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Performance of Multiple
Metagenomics Pipelines in
Understanding Microbial Diversity of
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Facility
Jason M. Wood, Nitin K. Singh, Lisa Guan, Arman Seuylemezian, James Nick Benardini
and Kasthuri Venkateswaran*

Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA,
United States

NASA planetary protection (PP) requires an assessment of the biological contamination
of the potential microbial burden on spacecraft destined to explore planetary bodies
that may harbor signs of life, like Mars and Europa. To help meet these goals, the
performance of multiple metagenomic pipelines were compared and assessed for their
ability to detect microbial diversity of a low-biomass clean room environment used
to build spacecraft destined to these planetary bodies. Four vendors were chosen
to implement their own metagenomic analysis pipeline on the shotgun sequences
retrieved from environmental surfaces in the relevant environments at NASA’s Jet
Propulsion Laboratory. None of the vendors showed the same microbial profile patterns
when analyzing same raw dataset since each vendor used different pipelines, which
begs the question of the validity of a single pipeline to be recommended for future
NASA missions. All four vendors detected species of interest, including spore-forming
and extremotolerant bacteria, that have the potential to hitch-hike on spacecraft and
contaminate the planetary bodies explored. Some vendors demonstrated through
functional analysis of the metagenomes that the molecular mechanisms for spore-
formation and extremotolerance were represented in the data. However, relative
abundances of these microorganisms varied drastically between vendor analyses,
questioning the ability of these pipelines to quantify the number of PP-relevant
microorganisms on a spacecraft surface. Metagenomics offers tantalizing access to
the genetic and functional potential of a microbial community that may offer NASA
a viable method for microbial burden assays for planetary protection purposes.
However, future development of technologies such as streamlining the processing of
shotgun metagenome sequence data, long read sequencing, and all-inclusive larger
curated and annotated microbial genome databases will be required to validate and
translate relative abundances into an actionable assessment of PP-related microbes
of interest. Additionally, the future development of machine learning and artificial
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intelligence techniques could help enhance the quality of these metagenomic analyses
by providing more accurate identification of the genetic and functional potential of a
microbial community.

Keywords: planetary protection, metagenomics, Spacecraft Assembly Facility, microbial diversity, low-biomass

INTRODUCTION

Planetary protection (PP) requires a periodic assessment of the
potential biological contamination for microbial burden of space
flight hardware destined to or nearby planetary bodies that may
or may not have harbored signs of life such as Mars or the
Icy Worlds of the outer solar system (COSPAR, 2011). Space
hardware exploring the possibility of life on a planetary body
of interest, such as recent missions to Mars, are required to
be cleaned to have less than an average of 300 spores/m2 on
spacecraft surfaces and less than 5 × 105 spores at launch
(Benardini et al., 2014). For future missions, such as Mars
Sample Return, in addition to limiting outbound contamination,
the science community has deemed it important to collect an
Earth-based assessment of the potential biological and organic
contamination that the hardware could have experienced as
part of the hardware integration and test operations (Beaty
et al., 2018). Upcoming missions to the outer planets and
the Icy Worlds, such as Europa Clipper, require less than
1 × 10−4 probability of contamination of the subsurface ocean
by Earth-based microorganisms (National Research Council,
2000). Currently, the NASA standard assay (NSA) is used to
test for spores on spacecraft, but this assay will not detect most
microorganisms (NASA., 2010). Heat tolerant microorganisms
(80◦C; 15 min) that can grow aerobically in a nutrient rich Tryptic
Soy Agar (TSA) medium, incubated at 32◦C, for 72 h are captured
by this NSA measurement, but slow growing microorganisms
that (i) prefer cooler or hotter temperatures, (ii) are obligate
anaerobes, (iii) or have dietary requirements not met by TSA may
not be detected by this NSA method.

Metagenomics has been identified as an alternative biological
verification technique to replace or supplement a culture-based
assay that NASA could potentially use to detect the widest
possible spectrum of microorganisms, including those of PP
interest. NASA is seeking to develop this technology to
demonstrate bioburden control assessments for enumeration of
relevant viable organisms or contamination risk assessment. In
doing so, this approach would likely include an enumeration,
phylogenetic identification, and high-resolution characterization
of microbial traits and biochemical capabilities from spacecraft
surfaces. Microorganisms such as those which are radiation
resistant, psychrophilic or anaerobic, etc., are likely to withstand
space flight conditions (launch to landing) and may be able to
survive on an extraterrestrial planet (forward contamination)
(Thompson et al., 2017). High throughput metagenomics
sequencing and bioinformatics pipelines have the potential to
rapidly identify most of the microbial diversity (Horneck et al.,
2012; Tamames and Puente-Sánchez, 2019) and to classify
those microorganisms into PP relevant categories, but are
not yet available.

The goal of this work is to test the ability of modern
metagenomics pipelines to enable NASA in defining new PP
requirements for detecting microorganisms on space hardware
for future life detection missions. Proven modern molecular
technologies are essential for NASA’s mission because none of the
techniques used to clean and sterilize spacecraft components and
subsystems (e.g., dry-heat sterilization, vapor hydrogen peroxide,
oxygen plasma, etc.) are compatible with fully assembled, modern
day spacecraft (Chung et al., 2008; Shirey et al., 2017). Hence,
hitch-hiking microorganisms associated with spacecraft must be
measured and characterized using modern molecular techniques
throughout assembly of the spacecraft. Techniques like 16S rRNA
gene cloning (1980s) (Pace, 1997), microarray (early 2000s)
(Vaishampayan et al., 2010), and targeted amplicon sequencing
(2010s) (Minich et al., 2018) were tried and utilized to measure
the widest possible spectrum of microorganisms associated with
spacecraft components, however, these molecular methods are
unable to characterize functional pathways which are essential for
identifying PP related microorganisms. Shotgun metagenomics
sequencing and analyses pipelines can detect, quantify, and
assess potential metabolisms of both cultivable and uncultivable
microorganisms (Singh et al., 2018).

To test the ability of various metagenomics pipelines to
detect the widest possible spectrum of microorganisms and of
relevance to the PP mission, four vendors (labeled C, J, L, and
N) were chosen to perform analyses of metagenomes generated
from surface samples collected at the Jet Propulsion Laboratory
(JPL) Spacecraft Assembly Facility (SAF) between March and
August, 2016, just prior to the beginning of assembly of the Mars
2020 rover, a bioburden controlled and sample return biological
contamination knowledge capture mission. These vendors are
affiliated with a private industry (Vendor L), national laboratory
(Vendor J), and academia (Vendor C, N), in the United States.
The SAF is a good test environment for this project because (i)
it is where Mars bound spacecraft have been assembled, (ii) it is
a critical cleanroom for projects where component to assembly
level integration and testing occurs, (iii) a rigorous cleaning
regime and bio-control ensures that surface samples are low
in biomass like samples from spacecraft surfaces, and (iv) it is
a good testbed where microorganisms of PP concern could be
detected and have been previously documented (Probst et al.,
2010; Vaishampayan et al., 2012). Each vendor implemented
their own metagenomics analysis pipeline and choose their own
sequence databases for comparison without our interference, but
all vendors were provided the same metagenomics sequence and
associated metadata.

To measure the effectiveness of each pipeline, various
requirements were considered. Quality control measures such as
adapter removal, filtering of human reads, and sequence length
and quality cutoffs were expected to be performed by each
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vendor. Control samples that displayed high or low similarity
with other samples were included in the dataset sent to each
vendor to test how controls were processed. Databases used
by each vendor were considered for their ability to detect
microorganisms of PP concern. The proportion of high-quality
sequences assigned an annotation is also important, as a more
comprehensive description of the sampled diversity clarifies the
PP risk presented by detected microorganisms.

MATERIALS AND METHODS

Description of Samples and Sample
Selection Criteria
Among more than 200 samples collected from the JPL SAF clean
room floors and control samples that were shotgun metagenome
sequenced (Hendrickson et al., 2017), 20 were selected for this
exercise (Table 1). These consist of handling and instrument
controls, which include two dirty samples (FC2; 872,202 reads
and MC2; 573,199 reads), and a clean sample (FC9; 5,471 reads).
Additionally, SAF floor samples containing <1 × 106 reads
(n = 2; Group L) and >1 × 106 reads (n = 15; Group H)
were included. Among samples containing >1 × 106 reads,
three consist of microorganisms relevant for PP (Actinobacteria,
Firmicutes, etc., Group H-F).

