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The microaerophilic pathogen Campylobacter jejuni is a leading bacterial cause of human
gastroenteritis in developed countries. Even though it has a reputation as a fastidious
organism, C. jejuni is widespread and can be easily isolated from various animals, food, and
environmental sources. It is suggested that an ability to form biofilms is probably necessary
for the survival of C. jejuni under harsh environmental conditions. The first step required for
successful biofilm formation is adhesion to a suitable surface. Therefore, in this work, the
degree of adhesion was evaluated, followed by characterization and quantification of
biofilms using confocal laser scanning microscopy (CLSM). A total of 15 isolates of C.
jejuni were used in the experiments (12 isolates from surface and waste waters, 1 human
clinical, 1 food and 1 ACTT BAA-2151 collection strain, all samples originated from the
Czech Republic). Regardless of the sample origin, allC. jejuni isolates were able to adhere to
the polystyrene surface within 30 min, with the number of attached cells increasing with the
time of incubation. The resulting data showed that all isolates were able to form complex
voluminous biofilms after 24 h of cultivation. The average amount of biovolume ranged from
3.59 × 106 µm3 to 17.50 × 106 µm3 in isolates obtained from different sources of water,
16.79 × 106 µm3 in the food isolate and 10.92 × 106 µm3 in the collection strain. However,
the highest amount of biomass was produced by the human clinical isolate (25.48 × 106

µm3). Similar to the quantity, the architecture of the biofilms also differed, from a rugged flat
monolayer of cells to large clustered structures. Further, all isolates were tested for the
presence of the luxS gene, as the luxS/AI-2 (autoinducer-2) quorum sensing pathway has
been previously connected with enhanced biofilm formation. Two isolates originated from
surface waters did not possess the luxS gene. These isolates formed thinner and sparser
biofilms lacking the presence of significant clusters. However, the ability to adhere to the
surface was preserved. The sequencing of the luxS-containing fragments shown a high
similarity of the luxS gene among the isolates.

Keywords: Campylobacter jejuni, biofilm, adhesion, luxS, foodborne pathogen, confocal laser scanning
microscopy, water
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INTRODUCTION

Campylobacteriosis is an infection caused by Campylobacter
spp., which is considered one of the main causes of foodborne
gastrointestinal bacterial infections worldwide (Allos, 2001).
According to the latest EFSA report, in total 246,571 cases of
campylobacteriosis were confirmed in 36 EU countries in 2018.
Interestingly, the Czech Republic is among the countries with the
highest incidence of the disease (215.8 cases per 100,000
inhabitants) (EFSA and ECDC, 2019). The most common
species causing the human infection is Campylobacter jejuni
(Kaakoush et al., 2015). Symptoms associated with the infection
usually last two to five days and include diarrhea, vomiting, and
abdominal pain (Black et al., 1988). The disease is usually self-
limiting, but sometimes can result in serious autoimmune
diseases, such as Guillain-Barré and Miller-Fischer syndromes,
and reactive arthritis (Salloway et al., 1996; Ang et al., 2001; Pope
et al., 2007).

Although campylobacteriosis belongs to bacterial zoonoses
and is related to consumption of raw or undercooked meat
especially from poultry and drinking of unpasteurized milk
(Blaser et al., 1983; Humphrey, 1986; Sahin et al., 2001;
Zimmer et al., 2003), the disease can also be disseminated also
through the environment, in particular through contaminated
water (Carter et al., 1987; Obiri-Danso and Jones, 1999;
Daczkowska-Kozon and Brzostek-Nowakowska, 2001; Hörman
et al., 2004).

It is known, that C. jejuni can survive in untreated or
inadequately treated aquatic environments, including wells and
groundwater (Stanley et al., 1998). Typically, contamination
occurs directly through feces of wild animals or livestock,
through wastewater from farms, slaughterhouses, manure, and
even as a result of heavy rain (Sacks et al., 1986; Eberhart-Phillips
et al., 1997; Clark et al., 2003). Therefore, it has been suggested
that its survival in the water systems of animal husbandry
facilities and animal-processing units contributes to the
infection of animals, and cross-contamination of animal
carcasses (Humphrey and Beckett, 1987; Pearson et al., 1993).
Thus, the survival of C. jejuni in the aquatic environment is
important both directly and indirectly in the occurrence of
human diseases. There were several reports of how the water
from the environment may pose a source of outbreaks of
campylobacteriosis and in almost all cases, well or drinking
water was contaminated with surface or wastewater (Gubbels
et al., 2012; Bartholomew et al., 2014; Pedati et al., 2019).

