example.
The authors also list security vulnerabilities, including the
possibility of cracking the proposed pseudonym generation
mechanism, dependence on a trusted third party, and the
possibility of establishing indirect identification. However,
they do not provide any solutions to these problems. More-
over, this approach only allows using data in the framework
of a particular research project.

SciPort is a web-based collaborative biomedical data
sharing platform that has been proposed by Wang et al.
[27] to support data sharing across distributed organizations.
SciPort uses a central server based data sharing architecture
and provides collaborative distributed schema management
across distributed sites. Our solution is close to the approach
for sharing the data proposed in [27]; however, there are
following important differences. Negotiation phase of our
solution preceding the actual data exchange step allows the
nodes to agree on the common schema for a particular
database (instead of managing multiple schemas from dif-
ferent local servers). In our solution we minimize the use of
centralized approach, by only employing it for P2P network
organization (in contrast to sharing schemas through the
central server as in [27]).Therefore, if the broker is temporally
overcharged and is not available the peers can continue the
data aggregation process within P2P networks that have been
already organized. Finally, the authors do not discuss the
need for data pseudonymization or anonymization assuming
similarly to [6] that only the members of research consortia
can access the data [27].

Several studies have shown that patients are concerned
about their privacy, in particular in the case of medical data
sharing: 62% of individuals worry that their electronic health
records (EHR) will not remain confidential (Health Con-
fidence Survey 2008, Employee Benefit Research Institute);
35% expressed privacy concerns regarding the publishing
of their data to the database of Genotypes and Phenotypes
(dbGaP) [28]. Therefore, it is unlikely that patients will be
willing to share very detailed data as this can violate their
privacy.

Need for anonymization and sharing individual patient
data have been extensively discussed by the research com-
munity [4, 13, 29–31]. Several models in the area of dis-
tributed privacy-preserving data publishing have already
been proposed (i.e., pseudonymization [6, 7], secure multi-
party computations [8], microaggregation [32], and cloning
[10]). However, those models significantly affect the quality

and, therefore, the utility of data, since they do not take into
account data availability, content, structure, and representa-
tion.The authors in [31] discuss the trade-off between privacy
and utility of the data and the risks of breaking anonymity of
the data.They state that the risk assessment has to bemade for
every single situation of data collection. We put this in place
by allowing the peers to choose and negotiate the privacy
parameters separately for every database.

An approach for continuous privacy-preserving publish-
ing of data stream is presented in [33].The authors use R-trees
and allow the publication of data into the research database
only after performing microaggregation locally. Similar to
another approach based on two-phase microaggregation
proposed in [9] the authors do not present any algorithm that
allows the sources of data (medical institutions) to negotiate
and to find an agreement on the characteristics of the research
database (including anonymity parameters).

Release of only statistical data or providing only pos-
sibility to perform aggregation queries over the data as it
is proposed in [34, 35] can guarantee the patients privacy.
However, this may be not suitable for many types of medical
research. For instance, Bellika et al. presented an agent-based
distributed system for privacy-preserving statistical query
and processing of EHRs in [34]. The role of the system in
the proposed approach is to perform initialization and coor-
dination of the distributed computation components among
the sites participating in the computations. The advantage
of the approach is that information transformation between
information models for clinical use and statistical processing
can be avoided. However, this framework cannot be used
in the cases when the researchers need to access raw, not
preprocessed data, for example, when having just a result of
a query is not sufficient. Moreover, this approach does not
take into account the possibility that the data about the same
patient can be distributed between different sources (peers).
Also, in the case of statistical query the peers are required to
be always online and available to perform computations. In
our system it is not mandatory. The node could potentially
join the process of data aggregation if it is able to provide
the data according to the conditions established during the
negotiation phase.

Urovi et al. in [36, 37] proposed a secure mechanism
for EHR exchange over a P2P agent-based coordination
framework. In this approach the encrypted heterogeneous
data are exposed over a P2P network.The authors provide the
algorithms for searching and for publishing the EHRs in the
untrusted P2P network without compromising the privacy,
the integrity, and the authenticity of the shared data. Urovi et
al. covered data aggregation from the perspective of finding
the records of a patient. However, our focus is to create RSDB
with the data about different patients. We extend the work
of Urovi et al. by providing a way to collect the data about
different patients from multiple sources and anonymize the
patient’s identity so that, even if records are shared in RSDB,
the patients’ privacy is preserved. The dynamic creation of
RSDB was out of the scope in Urovi et al. In addition, we
define a negotiation process for which these data can be
aggregated dynamically. Nonetheless, the work of Urovi et
al. shares some of similarities to our own, notably the use
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of TuCSoN coordination model [14] for agents negotiation
phase.

MOSAIC [38] is a protocol for clinical data exchange
with multilateral agreement. This system had two elements
in commonwith our work: use of agents and a lookup system
for peers to exchange data with. MOSAIC was designed to
build research databases for private use, and thus, the data
privacy is not taken into account in the design of the protocol.
Moreover, it is also considered that the different institutions
would optionally require more medical data in exchange as
queries were made to them. As a result, contributor agents
could optionally set a number of medical cases of a certain
kind as a requisite, and other (petitioner) agents would have
to resolve the requisites imposed by the contributor agents.
This problem was solved through the use of multilateral
agreement between agents. This is different from our work
since we assume that medical institutions are willing to share
the data for research purposes on a volunteer basis, knowing
that secondary use of medical data can significantly enhance
healthcare experiences for individuals [6] without looking
for a certain profit but aiming at patient care improvement
in general. Finally, this system is not capable of building a
shared, anonymized research database.

5. Conclusions

We developed and implemented a multiagent system for
dynamic aggregation of medical data for research purposes.
The system allows facilitating and accelerating the process
of data aggregation and building a research database with
the possibility of updating it dynamically while preserving
the patients’ privacy. The data aggregation mechanism can
be adapted based on the research study requirement on
the fly. Negotiation between agents and data exchange have
been evaluated using patients data collected in the neonatal
intensive care unit over 5 years within the frame of a routine
TDM program [3].

Apart from the “mutual gain,” creating the datasets that
can be found and reused with respect to the requirements of a
study, evaluation results demonstrate that the more time the
system is in use the closer it is to a “fair” state, that is, when the
difference between the number of records provided and the
number of records obtained by an agent converges to zero.We
believe that using our MAS will not differ significantly from
the user point of view compared to using a single database.
However, the advantage of using the system proposed is that
it will offer access to more data, in a shorter period of time
and in a privacy-preserving way. Integrating the system in a
hospital environment for therapeutic drug monitoring is one
of the next steps of our future work.

In the future work we will continue with evaluation of
the generalization module that allows dynamic updates of
the research database without violation of patients’ privacy
including quantification of data privacy and data losses.
Currently we are developing an algorithm to improve the
utility of the data when the database grows without violating
the patients’ privacy. We also plan to develop reasoning
mechanisms to specify when the use of anonymization is

mandatory and how to choose the parameters for anonymiza-
tion.
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