Sample collection and processing methods were previously
published (Hendrickson et al., 2017). Briefly, 1 m2 of floor
was wiped with sterile, pre-moistened 23 × 23 cm polyester
wipes (Texwipe; TX1009, Kernersville, NC, United States),
and placed in a sterile bottle containing 200 mL phosphate
buffer saline (PBS). The sample was mixed thoroughly, and
the resulting particulates and microorganisms suspended in the
PBS were concentrated with a CP-150 concentrating pipette
(InnovaPrep, Drexel, MO, United States). DNA was extracted
from concentrated samples using a Maxwell 16 (Promega,
Madison, WI, United States) and sequenced using Illumina
MiSeq (San Diego, CA, United States). Handling control
samples (pre-moistened polyester wipes waved in the air of
SAF) were also examined exactly like the SAF environmental
samples. Reagent controls were also included during DNA
extraction with the Maxwell 16 (well filled with PBS rather than
concentrated sample).

Metagenome Sequencing
Shotgun metagenome sequencing was carried out as described
previously (Singh et al., 2018; Avila-Herrera et al., 2020).
Briefly, DNA libraries were prepared for sequencing using the
NextEra DNA Library Preparation Kit (Illumina, Inc., San Diego,
CA, United States). Quality and fragment size were assessed
on the Agilent Tapestation 4200 (Agilent Technologies, Santa
Clara, CA, United States). Libraries were quantitated using
the Qubit fluorimeter (Thermo Fisher Scientific, Waltham,
MA, United States) and normalized to equivalent DNA
quantities, pooled, and diluted according to the manufacturer’s
standard recommendations. Shotgun metagenomic sequencing
was performed using an Illumina NextSeq 500 with the NextSeq
Series High Output Kit v2 (Illumina Inc., San Diego, CA,

United States), using 150 base pair, paired end reads. Fastq files
are generated from the sequencing results using the bcl2fastq
software (Illumina) and given to vendors.

Taxonomic and Functional Assignment
Each vendor was asked to perform their own taxonomic and
functional assignment for all metagenomic reads provided to
them using their preferred pipeline. Each vendor used different
methods for quality control (QC) and classification of sequence
data, used different databases for taxonomic and functional
annotation. Detailed descriptions of the methodologies of each
vendor are provided below.

Vendor L Methods
Quality Control
To support multiple platforms, metadata included in the read
files are analyzed to determine the appropriate QC pipeline
and threshold settings. Settings are persisted to the database
(for default values) and GUI support is implemented to allow
users to enter custom threshold values for subsequent steps. An
executable binary file is constructed and launched as either a
parallel worker thread or parallel executor (Spark support) to
construct an interactive HTML5 compliant page. This page is
served to the user through workflow support in the GUI. Low
quality reads are removed and cataloged (metadata to RDS)
according to user-selected values.

Read Pairing
For sequencing technologies and protocols that support paired
reads, similar sample paired read files are merged leveraging
proprietary merge packages implemented in Java. Output is
directed to a file system and file paths are persisted in the database
allowing for simple GUI navigation.

Adapter Prediction
For paired reads that do not include known inserts and
adapter sequences, the paired reads are run through a predictive
algorithm. Metadata is pulled from the proprietary algorithm and
persisted in the database.

Trimming
Merged paired reads are trimmed by either the known sequence
input, or the predicted adapters that can be optionally generated.
Trimmed, quality control screened files are then used in
subsequent analysis using TrimGalore Version 0.6.51.

Phylogenetic Analysis
High-throughput BLAST servers were set up on GPU-based
AWS Elastic Cloud Compute (EC2) instances to support a high-
throughput parallel read blast. Each individual read was mapped
against libraries of known microbial genome assemblies. Reads
that meet either default or user set thresholds can be aligned with
all known microbial genomes and depending on similarity score
can be assigned a taxonomic identification.

1https://github.com/FelixKrueger/TrimGalore
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TABLE 1 | Characteristics of samples analyzed.

Vendor L Vendor J Vendor C Vendor N

Sample Group Location Sample
Type

Date of
Sampling

Total number of
raw reads

QC Reads1 Taxonomically
Classified
Reads2

>1%3 QC Reads1 Taxonomically
Classified
Reads4

>1%3 QC Reads1 Taxonomically
Classified
Reads5

>1%3 QC Reads1 Taxonomically
Classified
Reads6

FC2 Control Field
Control

Air of SAF 15-March-2016 872,202 74,023 338 332 320,075 9,263 9,163 41,880 9,911 9,705 15,726 N/A

FC9 Control Field
Control

Air of SAF 12-July-2016 5,471 232 – – 704 44 9 401 44 44 83 N/A

MC2 Control Maxwell
Control

Extraction
Control

15-March-2016 573,199 129,426 923 893 290,218 81,808 30,287 118,891 58,717 57,179 100,730 N/A

S14 L L6 Floor of
SAF

15-March-2016 529,438 108,702 225 222 259,750 31,984 2,669 101,610 4,406 3,813 77,363 N/A

S99 L L11 Floor of
SAF

26-July-2016 427,481 2,671 12,223 7 10,932 2,653 1,894 432 2,564 194 194 2,544 N/A

S12 H L2 Floor of
SAF

15-March-2016 1,097,438 787,877 1,108 1,061 869,207 267,667 48,750 564,322 59,647 45,850 676,490 N/A

S16 H L5 Floor of
SAF

15-March-2016 1,205,398 862,588 4,030 3,896 954,606 604,825 100,850 823,471 270,698 260,492 754,851 N/A

S17 H L9 Floor of
SAF

15-Mar-2016 10,647,036 9,726,824 26,421 25,298 9,782,262 1,176,911 108,555 9,733,552 502,672 458,315 8,680,384 N/A

S18 H L13 Floor of
SAF

15-March-2016 1,254,780 858,915 2,028 1,938 974,280 389,330 85,782 829,518 126,622 112,610 743,226 N/A

S20 H L10 Floor of
SAF

15-Mar-2016 2,001,909 1,584,542 4,593 4,371 1,644,129 1,001,993 240,780 1,535,396 283,615 205,900 1,305,244 N/A

S41 H L1 Floor of
SAF

17-May-2016 3,329,331 2,857,079 4,886 4,641 2,811,738 519,088 63,155 1,346,708 93,215 67,717 2,639,304 N/A

S42 H L10 Floor of
SAF

17-May-2016 2,726,783 2,212,223 3,793 3,497 2,208,614 803,127 68,856 1,261,498 204,248 153,587 2,056,000 N/A

S43 H L8 Floor of
SAF

17-May-2016 17,258,784 15,574,766 27,828 25,42715,455,888 4,682,775 464,34814,069,392 1,328,792 1,111,90114,659,904 N/A

S44 H L12 Floor of
SAF

17-May-2016 1,335,957 1,104,044 1,310 1,291 1,099,278 312,955 46,684 729,636 56,630 43,348 1,025,038 N/A

S45 H L10 Floor of
SAF

17-May-2016 2,369,108 1,948,423 2,274 2,174 1,940,897 549,588 59,777 1,549,155 146,026 103,581 1,809,578 N/A

S57 H L5 Floor of
SAF

1-June-2016 2,661,331 2,319,103 8,192 7,743 2,317,306 1,205,865 238,697 2,166,598 218,332 147,781 2,189,283 N/A

S108 H L9 Floor of
SAF

16-August-
2016

2,150,195 2,090,570 5,759 5,632 2,068,840 1,316,931 151,302 2,063,778 463,731 354,047 2,005,116 N/A

S29 H-F L10 Floor of
SAF

30-March-2016 4,117,535 3,477,442 21,199 19,808 3,568,720 2,324,729 316,881 3,229,576 1,996,816 1,926,851 3,050,205 N/A

S30 H-F L1 Floor of
SAF

30-March-2016 3,592,661 3,220,908 11,982 11,388 3,243,095 2,487,003 405,394 3,209,450 2,106,955 2,028,611 2,846,917 N/A

S76 H-F L5 Floor of
SAF

28-June-2016 14,027,039 12,697,322 5,797 5,418 12,636,003 1,332,390 136,86512,709,423 251,337 211,846 12,079,811 N/A

Groups includes all control samples (n = 3), group [L]ow includes samples <1 × 106 reads (n = 2), and group [H]igh includes samples >1 × 106 reads (n = 15). A subset of group H, group H-F, includes samples known
to be abundant in Actinobacteria and Firmicutes. 1Quality Control pipelines are detailed in section “Materials and Methods”. 2Proprietary pipeline of Vendor L. 3Low abundance taxa (<1% of a library) were removed
from each vendor provided table to simplify comparison. 4Diamond BlastX/MEGAN6 analysis by Vendor J. 5KrakenUniq analysis by Vendor C. 6MetaPhlAn2 analysis by Vendor N provides relative abundance in terms
of %, not absolute read counts. 7Anomaly.
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Vendor J Methods
Metagenome Sequence Data Processing
Paired-end 150 bp reads were processed with Trimmomatic
(Bolger et al., 2014) to trim adapter sequences and low-quality
ends, with a minimum Phred score of 20 across the entire
length of the read used as a quality cutoff. Reads shorter
than 80 bp after trimming were discarded. All reads were
normalized across samples as previously recommended (Nayfach
and Pollard, 2016). High-quality filtered reads were clustered
to respective taxonomic levels (domains through species) using
the lowest common ancestor (LCA) algorithm provided by
MEGAN6 (Huson et al., 2007).