Compared to many other foodborne pathogens, C. jejuni is
demanding on environmental conditions, it multiplies under a
microaerobic atmosphere (5% oxygen, 10% carbon dioxide and
85% nitrogen) at a temperature ranging between 37°C and 42°C
(Park, 2002). Theoretically, these properties make C. jejuni
incapable of existing outside the host in a natural aerobic
environment (Park, 2002; Nguyen et al. , 2012), but
paradoxically, it not only survives in foods that are subjected
to difficult processing conditions (preservation, temperature
changes, stress, different pH), but can also be transmitted
through natural sources (Klancnik et al., 2009).
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Judging by the published research, one of the main strategies
that C. jejuni uses to survive in the environment is the ability to
attach to surfaces and form biofilms (Chmielewski and Frank,
2003). Biofilms are commonly defined as adherent microbial
cells embedded within a matrix of extracellular polymeric
substances (Costerton et al., 1995; Donlan and Costerton,
2002). It is known, that C. jejuni can adhere to both various
inert surfaces (e.g. stainless steel, fiberglass, coverslips,
nitrocellulose membranes, various plastics) and biotic surfaces
(animal and human intestinal cell lines) (Pogacar et al., 2009;
Sulaeman et al., 2012; Pogačar et al., 2015). Cell adhesion
precedes the formation of biofilms, which represent a protection
mechanism against environmental stresses, antimicrobial agents,
and the host’s immune response (Hall-Stoodley et al., 2004;
Blanpain-Avet et al., 2011). C. jejuni can also form biofilms on
various abiotic surfaces commonly used in irrigation systems, such
as acrylonitrile butadiene styrene and polyvinyl chloride plastics
(Reeser et al., 2007). It also has the ability to form biofilms in water
supply systems in livestock complexes and animal processing
plants, which can then represent a constant source of infection
for both animals and humans (Buswell et al., 1998; Zimmer
et al., 2003).

The molecular background of biofilm formation in
Campylobacter is still not fully understood, although there is
evidence that flagella, surface proteins, and quorum sensing
represented by S-ribosylhomocysteine lyase (luxS) are required
to maximize the biofilm formation (Elvers and Park, 2002;
Asakura et al., 2007; Kalmokoff et al., 2006; Kim et al., 2015).
Several studies have already demonstrated that this gene is
involved in a variety of physiological pathways in C. jejuni,
including motility, autoagglutination, flagellar expression,
oxidative stress, and animal colonization. It was also shown
that luxS-deficient mutants form significantly fewer biofilms
(Elvers and Park, 2002; Reeser et al., 2007; Šimunović
et al., 2020).

Previous studies ofCampylobacter spp. biofilms focusedmainly
on cultivation under standard laboratory conditions or under
artificial stress (Reuter et al., 2010; Oh et al., 2016; Melo et al.,
2017). Biofilms were mostly characterized by semiquantitative
analysis using crystal violet, which generally provides a
comparative characteristic of different isolates, however, it does
not provide information about the biofilm structure (Gunther and
Chen, 2009; Teh et al., 2010; Zhong et al., 2020). Studies that
described structural elements of biofilms using CLSM (Sanders
et al., 2007; Ica et al., 2012; Bronnec et al., 2016), in turn, did not
perform a comparative characterization of biofilms formed by
isolates with different backgrounds. As far as we know, the
experiments were mostly examining isolates originating from
various animal, food and clinical samples, but excluded
environmental isolates, such as those isolated from water.
Therefore, this study is focused on the comparison of isolates
obtained from different sources (surface and waste water, food,
and clinical samples), with an emphasis on their ability to adhere
to a surface and subsequently form a biofilm. All isolates were also
tested for the presence and the respective sequence of the luxS
gene, to confirm its crucial role in biofilm development.
November 2020 | Volume 10 | Article 596613
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MATERIALS AND METHODS

Bacterial Isolates and Culture Conditions
All C. jejuni isolates obtained from the environment (7 from the
surface water, 5 from sewage, 1 form meat sample and 2 clinical
human isolates) were collected from surface and waste water
within the whole Czech Republic in the period of 2018 to 2019
(Table 1) were stored at −80°C in 20% glycerol with 80% Brain
Heart Infusion (BHI; Oxoid, UK). They were routinely grown on
Karmali agar (Oxoid, UK) at 42°C under microaerobic
conditions (5% O2, 10% CO2, 85% N2) for 24 h in a multi-gas
incubator MCO-18M (Sanyo, Japan).