Taxonomic and Functional Assignment
For lower downstream processing and visualization, the
MEGAN6 metagenomics toolkit was used (Huson et al., 2017).
The NCBI taxonomy database (Sayers et al., 2008), containing
over 6.6 × 105 reference sequences, and NCBI-NR protein
sequence database, consisting of entries from GenPept, Swiss-
Prot, PIR, PDB, and RefSeq, were used to assign taxonomic
features to reads by using DIAMOND (Buchfink et al., 2015)
and the weighted LCA algorithm of MEGAN6 (Huson et al.,
2016). The identification of the reads to a taxon is not based
on the genes only, but it is based on the comparison of the
reads with the reference sequences deduced from the genomes
of the curated NCBI taxonomy database (Sayers et al., 2008).
Briefly, taxonomic and functional binning of the metagenomic
reads is carried out using MEGAN6 (Huson et al., 2017), with
the following settings: minScore = 50, maxExpected = 0.01,
topPercent = 10, and minSupportPercent = 0.01. The resulting
taxon assignments are presented in this manuscript. Functional
analysis was carried out by mapping filtered DNA sequences
against a reference database of all proteins within eggNOG
(Powell et al., 2011), SEED (Overbeek et al., 2005), and Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and
Goto, 2000) databases. The search for translated DNA sequences
was executed using DIAMOND, and hits that spanned ≥20
amino acids with ≥90% similarity were retained. In cases where
one read matched these criteria against multiple proteins,
only the protein or proteins (in the event of a tie) with the
maximum bit score were considered. Pathways were analyzed by
summing counts of each KEGG orthology in a pathway. Using
different databases allowed a detailed view of reads defined by
gene function consisting of a collection of biologically defined
(i) subsystems, (ii) clusters of orthologous groups, and (iii)
collection of metabolic pathways.

Vendor C Methods
Quality Control
Adapters and low-quality bases were removed using
AdapterRemoval v2 (Schubert et al., 2016). Bases with a quality
of 1 were removed as were ambiguous bases. Reads shorter
than 50 bp after trimming were discarded. The remaining reads
were aligned against the human genome with alternate contigs
using Bowtie2 (Langmead and Salzberg, 2012) and “–sensitive”
settings. Read pairs where only one read aligned were discarded.

Jellyfish (Marçais and Kingsford, 2011) was used to count
k-mers in the processed reads. All k-mers, including singletons
were counted. Various statistics were calculated on k-mers using
a python script2. The two statistics presented here are (1) fraction
of k-mers which are singletons, the number of k-mers which only
occurred once vs. the total number of unique k-mers, and (2)
k-mer entropy, Shannon entropy calculated over the probability
of drawing each k-mer at random, as shown in previous work
(Cleary et al., 2015; Costea et al., 2017).

Identification of likely negative controls from QC data was
performed by manual inspection. Decision factors included the
k-mer complexity (high singleton fraction, low entropy), the
number of reads filtered, and taxonomic similarity to other
samples (Levy and Borenstein, 2012; Thompson et al., 2017).

Taxonomic Profiling
Initial taxonomic profiling was performed by mapping
clean-reads to all of RefSeq Microbial (1,977,559 unique
taxa) using KrakenUniq (Breitwieser et al., 2018). KrakenUniq
can produce false positive species calls, so we aggressively filtered
results (McIntyre et al., 2017). We removed all species which
were identified using fewer than 1,024 unique marker k-mers
across the entire dataset. Additionally, species were removed
if they were identified with fewer than 10,000 unique marker
k-mers unless at least 10% of all known marker k-mers for
that species were found. To provide an additional comparison,
taxonomic profiles generated by MetaPhlAn2 (Segata et al., 2012)
were also analyzed.

De novo Genome Assembly
Bacterial genomic sequences were assembled using metaSPAdes
(Nurk et al., 2017), the best in-class metagenomic assembler.
Resulting sequences were filtered for quality and duplicates,
and annotated by aligning them to known sequences in the
NCBI NT database. Annotations were processed using a series of
GitHub scripts3 to identify a single likely annotation per outcome.
Possible genes were annotated on the assembled Acinetobacter
and Bacillus genomes (planetary protection relevant microbes),
using PROKKA4. Many contigs, particularly larger contigs, did
not precisely match any known taxa and may be from novel
microbial strains.

Estimating Growth Rate
The estimated rate of growth for the two major taxa identified
was evaluated using Growth Rate Index (GRiD) (Emiola and
Oh, 2018). GRiD uses the peak to trough ratio of coverage
on a microbial genome and a sophisticated series of filters to
estimate that genomes rate of replication. GRiD is designed
to work well even with low coverage samples and low-quality
genome assemblies.

2https://github.com/dcdanko/gimmebio/blob/master/gimmebio/kmers/
gimmebio/kmers/cli.py
3https://github.com/dcdanko/gimmebio/blob/develop/gimmebio/assembly/
gimmebio/assembly/cli.py
4https://github.com/tseemann/prokka
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Functional Analysis
Microbial function was evaluated using the Human Microbiome
Project (HMP) Unified Metabolic Analysis Network
(HUMAnN2) (Franzosa et al., 2018). HUMAnN2 maps
reads to UniRef90, a database of functional genes and combines
genes into known metabolic pathways. Pathways are summarized
by the total abundance of genes in the pathway and by the
fraction of genes in the pathway which are identified. Pathways
with less than 50% coverage were filtered from further analysis.

Comparison to MetaSUB Data
Vendor C used MetaSUB5, a large database of metagenomic
samples from urban environments, to contextualize PP samples.
This includes 2,126 MetaSUB samples with surface annotations
and 371 MetaSUB samples collected from the air of six cities.
These MetaSUB samples were processed for taxonomy and
metabolic function analogously to how Vendor C processed the
20 samples in this study (n = 2,517 total).

After processing all 2,517 samples, taxonomic and functional
profiles were reduced to a binary representation, indicating if
a given taxa or pathway was detected in a given sample or
not. Without performing this reduction of profiles to a binary
representation, clean-room samples would cluster separate from
MetaSUB samples. UMAP (McInnes et al., 2020) was used
to perform dimensionality reductions for both taxonomy and
function and observation of the results (Hart et al., 2015).

Vendor N Methods
Sequencing Metrics and Quality Control
The sequencing quality of all 20 datasets was assessed
using the publicly available FASTX-toolkit package6,
as well as FastQC package7. Prior to analysis with
MetaPhlAn2 and Kraken2 (see below), the paired reads
were trimmed to removed adapters and low-quality bases
using Trimmomatic (Bolger et al., 2014) with the following
parameters: ILLUMINACLIP:/path/to/adapter.fasta:2:25:10
SLIDINGWINDOW:5:20 MINLEN:60.

Metagenomic Analysis of Sample Composition
All sequence reads were segmented into non-overlapping 50-mer
fragments, which were then taxonomically classified down to
the species level using the MTSv pipeline. The MTSv pipeline8

uses a local copy of NCBI’s GenBank database (accessed as of
06/15/2018) as its reference database. The pipeline performed
a true alignment with up to three mismatches tolerated against
all taxonomically classified sequences. Only the sequences that
align to one-and-only-one taxonomic unit within the entirety
of NCBI’s GenBank are used for taxonomic classification. In
this fashion, only the sequence fragments that unambiguously
support the presence of an organism are used, significantly
reducing the false positive rate associated with metagenomic
characterization of complex samples. Only organisms achieving
at least 300 unique signature hits are reported.

5http://www.metasub.org
6http://hannonlab.cshl.edu/fastx_toolkit/
7https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
8https://github.com/FofanovLab/MTSv

The 20 metagenome datasets were also analyzed with
MetaPhlAn2 (Segata et al., 2012), Kraken2 (Wood et al., 2019)
and the downstream statistical module, Bracken (Lu et al., 2017).
Bracken takes Kraken2 output and computes species abundance
using Bayesian reestimation. In contrast to MetaPhlAn2, which
relies upon a subset of markers for a given genome for
classification, thereby limiting its ability to resolve low abundance
organisms, Kraken2 is a k-mer based alignment against a reduced,
but still large, version of RefSeq. Thus, Kraken2/Bracken is
generally able to identify organisms in low abundance, but
conversely is susceptible to false positives.