Biofilm Formation Assay
All biofilms were produced in 96-well polystyrene microtiter
plate with mClear® bottom (thickness of 190 ± 5 µm; Greiner
Bio-one, Germany) under static conditions according to
Turonova et al. (2015), with certain modifications mentioned
below. Briefly, C. jejuni was grown 48 h on the Karmali agar, the
cells were then resuspended in Mueller-Hinton Broth (MHB) to
reach OD600 nm = 0.8 ± 0.1. Resulting bacterial suspension was
inoculated into sterile 96-well plates (250 µl per well) in technical
triplicates and incubated at 42°C at microaerobic atmosphere for
2.5 h to allow the cells to adhere to the bottom of the well. After
that, each bacterial suspension was carefully replaced with 250 µl
of fresh sterile MHB. After 24 h of incubation at 42°C, all wells
were carefully washed 3 times with sterile physiological solution.
At last, the wells containing 150 µl of physiological solution were
stained by adding 50 µl of 5 µM Syto 9 (Invitrogen, USA) directly
into the wells. The experiments were carried out in three
independent biological replicates and contained a control of
potential bacterial contamination (wells containing
sterile medium).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
Confocal Laser Scanning Microscopy
(CLSM)
The biofilm images were acquired with Olympus IX81F- ZDC2
(Olympus, Japan) confocal scanning laser microscope with
spinning disc (CLSM), equipped with Ander IQ software
(Andor, Belfast, UK) using an objective Clara 10x. All wells
were first scanned manually in bright field to observe the biofilm
structure, then one representative location was selected for the
CLSM analysis. For evaluation of the 3D images of the biofilm
structure and its volume, stacks of horizontal planar images with
a z‑step selected according to the NY Quist sampling (3.57 mm)
were recorded in the green channel (excitation 488 nm, emission
525 nm). The single snapshots of 1040 × 1392 pixels representing
an area of 670.8 × 897.8 µm were analyzed by the IMARIS × 64
7.6.4 software, resulting in 3D model of the biofilm structure
(Biplane, Switzerland). The volume of the model was then used
as a parameter for comparison of the amount of the biofilms. The
bio-volume corresponds to the total volume of cells and eDNA in
the acquired field.
Adhesion Assay
To evaluate the rate of bacterial adhesion, 96- well clear-bottom
plates were inoculated with 100 ml of C. jejuni suspension in MHB
(OD600 nm = 0.8 ± 0.1). After selected time of incubation (30, 60,
120, 180 min) at 42°C under microaerobic conditions, Syto 9 was
added to each well, allowing the cells to stain for 15 min. After the
staining, the supernatants containing the non-adhered cells were
removed from each well, and the wells were carefully rinsed three
times with sterile distilled water and quickly dried in the air.
Further, 100 µl of 1.5% low melting agarose (Sigma-Aldrich, USA)
was added, in order to fix the bacteria attached to the bottom of
the well. After solidification, plates were viewed with the CLSM
using a water immersion objective 40x. The adhesion rate of the
isolates was evaluated by counting the cells in ten different fields of
each well. The experiment was performed in 3 biological and 3
technical replicates.
PCR Confirmation and Cloning of the luxS
Gene
The genomic DNA of tested isolates was isolated according to the
protocol described by He (2011). The presence of the luxS gene
was confirmed by PCR with primers specific to the inner region
of the mentioned gene (primer set 1, Table 2). For the purpose of
the sequence analysis, approximately 800 bp fragment
containing the luxS gene was amplified with primer set 2
containing modified adaptors for restriction enzymes NcoI and
EcoRI (Table 2). Subsequently, amplified fragment was cloned to
the pGEM-T easy vector (Promega) via technique of the sticky
ends. Subsequently, the ligation mixture was transformed into
the competent cells of Escherichia coli DH5a (NEB, USA) by the
routine heat-shock protocol described by Sambrook and Russell
(2006). Positive colonies of each sample were selected on
Lysogeny agar (LB-A) (Hi-media, India) containing ampicillin
(100 µg/ml), X-Gal (40 µg/ml) and IPTG (50 µg/ml) (all from
Merck, USA).
TABLE 1 | C. jejuni isolates used in this study.

Name Origin Source The presence of the
luxS gene

Cj5648P Water Pond, 2019 Yes
Cj5643P Pond, 2019 Yes
Cj5683P Pond, 2019 No
Cj5715P Pond, 2019 Yes
Cj5654P Pond, 2019 Yes
Cj5653P Pond, 2018 No
Cj5650P Pond, 2019 Yes
Cj5640W Outlet of a wastewater treatment

plant, 2019
Yes

Cj5623W Outlet of a wastewater treatment
plant, 2019

Yes

Cj5689W Outlet of a wastewater treatment
plant, 2019

Yes

Cj5629W Outlet of a wastewater treatment
plant, 2019

Yes

Cj5716W Outlet of a wastewater treatment
plant, 2018

Yes

Cj1M Food Butcher shop, 2019 Yes
Cj5718C Clinical Hospital, 2019 Yes
Cj81176 ATCC Collection (BAA-2151),

originally from outbreak
Yes
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The plasmid containing the fragment of interest of each
sample was isolated by the GenElute™ HP Plasmid Miniprep
Kit (Merck, USA), sequenced and the data were deposited to the
NCBI database.

Statistical Analysis
The data were expressed as the mean ± standard deviation.
Statistical analysis was carried out using Statistica 10.0. The
significance level was chosen at 95%, consequently, an effect
was considered significant if its p-value was lower than 0.05. The
association between the ability to adhere and the ability to form
biofilm was evaluated by Spearman correlation analysis.

Calculations and graphs were processed using Microsoft
Excel 2016.
RESULTS

Adhesion
The ability of cells to adhere to the bottom of the microtiter
plate was evaluated by counting the cells stained with Syto 9
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
after visualization on CLSM. The adhesion of 15 C. jejuni
isolates was evaluated after 30, 60, 120, and 180 min of
incubation at 42°C in MHB under microaerobic conditions.
The results showed various adhesion capabilities among the
isolates of C. jejuni (Figure 1). In general, all C. jejuni isolates
were able to adhere to the surface within 30 min, with the
number of cells increasing with the time of incubation. When
speaking about the particular isolates, the strongest adhesion
ability was observed in the surface water isolate Сj5653P at 120
and 180 min (p < 0.05), while the lowest adhesion was observed
in the surface water isolate Сj5683P at 120 and 180 min (p <
0.05). Statistical analysis (Spearman’s rank correlation test)
showed a positive correlation adhesion capacity and time of
incubation in 7 out of 15 isolates (p < 0.05, Supplementary
Table 1).

Architecture and Quantification of Biofilms
The 15 C. jejuni isolates were investigated for static biofilm
formation with the selected cultivation protocol. According to
the evaluation of CLSM images, all isolates of C. jejuni were able
to form three-dimensional structures after 24 h of incubation.
TABLE 2 | Primers used in this study.

Primer Sequence Size (bp) Restriction site

Set 1 seq_F TTGATTTGCGTTTTTGCGTA 222 bp NA
seq_R CTTTCATGGCTGCTTCCCAA 222 bp NA

Set 2 pGEM_F CGCCATGGGAGCATGAACTTCAAGACCT 800 bp NcoI
pGEM_R ACGAATTCCAAAGGACGCACTAGATACT 800 bp EcoRI
November 2020 | Volume 10
The restriction sites for NcoI and EcoRI highlighted in bold.
FIGURE 1 | Adhesion capability of Campylobacter jejuni isolates measured at four different timepoints of incubation at 42°C under microaerobic atmosphere. The
bars represent means of 9 values (triplicate of three independent cultures), the error bars represent standard deviation from the mean; * marks significantly different
isolates (p < 0.05).
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However, the quantity and the architecture of the biofilms of the
isolates were diverse (Figure 2, Supplementary Table 2).

The biofilm architecture ranged from a flat homogeneous
layer of cells to complex clustered structures containing hollow
voids. Biofilms formed by isolates from pond water displayed as
highly structured massive compact clusters. On the contrary,
biofilms formed by isolates from waste water had a more
homogeneous and continuous structure. Within the collection,
only two surface water isolates (Cj5653P and Cj5683W) formed
flat biofilms, looking like simple clusters of cells (Figure 3). But
in general, the visual structure of the water isolates did not differ
from the structure of the clinical, food, and collection strains.