Functional Analysis of Samples
HUMAnN2 (Franzosa et al., 2018) is a tool for gene annotation
metabolic pathway discovery from both metagenomic
and metatranscriptomic data, and was developed by the
same group that published MetaPhlAn2. HUMAnN2
generates three types of output: gene family abundance;
pathway abundance; and pathway coverage. Each sample
was run through HUMAnN2 where the analysis focused
on gene family abundance for each genome that was
discovered by MetaPhlAn2.

Comparative Analyses of Vendor Results
All four vendors provided a table containing abundances for
microbial species detected in each metagenomic libraries. Since
some vendors provided species in addition to strain names
while others provided only species names, all strain names were
excised and abundances were summed as necessary to better
facilitate a comparison between vendors. All read counts in the
subsequent species tables were normalized by the number of
annotated reads in each metagenomics library if not already
performed by the vendor. Output tables from each vendor
containing taxon abundance were merged together and utilized
for comparative analyses.

Venn diagrams demonstrating overlap among species by the
four vendors were generated using InteractiVenn (Heberle et al.,
2015) for surface samples and controls separately. Analysis of
similarities (ANOSIM) and non-metric multidimensional scaling
(NMDS) comparing taxon tables from the four vendors were
performed using the vegan R package (Oksanen et al., 2013) and
custom R scripts9, 10. Network diagrams for surface samples or
controls were generated by averaging relative abundance for each
taxon for each vendor and converting the resulting species matrix
into a network using Cytoscape (v.3.8.0) (Shannon et al., 2003)
and a custom Perl script11.

RESULTS

A key need for PP efforts is a rigorous genetic catalog of
the presence of microorganisms on and around spacecraft
associated environments, as well as an assessment of their

9https://github.com/sandain/R/blob/main/anosim.R
10https://github.com/sandain/R/blob/main/mds.R
11https://github.com/sandain/pigeon/blob/main/scripts/species-
matrix2graphml.pl
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likelihood of survival or persistence as well as proliferation in
extraterrestrial conditions. To aid in this effort, we analyzed 20
PP-related samples for microbial taxonomy, metabolic function,
growth rate, and assembled large genomic contigs. Shotgun
metagenomics raw reads (BioProject PRJNA668809) were given
to four different vendors to analyze bioinformatically using their
favorite publicly available or in-house pipelines to hypothesize on
the composition of the microbial community sampled. One of the
main features of the analysis pipeline that deviated from other
vendors was that Vendor J performed a protein-based taxonomic
assignment, whereas other vendors carried out nucleotide-based
taxonomic assignment. All vendors removed adapter sequences
and human reads, retaining <1% (of control sample FC9) to
>90% (of sample S108) of the total raw reads (7.22 × 107;
Table 1) which allowed for further taxonomic classification. To
simplify comparative analyses, low abundance taxa identified by
each vendor that comprised <1% relative abundance of a library
were excised, reducing the effective number of reads analyzed by
0 to 92% (Table 1).

Vendor L Results
After QC steps followed by the Vendor L pipeline to remove
adapter sequences and human reads generated 61,637,680 reads
from 20 samples tested, and hence this vendor retained 85%
of the raw reads for further analyses (Table 1, Figure 1,
and Supplementary Figure 1A). The number of QC reads
associated with 17 SAF floor samples ranged from 2,671 (S99) to
15,574,766 (S43), whereas the number of reads from field controls

(n = 2) and Maxwell reagent control (n = 1) samples were less
than 1,000. Only 0.22% of these QC reads were taxonomically
classified by Vendor L. In general, Vendor L detected 82
species with high confidence (>1% relative abundance in at
least one library) in the 17 SAF surface samples analyzed
(Figure 2A), including 4 species of potential PP concern,
Bacillus flexus, Brevundimonas diminuta, Acinetobacter lwoffii,
and A. johnsonii. Additionally, Vendor L detected multiple
species that are normally associated with the human skin and
gut microbiome, including Ruminococcus gnavus, Staphylococcus
aureus, S. epidermidis, and Propionibacterium acnes.

One of the field control samples (FC9) was found to possess
only 232 reads after QC, hence no useful chromatogram could be
generated to determine the distribution of species. In the other
two control samples, Vendor L detected 11 species in Maxwell
control (MC2) and 10 species in field control (FC2) samples
(Supplementary Figure 1B). There were 2 bacterial species of
potential PP concern [Bacillus flexus (83 reads) and Anoxybacillus
kestanbolensis (61 reads)] found in Maxwell control (MC2)
with very low number of reads. Similarly, Vendor L detected
bacterial species associated with the human microbiome in
controls samples (30–162 reads in FC2 and 28–489 reads in
MC2), including Staphylococcus aureus, S. epidermidis, and
Propionibacterium acnes.

During this study, Vendor L communicated that they have
developed a proprietary pipeline to assemble genomes for
unknown taxonomic units. Vendor L’s approach includes a
method to determine contiguous regions of unmapped reads

FIGURE 1 | Abundance of reads in SAF floor samples that passed quality control (QC) measures of each vendor (black and black with cross-hatch; gray represents
reads discarded by the QC stage; black without cross-hatch represent QC reads taxonomically classified) (A), and relative abundance of species detected by each
vendor (B). Samples with a low- (group [L]ow; <1 × 106) or high- (group [H]igh; >1 × 106) numbers of reads were included. Samples with high numbers of reads
associated with Actinobacteria and Firmicutes (group H-F) were also included. Vendor C used KrakenUniq and vendor N used MetaPhlAn2 for classifying the reads
and assigning taxa.
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FIGURE 2 | The number of taxa identified in each sample by the four vendors (A), and a Venn diagram representing overlap in taxa detected in SAF floor samples (B).

and to score and assess them for potential assembly into
novel genomes of unknown species. However, such metagenome
assembled genomes were not described by this vendor for this
work. In addition, Vendor L failed to provide the results of their
functional characterization.

Vendor J Results
Among the total reads, ∼86% (62,448,263 reads) passed through
the QC process (Fastp) of Vendor J (Table 1, Figure 1A,
and Supplementary Figure 1A). After QC most of the reads
were taxonomically classified as bacteria (85%), followed by
eukaryotes (14%), then viruses (<1%), with few archaeal
signatures detected (<0.1%). Vendor J detected 110 microbial

taxa with high confidence (>1% relative abundance in at least one
library) in the shotgun metagenome (Figure 1B). Dominating
bacterial genera included Bacillus, Acinetobacter, Bacteroides,
Mycobacterium, Parabacteroides, Sphingomonas, Paracoccus,
Lachnoclostridium, Clostridium, and Hungatella. Vendor J
paid special attention to detect Firmicutes and Actinobacteria,
microorganisms that forms spores or are hardy; also, they are
resistant to the extreme conditions (arid, radiation, etc.). Bacillus,
Lachnoclostridium, and Clostridium were dominant Firmicutes,
while Mycobacterium, Corynebacterium, and Microbacterium
dominated Actinobacteria. Dominant bacteria detected are part
of the human microbiome, which could be the reason for their
abundance in the SAF environment.
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Vendor J was able to taxonomically resolve to members of
eukaryotes with >1% abundance in these samples, even though
these cleanrooms were documented to be low in fungal diversity
(La Duc et al., 2012). Among the total metagenomic reads
of eukaryotes (14%), only half of them were associated with
identifiable taxa having >1% relative abundance. Most of these
eukaryotic sequences were Fungi, dominated by Aureobasidium
pullulans and Coniosporium apollinis. Both the dominant fungi
have been associated with low nutrient biomes (La Duc et al.,
2012). Strains of A. pullulans have been isolated from SAF (La
Duc et al., 2003), and C. apollinis is a rock inhibiting lithotroph
(Sterflinger et al., 1997) that may be living in the cleanroom
floor of the SAF. Similarly, less than 0.02% of archaeal and virus
signatures were observed among the predominant metagenomic
reads (>1%). Such low abundance of archaea and viruses in
cleanrooms are well-known (Moissl et al., 2008).