When speaking about the biofilm quantity, the average
amount of biovolume ranged from 3.59 × 106 µm3 to 17.50 ×
106 µm3 in isolates isolated from different sources of water,
16.79 × 106 µm3 in the food isolate and 10.92 × 106 µm3 in the
collection strain. The larger biovolume was produced by the
clinical isolate (25.48 × 106 µm3). The weakest ability to form
biofilms was observed in two water isolates: Cj5653P and
Cj5683P (3.59 × 106 µm3 and 4.99 × 106 µm3), even though
the water isolate Cj5653P had the strongest adhesive ability.
Correlation analysis of adhesion capacity and biofilm quantity
revealed strong positive relationship only in one isolate
(Cj5689W) after 30, 120 and 180 min of incubation. In other
cases, mostly no correlation was observed. However, six isolates
showed negative correlation between the adhesion and
biovolume at one timepoint (Supplementary Table 3).

Screening and Sequencing of the
luxS Gene
Since the presence or absence of the luxS gene in the genome of
C. jejuni may affect the ability to form a biofilm, the isolates were
tested for a presence of the gene luxS, which is responsible for
production of the communication molecules AI-2. PCR with the
first specific primer set 1 (Table 2), which forms a characteristic 222
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
bp product in the inner region of the luxS gene, showed no
amplified product in isolates Cj5653P and Cj5683P
(Supplementary Figure 1A). The results were confirmed by
second PCR with primer set 2 (Table 2), which bounds to the
outer region around the luxS and forms characteristic 800 bp
product (Supplementary Figure 1B). The results of Sanger
sequencing of the luxS-containing fragments of positive samples
showed high rate of similarity among the nucleotide sequences,
reaching 95.15% to 99.79% of homology with the collection strain
81 to 176 (Supplementary Figure 2). Translation of nucleotide
sequence to the amino acid sequence showed several differences
(Table 3), which could be important for the future studies of the
function of the luxS gene and the ability to produce the signal
molecule. Sequencing data is available in the NCBI database under
the following numbers: MT432260, MT432261, MT432262,
MT432263, MT432264, MT432265, MT432266, MT432267,
MT432268, MT432269, MT432270, MT432271.
DISCUSSION

Due to the high prevalence of human infections caused by C.
jejuni throughout the world, it is important to understand the
ability of this pathogen to persist in the environment and
understand the risks it represents to the public health. One of
the critical factors ensuring its protection against harsh
conditions is its ability to form biofilms (Donlan and
Costerton, 2002; Chmielewski and Frank, 2003; Hall-Stoodley
et al., 2004).

Although numerous studies have shown that C. jejuni can
form biofilms on abiotic surfaces, there is very little information
concerning environmental isolates, in particular those isolated
from water, even though they represent a potential source of
infection (Hänninen et al., 2003; Mughini-Gras et al., 2006;
Sparks, 2019). Therefore, this work was focused on a
FIGURE 2 | Biofilm biomass quantified by CLSM after the Syto-9 staining. Experiments were performed in triplicate of three independent cultures, the error bars
represent standard deviation from the mean. Bar of the same color (white, gray and black) indicates statistically similar values (p < 0.05).
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comparison of the adhesion and biofilm formation ability of
isolates of different origin (surface and waste water, food, and
clinical isolates). All tested isolates were able to adhere to the
microtiter plate within the first 30 min of incubation, although
the numbers of attached cells differed among the isolates. Similar
diversity was observed when comparing the volume of the
subsequently produced biofilms. Interestingly, even though the
adhesion is the first and crucial step of the biofilm formation
process, it seems that the adhesion capacity is not directly
proportional to the level of the biofilm formation ability, as
only one isolate showed positive correlation between the
adhesion capacity and the quantity of the biofilm. Moreover,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
negative correlation was observed in six isolates. However, it is
important to mention, that the biofilms were quantified after
24 h of incubation and could, therefore, be in their dispersal
phase. To reveal the true relation between the adhesion capacity
and biofilm formation ability, further experiments involving
measurements of biofilm formation dynamics are needed.

Leaving aside the quantitative analysis, the architecture of the
biofilms formed by the tested isolates was also very diverse. The
structure of C. jejuni biofilms can vary from a monolayer of
adherent cells, through flat unstructured multilayers, up to
highly structured biomass of clusters containing water channels
and voids (Turonova et al., 2015; Bronnec et al., 2016).
FIGURE 3 | Three-dimensional projections of structures of biofilms obtained from scanning along the z-axis acquired through CLSM. The scale bar represents 100
mm. The CLSM images represent an overhead view of the biofilms formed by 15 isolates of C. jejuni, with virtual shadow projection to the right.
November 2020 | Volume 10 | Article 596613
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The architecture of the biofilm mostly depends on the strains
used for the experiments and on the experimental design
(Buswell et al., 1998; Joshua et al., 2006). Interestingly, the
isolates obtained from the wastewater treatment plant formed
more compact biofilms than the isolates from other origins.
Their structure was almost carpet-like, with various numbers of
small channels and voids. This architecture could be related to
the stress that C. jejuni cells encounter during the treatment of
the water - compact structure with fewer voids means that only a
small proportion of the cells is exposed to the chemicals used for
the water treatment. Moreover, the affected cells can pass the
information about the present danger to the deeper layers of the
biofilm via quorum sensing, giving the remaining cells enough
time to adjust and therefore to ensure the survival of
the population.

It is well known that quorum sensing, also known as cell-to-
cell signaling, plays a role in biofilm formation (Plummer, 2012).
Previous studies reported that C. jejuni strains that lack the luxS
gene responsible for the production of autoinducer-2 molecules
had a reduced ability to form static biofilms (Reeser et al., 2007).
According to some sources, the distribution of the luxS gene
within the genus of C. jejuni is not uniform and is often missing,
especially in environmental isolates (Hepworth et al., 2011).
However, in this work luxS was absent in only two out of the
12 tested water isolates. The sequence of the gene was relatively
well conserved, although the translation to the amino acid
sequence revealed several variations, mostly alanine instead of
glutamate at position 106, and valine instead of isoleucine at
position 100. Interestingly, the strains containing the respective
substitutions did not show any similarities in adhesion capacity,
biofilm quantity, or the biofilm architecture. Therefore, either the
substitution of the amino acids does not cause a functional
change of the LuxS enzyme, or it does not influence these
particular characteristics of the biofilm formation. Recently,
Plummer et al. (2011) described a mutation G92D in C. jejuni
81116, which resulted in the loss of production of the AI-2 as well
as in decreased the catalytic activity of LuxS in comparison to the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
wild-type. However, this type of mutation was not detected in
among the inspected strains.

The two isolates with missing luxS were isolated from
surface water (pond) and both produced thin sparse biofilms,
lacking the presence of significant clusters (complex
interconnected parts of the biomass). Despite the absent luxS
and reduced biofilm formation ability, the isolates were able to
adhere to the surface. Moreover, one of them was marked as the
isolate with the highest adhesion ability. These results suggest
that the presence or absence of the luxS gene itself may have a
decisive effect on biofilm formation and clustering ability, but
does not affect the adhesion itself. This is in contrast with the
data published by Quiñones et al. (2009), who observed
reduced adhesion ability in mutants lacking the luxS gene.
However, the authors used different methodology to assess
adhesion capacity.

Overall, this work showed that water isolates of C. jejuni can
adhere to a surface and subsequently form a spatially structured
biofilm. As their adhesion capacity was comparable to the strains
of clinical or food origin, they might indeed represent a
significant source of contamination in animal husbandry,
and as a source of infection in humans. However, further
research is needed to evaluate their virulence and persistence
in the environment.
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TABLE 3 | Differences in LuxS amino acid sequences of isolates as compared
to the collection strain C. jejuni NCTC 11168.

Isolate Amino acid variation and their position*

Cj5718C I!V (100); A!E (106); I!M (154)
Cj5650P I!V (100); A!E (106); I!M (154)
Cj5689W I!V (100) A!E (106); I!M (154)
Cj5640W I!V (100); E!K (105); I!M (154)
Cj5715P I!V (42, 100); N!D (71); I!M (154); A!E (106)
Cj5716W L!F (161); I!M (154); A!E (106)
Cj81176 D!N (10); I!V (42); N!D (71); I!V (100); A!E (106); I!M (154)
Cj5648P A!E (106); I!M (154)
Cj5654P A!E (106); I!M (154)
Cj5643P Same as NCTC 11168
Cj5623W Same as NCTC 11168
Cj5629W Same as NCTC 11168
Cj1M Same as NCTC 11168
Cj5653P NA
Cj5683P NA
*A, alanine; D, aspartate; E, glutamate; F, phenylalanine; I, isoleucine; K, lysine; L, leucine;
M, methionine; N, asparagine; V, valine.
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