Vendor J also inspected the genomic and metabolic capability
of the microbial community members. To examine the presence
of dormancy and sporulation genes, sequence reads from all
samples were mapped to individual microbial genes, and then
assigned to KEGG, SEED, and eggNOG categories. Genes
associated with stationary phase, dormancy, and persistence
were detected by Vendor J, including the HipAB system
implicated in growth arrest, persistence, and drug tolerance,
the Mycobacterial signal transduction system (MprAB) required
for persistent infections, and a ribosomal hibernation related
cluster. Additionally, multiple genes associated with sporulation
were detected, including coat proteins (CotJABC), synthesis
of dipicolinate and the exosporium, forespore to mother cell
channel proteins, spore germination and germinant receptors,
and other sporulation cluster genes like SigEG, SpoIIIAA-
SpoIIIAH, SpoVA, and SpoVS (Supplementary Table 1). A low-
biomass environment tends to have a majority of spore-forming
populations (La Duc et al., 2007), and this environment is
exhibiting presence of functional genes associated with spore-
forming members. A descriptive result of eggNOG categories
is presented in Supplementary Table 1D, mainly addressing
the primary cellular function. KEGG analysis showed a much
better input of the functional makeup of the microbial
community. The presence of factors for “metabolism of
terpenoids and polyketides,” “biosynthesis of other secondary
metabolites,” “xenobiotics biodegradation and metabolism,” and
“environmental adaptation,” represents a highly stressed and
competitive environment. A closer look into the environmental
adaption reveals the presence of the “bacterial secretion system”
which is a strategy utilized by the pathogenic organism to
infect the host. Our previous studies have shown that spacecraft
associated environment is very similar to the nosocomial setup as
both are maintained to near sterile levels using industrial cleaners
(data not shown).

Vendor C Results
Before any processing, the 20 samples contained a total of
72,183,076 reads. Of these, just over 10 million reads contained
large Illumina adapter sequences. Vendor C removed adapters
and low-quality bases using AdapterRemoval, thus reducing the
total read count to 61,666,094 reads. Vendor C then removed

human reads by aligning to the human reference genome using
Bowtie2 (hg38, sensitive), and after removing reads where only
one end aligned to the reference, Vendor C was left with
56,086,819 reads, 78% of the total (Table 1). Vendor C noted
that this is a surprisingly small amount of human DNA for an
environmental sample (Mason et al., 2016). Vendor C noted
that FC9 and FC2 had noticeably lower complexity than other
samples and correctly assumed they were negative controls.
A third sample (MC2), was considered ambiguous by Vendor
C due to its intermediate complexity. This MC2 sample was
a Maxwell reagent control and Vendor C curation deemed
correct in deciding which samples were control samples during
this blind study.

Vendor C identified 82 relatively abundant taxa (>1%;
Figure 1) in SAF floor samples, some of which are relevant
for PP efforts. By abundance, these species principally came
from 7 genera: Bacillus, Acinetobacter, Paracoccus, Pseudomonas,
Sphingomonas, Methylobacterium, and Brevundimonas. Samples
could be broadly clustered into three groups based on
their taxonomic profile: the putative negative controls (two
samples), Acinetobacter-dominated samples (eleven samples),
and Bacillus-dominated samples (six samples). One sample,
S14, was ambiguous. Acinetobacter-dominated samples tended
to have higher taxonomic diversity than Bacillus-dominated
samples. Dozens of these organisms are known to persist
and survive in deserts, oceans, the arctic, or other harsh
terrestrial environments, and are thus likely to be relevant
for inter-planetary missions and planning. Vendor C identified
a range of predicted phenotypes of PP interest, including:
spore-forming, resistance to radiation, resistance to desiccation,
halophilic, resistance to extreme pH, able to survive in cold
temperatures (including cold waters), resistance to cleaning
products, resistance to heavy metals, and an ability to metabolize
unusual carbon sources.

Vendor C also used MetaSPAdes (Nurk et al., 2017) to
generate assembled contigs from a variety of taxa. Long
(>500 kbp) assembled contigs appear to be closely related to
Acinetobacter lwoffii and Bacillus cereus, but do not precisely
match any genome in the public databases. The long assembled
contigs were covered by an average depth of 100X, indicating
sufficient depth for accurate assembly. Contigs longer than 10 kbp
were also assembled from a variety of other taxa. They noticed a
large amount of Pinus sequences, but also assembled sequences
from 20 plausible microbial taxa, including Acinetobacter and
Bacillus. No sequence could be assembled from the two putative
negative controls. GRiD was able to estimate the replication rate
of the Acinetobacter assembly for all samples except controls
(FC2, FC9, and MC2), and it was also able to estimate Bacillus
replication rate for all samples with Bacillus (Supplementary
Figure 2A). For both taxa, GRiD showed a high rate of
replication (a GRiD score of 2 is a typical threshold for fast
replication) in most samples. In samples where scores for both
taxa could be obtained the GRiD scores for both taxa were
similar, often with overlapping of the 95% confidence interval
and similar mean estimates. Excluding two outliers, (S99 and
S16) the mean estimate for each sample falls in a tight range.
Techniques to estimate bacterial replication from metagenomic
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data are novel and have never been applied to low-complexity
or clean-room data yet, and as such, thus these results should be
viewed as preliminary.

The abundance of different functional pathways in samples
was identified using HUMAnN2 (Franzosa et al., 2018) with
UniRef90 (Suzek et al., 2014). Dimensionality reduction of
the functional pathways showed a group of SAF samples
clustering with MetaSUB air samples and a group of samples
clustering with surface samples (Supplementary Figure 2B).
However, these clusters did not correspond at the taxonomic
level. Vendor C identified 48 biochemical and biological
pathways that were differentially abundant in SAF samples (20
samples) compared to both MetaSUB-surface (2,126 samples)
and MetaSUB-air samples (317 samples) (p < 0.01, Mann-
Whitney-U test). These pathways were universally more
abundant in SAF samples than MetaSUB samples, and may
represent specific adaptation to the cleanroom environment.
Enriched pathways were principally for nucleotide and protein
biosynthesis, including de novo biosynthesis of adenosine,
guanosine, L-valine, L-isoleucine, L-lysine, L-proline, L-arginine,
and L-methionine. Additionally, pathways associated with
metabolism which may be linked to new metabolic sources were
also enriched, including glycolysis, pentose-phosphate-pathway,
the glyoxylate bypass, acetylene degradation, and fermentation
to isobutanol. In particular, nucleotide biosynthesis has been
linked to bacterial resistance to radiation and desiccation
(Cox and Battista, 2005).

Vendor N Results
Primary quality control evaluation revealed that four of 20
samples (20%) were primarily composed of adapter dimer.
One of these samples (S14) yielded no classifiable reads
while the other three negative control samples (FC2, FC9,
and MC2) showed considerably low number of taxa. Hence,
Vendor N correctly concluded that FC2, FC9, and MC2 were
negative controls, since the identity of the samples were not
revealed to any vendors.

Taxonomy of the samples was determined using three
methods: MTSv; MetaPhlAn2, and Bracken. MTSv uses an
alignment method, which maps 50-mers from each sample to
a local copy of the NCBI GenBank database. Metagenomic
Phylogenetic Analysis (MetaPhlAn2) maps shotgun sequence
reads to a database of clade-specific marker sequences and
additionally determines relative abundance. The MetaPhlAn2
database contains one million genes that represent 17,000
reference genomes (bacterial, archaeal, viral, and eukaryotic). The
third method, called Bayesian Reestimation of Abundance with
Kraken (Bracken) performs k-mer mapping to a reduced version
of the RefSeq database. All three of these methods provided
generally similar results with limited but identifiable differences.

The MTSv method identified 189 taxa (155 bacteria, 4
fungi, 18 eukaryotes, and 2 viruses). Of these, 55 were called
with very high confidence (40 bacteria, 14 eukaryotes, and
1 virus). MetaPhlAn2 called 121 bacteria, 1 eukaryote, and
one virus. However, only 38 microbial taxa were found to
be abundant (>1%; Figure 1) in SAF floor samples. Most of
the bacterial genera and many of the species overlapped, but

MTSv called species not identified by MetaPhlAn2 and the
latter did not identify plant, Homo sapiens and other eukaryotes
because they are not in the MetaPhlAn2 database. The Bracken
results were more similar to those obtained using MetaPhlAn2,
although additional species under the genera Acinetobacter,
Bacillus, Paracoccus, Pseudomonas, and Sphingomonas were
reported. A critical difference between read handling for MTSv
and MetaPhlAn2 and Bracken is that MTSv reads were not
trimmed prior to analysis, likely increasing overall sensitivity and
decreasing specificity.

The relative abundance profiles provided by MetaPhlAn2 and
Bracken revealed that in most cases, samples were composed
of only a few dominant species and that those species were
most frequently Acinetobacter lwoffii, a common skin inhabitant,
or Bacillus thuringiensis, a common soil organism. Indeed,
most of high abundance organisms identified by these methods
were members of the human microbiome. In addition to these
high abundance organisms, some low abundance organisms of
interest were identified, such as the potentially radiotolerant
Methylobacterium radiotolerans and Deinococcus sp., the UV
resistant Hymenobacter sp. and the halotolerant Kocuria
rhizophila. Several sphingomonads that have the potential to
degrade hydrocarbons were also identified.

The bacteria identified were annotated using the KEGG
and the HUMAnN2 tool. Vendor N examined the annotation
tables for features associated with sporulation, peroxide
resistance, halotolerance, cold shock, phosphate starvation and
antibiotic and heavy metal resistance and discovered genes
associated with all these functions (Supplementary Table 2).
This includes 73 predicted sporulation proteins, including
sigma factors, two component regulators, germination proteins,
assembly proteins, stage-specific proteins, proteases, and coat
proteins. A variety of heat shock proteins, including ECF
sigma factors and chaperones, and cold shock proteins were
annotated in numerous organisms. Catalase, heme and non-
heme peroxidases, glutathione peroxidase and peroxiredoxin,
which are all involved in resistance to peroxide were also found.
Halotolerance factors, including glycine/betaine transporters
or inositol monophosphatase, and genes associated with
resistance to cadmium, camphor, chromate, cobalt, copper,
fluoride, mercury, and tellurite were predicted. Additionally,
genes associated with resistance to at least thirteen antibiotics,
including vancomycin were found.

Comparative Analyses of All Vendors
Analyses of taxonomic tables (Supplementary Table 3)
produced by all four vendors (J, C, N, and L) reveals
differences in classification methodologies used. Different
QC metrics used by the four vendors resulted in different
numbers of sequences analyzed in subsequent stages
(Figure 1A and Supplementary Figure 1A). Analyses of
species-level taxon tables using stacked bar plots of relative
species abundance (Figure 1B and Supplementary Figure 1B)
reveal the differences in taxonomic classification among vendors.
The number of taxa identified in each sample by the four vendors
are depicted in Figure 2A. Although there is overlap in species
identified (Figure 2B), no two vendors report the same relative
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abundance (Figure 1), likely owing to different databases used
during analysis. When using the same taxonomic classifier
(MetaPhlAn2) with its own built-in database, there is a large
similarity in relative abundance of species between vendor C
and N that is easily visible in a stacked bar plot (Supplementary
Figure 3), showing that earlier QC steps likely played a minor
role in these different taxonomic classifications.

In low-biomass SAF floor samples (S014 and S099) that
resulted in <1 × 106 reads (sample group [L]ow), only
vendors L, J, and C provided taxonomic classification. Vendor
L describes these low-biomass samples as containing mainly
human skin commensals, including A. lwoffii (16–50%),
A. johnsonii (11–20%), B. flexus (1–23%), P. acnes (5–19%),
Phaeobacter gallaeciensis (0–7%), S. aureus (0–4%), and
S. epidermidis (1–14%). Vendor J describes these samples as
containing A. lwoffii (<1–8%), A. johnsonii (<1-1%), Cnuella
takakiae (0–9%), S. aureus (<1–18%), Mycobacterium xenopi
(2–53%), Sphingomonas paucimobilis (0–15%), Skermanella
aerolata (0–2%), and A. baumannii (1–3%). Vendor C
describes these two low-biomass samples as containing
A. johnsonii (1–25%), A. schindleri (<1–24%), Acinetobacter
sp. NCu2D-2 (0–16%), Acinetobacter sp. TTH0-4 (0–7%),
Bullavirinae (3–33%), Enterobacteria phage phiX174 sensu lato
(3–33%), Mycobacterium avium (0–10%), and Sphingomonas sp.
LK-11 (0–10%).

Taxonomic classifications for high-biomass samples collected
from the SAF floor that resulted in >1 × 106 reads (sample
group H) were successfully provided by all four vendors without
fail. Vendor L described these samples as being dominated by
a diverse assemblage: A. lwoffii (1–55%), A. johnsonii (2–22%),
B. flexus (0–24%), Bacteroides fragilis (0–5%), B. plebeius
(0–10%), Faecalibacterium prausnitzii (0–8%), Paracoccus
aminovorans (0–10%), P. marcusii (0–11%), P. acnes (<1–22%),
Rothia mucilaginosa (0–4%), Ruminococcus gnavus (0–79%),
Sphingomonas yabuuchiae (0–14%), Staphylococcus aureus
(0–33%), S. epidermidis (0–19%), S. haemolyticus (0–11%),
Streptococcus infantis (0–8%), and Veillonella dispar (0–7%).
Vendor J also described these samples as being comprised
of a diverse assemblage: an unidentified Acidobacteria sp.
(0–6%), A. baumannii (<1–15%), A. lwoffii (<1–16%),
B. cereus (<1–56%), B. thuringiensis (<1–34%), Bacteroides
plebeius (0–5%), an unidentified Brevundimonas sp. (<1–13%),
Cellulomonas cellasea (0–5%), Comamonas terrigena (0–6%),
Mycobacterium tuberculosis (0–5%), M. xenopi (6–69%),
Paracoccus salipaludis (<1–12%), P. sediminis (<1–45%),
Prevotella sp. CAG:891 (0–24%), Roseomonas nepalensis
(<1–10%), Rubellimicrobium sp. YIM 131921 (<1–10%),
Skermanella aerolata (<1–15%), S. aureus (<1–27%), and
Xanthomonas campestris (0–13%). Vendor C similarly
described a diverse assemblage in the SAF floor samples,
containing A. baumannii (<1–7%), A. calcoaceticus (<1–12%),
A. johnsonii (<1–16%), A. schindleri (<1–15%), Acinetobacter
sp. NCu2D-2 (<1–6%), B. cereus (0–64%), B. mycoides (0–22%),
B. thuringiensis (0–23%), Bullavirinae (<1–14%), an unidentified
Dikarya sp. (0–10%), Enterobacteria phage phiX174 sensu lato
(<1–14%), Leishmania major (0–18%), Mycobacterium avium
(<1–10%), Negativicoccus massiliensis (0–5%), Pseudomonas

stutzeri (<1–21%), Rothia mucilaginosa (0–9%), Streptococcus
parasanguinis (0–7%), and Xanthomonas campestris (0–10%).
Vendor N described these samples as being composed of mainly
A. lwoffii (3–91%), B. thuringiensis (<1–92%), Bacteroides
coprocola (0–10%), Mycobacterium xenopi (2–39%), Rickettsia
felis (0–9%), Ruminococcus gnavus (0–9%), S. aureus (0–13%),
Staphylococcus phage PVL (0–32%), and an unidentified
Veillonella sp. (0–12%).

High-biomass samples collected from the SAF floor that
resulted in >1 × 106 reads and contained a high abundance
of Firmicutes or Actinobacteria (sample group H-F) were
analyzed by all vendors. Vendor L described these samples
as containing A. johnsonii (2–11%), A. lwoffii (2–19%),
B. flexus (1–24%), Faecalibacterium prausnitzii (0–8%), P. acnes
(<1–22%), S. aureus (4–33%), and S. epidermidis (1–19%).
Vendor J described these samples as containing B. cereus
(<1–56%), B. thuringiensis (<1–9%), Mycobacterium xenopi
(6–69%), Paracoccus sediminis (<1–6%), and Skermanella
aerolata (<1–15%) in abundance. Vendor C described these
three samples as containing B. cereus (0–64%), B. mycoides
(0–22%), B. thuringiensis (0–12%), Bullavirinae (<1–14%), an
unidentified Dikarya sp. (0–10%), Enterobacteria phage phiX174
sensu lato (<1–14%), and Mycobacterium avium (<1–6%).
Vendor N described these three samples as being dominated by
A. lwoffii (3–59%), B. thuringiensis (0–92%), and Mycobacterium
xenopi (2–39%).

A Venn diagram representing overlap in species detected
in SAF floor samples by the four vendors (Figure 2B)
demonstrates the similarity and differences between the methods
used. All four vendors detected three microbial species
in common from floor samples, including A. johnsonii,
P. stutzeri, and S. aureus. Species detected by only three vendors
include A. lwoffii, B. thuringiensis, Bacteroides plebeius, E. coli,
Haemophilus parainfluenzae, Rickettsia felis, Rothia mucilaginosa,
and Ruminococcus gnavus. All vendors classified species from
floor samples not classified by other vendors, with Vendor L
uniquely classifying 64 of 82 species (78%), Vendor J uniquely
classifying 82 of 110 species (75%), Vendor C uniquely classifying
59 of 83 species (71%), and Vendor N uniquely classifying 18 of
38 species (47%).

By plotting SAF floor and control samples with respect
to the species classified by each vendor using non-metric
multidimensional scaling (NMDS; Figure 3), the differences
between methods used becomes very apparent. For the most
part, point clusters representing SAF floor samples taxonomically
classified by each vendor do not share the same ordination
space with other vendors, with disjoint 99% confidence intervals
for the sample mean (lightly colored ellipses). Control samples
analyzed by all vendors (square glyphs) cluster separately (empty
ellipse) from the SAF floor samples. Analysis of similarities of
species classification among vendors shows that there is more
similarity between samples analyzed by the same vendor than
there is a similarity between vendors that is statistically significant
(ANOSIM; R = 0.6056, P = 0.001).

All four vendors detected S. aureus, a skin-associated
bacterium, as a dominant species in control samples
(Supplementary Figure 1B). S. aureus makes up 34–97%
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FIGURE 3 | Non-metric multidimensional scaling (NMDS) plot representing differences in species detected in SAF floor samples (circle glyphs) and control samples
(square glyphs). Lighter colored ellipses represent the 99% confidence interval for the mean of the SAF floor samples for each vendor. The empty ellipse represents
the 99% confidence interval for the mean of the control samples for all vendors.

of handling control sample FC2 (4.2 × 104 reads), and 14–66% of
Maxwell reagent control MC2 (1.56 × 105 reads). B. thuringiensis,
B. cereus, and B. flexus which are closely related, spore-forming,
soil-associated bacteria, also made up a large proportion (9–66%)
of Maxwell reagent control sample MC2. However, Vendor
L only identified B. flexus in this sample and Vendor N only
identified B. thuringiensis, while Vendor J and Vendor C
identified closely related B. cereus and B. thuringiensis.

Analysis of overlap in the dominant species (>1%) detected
in control samples (kitome) by each vendor (Supplementary
Figure 1C) reveals limited similarity. However, the number of
taxonomically classified reads (>1%) in these libraries were
extremely low, ranging from 9 to 57,179 reads. All four vendors
detected one species in common, S. aureus. Vendor C, Vendor N,
and Vendor J additionally detected B. thuringiensis. All vendors
but Vendor N uniquely identified species in the control samples:
Vendor L uniquely identified 13 of 17 species, Vendor J uniquely
identified 41 of 50 species, and Vendor C uniquely identified
12 of 19 species.

Comparative Analyses of All Vendors on
Planetary Protection Relevant Microbial
Species
The Space Studies Board suggested classifying microbial species
based on the level of concern that the species could survive

unintentional transport via spacecraft and colonize a planetary
body such as Mars or Jupiter’s icy moon Europa (National
Research Council, 2000). To this end, they created four
categories: Type A, microorganisms cultivable on the NSA
without heat shock; Type B, spore-forming microorganisms
(NSA heat-shock); Type C, radiation-resistant (10% survival
at 0.8 Mrad), spore-forming microorganisms; and Type D,
radiation-resistant (10% survival at 4.0 Mrad), non-spore-
forming microorganisms. Although microorganisms classified as
Type C and Type D are the most likely to survive space flight, we
consider microorganisms classified as Type B, Type C, and Type
D, or extremophiles suited to mission-specific environments as
potentially PP relevant microbial species for this analysis.

All four vendors detected bacteria that may be relevant for
planetary protection purposes (see red nodes in Figure 4).
Radiation resistant bacteria associated with Acinetobacter
(A. baumannii, A. johnsonii, A. lwoffii, and A. schindleri),
Brevundimonas diminuta, and an unidentified Brevundimonas sp.
were detected by multiple vendors in SAF samples. Additionally,
Vendor C detected other Acinetobacter species in SAF floor
samples, including A. calcoaceticus and other Acinetobacter
species (strains LoGeW2-3, NCu2D-2, and TTH0-4). An
unidentified Acidobacteria sp., which could be an extremophile
(Kielak et al., 2016), was detected by Vendor J in SAF floor
samples. Notably, all four vendors detected members of Bacillus,
a genus of microorganisms of PP concern with spore-forming
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FIGURE 4 | Network diagram showing the relationship between vendors (blue nodes) and detected species (red and gray nodes). Species of potential Planetary
Protection concern have red colored nodes while others have gray colored nodes.

capabilities. B. cereus was detected by Vendor J and Vendor C;
B. flexus was detected by Vendor L; B. mycoides was detected by
Vendor J and Vendor C; and B. thuringiensis was detected by
Vendors C, N, and J.

Among the functional characteristics, genes associated with
dormancy and sporulation pathways were detected by Vendors
J and N. These include sigma factors, two component regulators,
germination proteins, assembly proteins, stage-specific proteins,
proteases, and coat proteins. Additionally, these two vendors
detected gene pathways involved in resistance to antimicrobial
agents, heavy metals, and resistance to stress (e.g., aerotolerance,
heat shock, cold shock, and osmotic stress), potentially
showing adaptation of these microorganisms to the clean-
room environment.

In field control sample (FC2), spore-forming bacteria
including B. cereus, B. flexus, and B. thuringiensis were also
detected but in low numbers. In addition, the spore-forming
Anoxybacillus kestanbolensis was also detected in the Maxwell
reagent control sample (MC2) by Vendor L.

DISCUSSION

NASA PP efforts are concerned with hitch-hiking
microorganisms that may have the capability to withstand
spaceflight conditions and contaminate a planetary body of
scientific interest. Concerns regarding the inability of the NSA
culture method to detect all microorganisms in a sample has
led NASA to look toward state-of-the art molecular methods
like shotgun metagenomics to detect a wider range of taxa
on spacecraft and associated environments. All four vendors
used in this study identified taxa of PP concern in the JPL SAF
environment where spacecraft are built, including Acidobacteria,
Acinetobacter, Anoxybacillus, Bacillus, Brevundimonas, and
Caulobacteraceae, demonstrating that modern metagenomic
approaches and computational biology can detect these
organisms of concern, unlike NSA culture methods.

Although similar species were detected by the four vendors,
one issue noted by these analyses is that the relative abundances
varied drastically between vendors. Different QC measures likely
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played a minor role in this since Vendor C and N used different
QC methods but arrived at similar results when using the same
taxonomic classifier (MetaPhlAn2; Supplementary Figure 3).
The largest contributors to this difference in relative abundance is
likely due to the different programs and databases used. Although
Vendor L, Vendor J, and Vendor C used similar sequence-based
analyses, their results varied drastically due to different databases
used. Vendor C and Vendor N both used MetaPhlAn2 with its
built-in database to arrive at very similar results, but different
from the results produced by Vendor J and Vendor L, and
Vendor C when using KrakenUniq. MetaPhlAn2 reports relative
abundances in terms of the number of cells (Segata et al., 2012)
rather than fraction of reads as done by the other analyses, likely
contributing to this observed difference.

By ignoring relative abundance calculations and simply
examining the overlap in species detected (Figure 2B), the
difference between vendors becomes clearer. The overlap in
species identified in SAF floor samples between the four vendors
is small (three species). Vendor J and Vendor C shared the
largest overlap in species identified (17 species). Vendor J
identified more species than other vendors (110), likely due to
the vast size of the database they used. All vendors uniquely
identified species not identified by the other vendors. Failure to
detect microorganisms present in a sample is concerning for PP
purposes, especially if the missed microorganisms could survive
on a spacecraft and go on to contaminate a planetary body of
scientific interest. Utilization of large databases containing a wide
breadth of available reference genome sequences may help to
alleviate this issue.

Falsely detected species may also be of concern, especially
if the detected species is of potential PP concern. Falsely
detecting such a species would needlessly require extra rounds
of cleaning, negatively affect the schedule of a spacecraft build,
and potentially delay its launch. The large number of uniquely
detected species by each vendor is especially concerning in this
regard. Some of these uniquely identified species may have
simply been miscategorized due to lack of a better alternative in
the databases used or sequence fragments aligning to genomic
regions with poor phylogenetic resolution. Adding a requirement
for minimum coverage of a genome prior to classifying a species
as present in a sample may help to limit such false positives.
In addition, computational analysis at the genus level may also
solve this problem since short reads of metagenome sequences
may not have the taxonomic resolution to differentiate taxa at
the species level.

Some of the same species seen in SAF floor samples can
be seen in control samples, alluding to potential contamination
of sampling equipment (e.g., the wipes) or reagents. Simply
excising species with an abundant number of reads found in
control samples from environmental samples is an option, but
this may be problematic for PP purposes given that some of the
species detected in the control samples are organisms of potential
PP concern. The QC read counts were extremely low in these
control samples, and the PP relevant microorganisms detected
(Bacillus spp. and Anoxybacillus kestanbolensis) likely had a
minor influence on the species detected in the floor samples.
Compared to control samples, QC reads from floor samples

were much more abundant (Table 1). Among control samples,
S. aureus constituted 47–97% of a sample, whereas S. aureus
constituted 1–11% in corresponding floor samples. Furthermore,
viability assessment of the microbes would help to eliminate the
kitomes from the calculations. In addition to pretreating with
propidium monoazide (Vaishampayan et al., 2013), application
of novel technique such as GRiD analysis would eliminate naked
DNA sequences associated with kitomes. In this study, Vendor
C was able to estimate the replication rate of some taxa from
SAF samples but such analysis did not show replication of taxa
in control samples (FC2, FC9, and MC2).

The variance in relative abundance seen between vendors
may make metagenomic assays problematic for PP purposes
without additional work on calibration of these metagenomic
pipelines. The ability to estimate the number of problematic
microorganisms on a spacecraft surface is currently hampered
by these large variations between methods and databases used,
but is paramount for determining the amount of bioburden
on these surfaces. Synthetic metagenomes containing sequence
fragments in known quantities have been developed (McIntyre
et al., 2017), and can be utilized for this purpose. However, it
would be beneficial to develop synthetic metagenomes from the
genomes of microorganisms that PP efforts are concerned with,
in addition to microorganisms previously detected in PP-relevant
samples, to better test and calibrate these pipelines. Since SAF
cleanrooms are known to be similar to other built environments
with regular human movement (Lax et al., 2014), inclusion
of microorganisms known to inhabit these environments in
a synthetic metagenome would be important. Additionally,
procedural changes that include spiking a known quantity of
DNA into samples prior to sequencing should be considered
to allow for more precise estimates of microbial abundance
(Hardwick et al., 2018; Blackburn et al., 2019).

Only ∼15% of the QC sequences were utilized for
identification of species by all vendors except Vendor L (<1%),
likely due to the non-availability of annotated genomes in public
databases. Public databases are mainly comprised of cultivable
microorganisms with annotations, whereas very few genomes
of non-cultivable microorganisms are present. To enable the
utilization of discarded shotgun metagenome reads, metagenome
assembled genomes (MAG) of microorganisms present in NASA
cleanroom samples should be generated, allowing for annotation
of their genetic capabilities and detection of PP-relevant
metabolisms. Since spacecraft associated surfaces are low in
biomass (Minich et al., 2018), MAGs should additionally
be generated from the samples collected from PP relevant
extreme environments such as radionucleotide dumping sites,
nuclear accidents, and hot and cold arid regions of the Earth.
Additionally, MAGs should be generated from samples collected
from built-environments that do not undergo strict cleaning
regimes and are directly adjacent to the relevant cleanrooms,
to ensure that the genetic repertoire of microorganisms that
may hitch-hike between the two are captured. MAGs from
such environments would help to identify and annotate these
uncultivable microorganisms to decipher the metabolic and
functional pathways and expand the understanding of species
diversity of spacecraft and associated environments.
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This study was performed using short metagenomic sequences
(∼150-bp) generated using Illumina technology, which is known
to function with low-biomass clean room samples. The vast
number of sequences that can be produced by this technology
usually offsets its main drawback, the short length of the
sequences. Short sequences are often harder to identify with
certainty because they align to highly conserved segments of
a genome and provide no specific information, or because
they represent novelty that is not yet represented in a
public database. Longer sequences generated by technologies
developed by Pacific Biosciences (PacBio) and Oxford Nanopore
Technology (ONT) provide an opportunity to more accurately
identify a larger portion of the sequences generated because the
ambiguous segments are often linked to segments that can be
identified. Technologies that generate longer sequences should
be considered for future metagenomic studies of spacecraft
hardware to aid in identification of PP relevant taxa. The issues
associated with long read technologies like ONT MinION or
PacBio are that these methodologies require higher concentration
of DNA as well as longer fragment length. Such issues can be
mitigated when larger surface areas are collected and gentle
sample processing technologies developed to get longer fragment
DNA length. These tasks are not trivial to perform in samples
collected from an extremely oligotrophic, clean, low-biomass
spacecraft and associated environments.

Each vendor in this study utilized different computational
algorithms and pipelines to analyze the provided shotgun
metagenome data, and here we attempt to highlight some of
the benefits and downfalls of each approach. Vendor C and
Vendor N used multiple methods for taxonomic identification
(Vendor C used KrakenUniq and MetaPhlAn2; Vendor N used
MTSv, MetaPhlAn2, and Kraken/Braken), which allowed them to
have more confidence in species identified via multiple methods.
However, Vendor N did not provide taxon tables for their MTSv
or Kraken/Braken results, so comparative analyses with these
pipelines were not possible. The taxon table provided by Vendor
L identified <1% of QC sequences, with an anomaly in sample
S99 where 12,223 reads were taxonomically classified, but only
2,671 reads passed their QC stage (458% identified), bringing
into question the overall quality of their results. Vendor J used
a massive database (NCBI-NR) that allowed them to identify
species not detected by other vendors, however, the degenerate
nature of protein sequences (with to regard to DNA sequences)
means that their pipeline would have a hard time differentiating
between two closely related microorganisms. Vendors L, C, and
N all used databases containing DNA sequences for identification
potentially allowing for more specific results, but increased
computation time to analyze DNA sequences limited the size
of databases that could be used. The custom database used
by Vendor L to analyze the shotgun metagenome sequences
was too limited in genetic breadth to accurately describe the
diversity present in the samples provided to them. Vendor C
and Vendor J generated MAGs from the dataset provided, giving
these vendors more confidence in the species identified. These
MAGs additionally allowed Vendor C to estimate the rate of
growth of these microorganisms by using the GRiD software
package to map that ratio of DNA close to the origin of replication

with that of the terminus region. Although no results were
provided, Vendor L claims to be working on novel machine-
learning/artificial-intelligence algorithms that could help increase
accuracy of results.

CONCLUSION

Although metagenomics offers tantalizing access to the genetic
and functional potential of a microbial community, more
work needs to be carried out to standardize ever evolving
analyses pipelines and databases used to understand big-data
generated from a low-biomass environment. To standardize
these metagenomics sequence analyses pipelines, synthetic
metagenomes containing known quantities should be developed
and utilized. Additionally, the use of sequencing technologies
that produce longer sequences should be considered to aid in the
identification of PP-relevant microorganisms. Even though all the
vendors in this study utilized different computational algorithms
and pipelines to analyze the provided shotgun metagenome
data, Vendor J approaches allowed them to identify species
not detected by other vendors. Invariably, all vendors utilized
could only resolve about 15% of the shotgun sequences since
public databases contain only annotated sequences pertaining to
culturable microorganisms. Metagenomics has the potential to
be a useful assay for detecting microorganisms of PP concern
and explore functional characteristics of yet-to-be cultured
microorganisms by constructing MAGs.
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Supplementary Figure 1 | Abundance of reads in control samples that passed
quality control (QC) measures of each vendor (dark- and light-blue; gray
represents reads discarded by the QC stage; dark-blue represent QC reads
taxonomically classified) (A), relative abundance of species detected by each
vendor (B), Venn diagram representing overlap in species detected in control
samples (C), and network diagram showing the relationship between vendors
(blue nodes) and detected species (red and gray nodes; red nodes are species of

potential Planetary Protection concern) in control samples (D). The FC9 sample is
not included due to the low number of reads (n = 44) as well as their taxonomic
affiliation to the genus and species was not resolved.

Supplementary Figure 2 | Estimated replication score for assembled
Acinetobacter and Bacillus species in each sample (A). Higher scores indicate
faster replication, range indicates the 95% confidence interval. Some samples
were not scored for one or both species because that species was not detected.
Values are similar when reference genomes are substituted for assemblies. Red
glyphs are Acinetobacter and blue are Bacillus. Comparison of cleanroom
samples with the MetaSUB database (B). Both panels (left and right) show
cleanroom samples plotted with MetaSUB samples as the background. Plotting
was performed using UMAP to reduce data to two dimensions. The input data
were binary, indicating presence or absence of a feature. Left shows microbial
species, right shows microbial metabolic pathways.

Supplementary Figure 3 | Relative abundance of species detected by Vendor C
and Vendor N when both vendors use the same taxonomic classification
algorithm (MetaPhlAn2).

Supplementary Table 1 | Dormancy and sporulation subsystems (A) and all
subsystems (B) detected by vendor J using the SEED database.

Supplementary Table 2 | Genes and predicted proteins associated with
sporulation, heat shock, peroxide resistance, halotolerance, cold shock,
phosphate starvation, and antibiotic and heavy metal resistance detected by
vendor N using HUMAnN2.

Supplementary Table 3 | Taxonomic classification of SAF floor samples (A) and
control samples (B) performed by each vendor.
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