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Introduction
Mathematical modeling of cancer hazards in aging 
is aimed at determining the relationship between 
the observed cancer incidences in the population 
with the carcinogenic processes ongoing in  individuals. 
At the present time, many different carcinogenetic 
models have been developed in which the hazard of 
getting cancer in aging is considered as a random 
 process. The main difference between these models is 
in accounting the variability of the hazard of getting 
cancer within individuals. Some of the models assume 
that all individuals initially have equal chances of get-
ting cancer,1,2 while other models assume that within 
individuals these chances are randomly distributed and 
introduce a nonnegative random variable (a frailty) 
that is multiplied with the hazard to cancer.3

Modeling of cancer hazards in aging requires the 
use of a theoretical hazard function and, when frailty 
is assumed, a frailty distribution function. As hazard 
functions, linear functions,1 exponential functions,4 
beta-functions,5,6 and some other functions have been 
used.7 As frailty, the gamma-distribution, compound 
Poisson distribution, power-variance distribution, 
as well as other distributions, have been utilized.8–12 
Mathematically, the problem of modeling is stated 
as a best fitting of the hazard rates with observations 
using methods of regression analysis. The obtained 
models are useful when the utilized model parame-
ters have apparent biological meaning and the esti-
mated values of these parameters are consistent with 
the estimates presented by biological means. Unfor-
tunately, often these models are very complicated 
and do not agree with the observed data. In addition, 
some model parameters do not have clear biological 
meaning, and/or their values are inconsistent with the 
estimates provided by the current knowledge on the 
carcinogenetic processes ongoing in individuals.3

In the present work, for a better accounting for can-
cer hazards on individual and population levels, we 
utilized the main concepts of survival analysis (the sur-
vival function, S(t), the hazard function, h(t), and the 
probability density function (pdf), f(t)), and conditioned 
these functions on frailty α used on an individual level. 
We assumed that the population under consideration is 
a dichotomous one: a small part of this population (so 
called fraction at risk) will eventually get the cancer,9 
while the other part (immune fraction) will not. In such 
a case, it is appropriate to present the frailty α by the 

Bernoulli distribution. Based on the main concepts of 
survival analysis and the mathematical statistics,13,14 we 
developed novel equations and a computing framework 
to be used in carcinogenetic modeling. We suggested 
that these equations and the computing framework can 
be applied to estimate the parameters of different carci-
nogenic models with a given f(t) (or h(t), or S(t)) on the 
individual levels. As an example, we used the Weibull 
pdf, suggested by the Armitage-Doll multiple muta-
tion model of carcinogenesis, and estimated the model 
parameters of the pancreatic cancer occurrence in aging 
using the corresponding data collected by SEER9 reg-
istries from 1975 through 2004.

Basic equations for Frailty Modeling 
of cancer Hazards in Aging
To determine the relationship between the estimates 
of the hazard function performed for the dichotomous 
population (population level) with the survival, haz-
ard, and probability density functions determined 
on the individual level, we utilized the concept of 
frailty. We presented variability to cancer susceptibil-
ity between individuals in the dichotomous popula-
tion using the Bernoulli distribution, which provides 
a binary presentation (1/0) to the statistical distribu-
tion of individuals within the considered population, 
assuming that “1” means that an individual belongs 
to the fraction at risk and eventually will get cancer, 
while “0” means that this individual belongs to the 
immune fraction and will not get cancer.

Main concepts for modeling of cancer 
hazards in aging for individuals  
from the fraction at risk
The concepts of survival function, S(t), a hazard func-
tion, h(t) and a probability density function (pdf), f(t), 
developed in “classical” survival analysis can be directly 
used for the mathematical presentation of events occur-
ring in the fraction at risk. In this case, the event time, t, 
refers to the age of an individual when a cancer is diag-
nosed and the survival function, S(t), can be defined as:

 S t F t( ) ( )= −1  (1)

where F(t) is a cumulative frequency function (or a 
cumulative distribution function, cdf), which refers 
to the probability that in an individual, a considered 
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event will occur up to the time t. This function can be 
presented as:

 
F t f u du

t
( ) ( )= ∫0

 (2)

By definition, a hazard function, h(t), is determined 
by formula13:

 
h t

d S t dt

S t
( )

[ ( )]/

( )
= −  (3)

From (1)–(3) it follows:

 
h t

f t

S t
( )

( )

( )
=  (4)

Note that by specifying the probability density 
function, f(t), or the survival function, S(t), or the 
hazard function, h(t), the other two functions can be 
ascertained. For example, if f(t) is the Weibull pdf, 
then the corresponding hazard function, h(t), will be 
an exponential function of t and ln[−ln S(t)] is a linear 
function with ln t.

Basic equations for modeling of cancer 
hazards in aging for individuals  
from the dichotomous population
In frailty models, the basic hazard rate, h(t), is multi-
plied with the frailty positive random variable α. The 
frailty random variable expresses the extent of frailty in 
each individual. A large value of α reflects that an indi-
vidual is highly susceptible to cancer, whereas a low 
value characterizes an individual that is less susceptible 
to cancer. The individual hazard rate and survival func-
tion conditioned on frailty can be expressed as13:

 h t h t( | ) ( )α α=  (5)

and

 S t S t( | ) ( )α α=  (6)

When the frailty distribution with the pdf, g(α), is 
known from the conditional survival function, S(t|α), 
which is determined on the individual level, one can 

obtain unconditional survival function, SU(t), and the 
unconditional hazard function, hU(t), on the population 
level. In fact, for the population under consideration, 
we have:13

 
S t S t g dU ( ) ( | ) ( )=

∞

∫ α α α
0

 (7)

Note that if α is a discreet random variable, α = αΝ, 
N = 1,2…, with probability distribution g(αΝ) = gN, 
then instead of (7) we have:

 
S t S t gU N N

N

( ) ( | )= ∑ α  (8)

and by definition:13

 
h t

d S t dt

S tU
U

U

( )
[ ( )]/

( )
=

−
 (9)

Based on the fact that only a small part of the 
population (fraction at risk) is exposed to the cancer, 
while the other part of the population (immune frac-
tion) is not, we assumed that the frailty α can also 
take the value of zero (that means that the individual 
is immune to the cancer) and that the frailty α has the 
Bernoulli distribution with the parameter, p, which 
is a probability that a given individual will eventu-
ally get the cancer. The Bernoulli distribution, which 
in mathematical statistics is usually designated as 
B(1,p), has the following discreet pdf:

 g p( )α = = −0 1  (10)

and

 g p( )α = =1  (11)

In such a case, according to (6) and (8), we have:

S t S t p S t p p pS tU ( ) ( ) ( ) ( ) ( )= ⋅ − + ⋅ = − +0 11 1  (12)

Taking into account (1), (2), (9), and (12) we have:

 

h t
pf t

p f u du
U t( )

( )

( )
=

− ∫1
0

 (13)
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For the majority of cancer types, p ,, 1 (because 
a particular type of cancer is a rare disease) and the 
denominator of the right side of the (13) is very close 
to 1. Therefore, from formula (13) it follows that hU(t) 
can be approximated by pf(t):

 h t pf tU ( ) ( )=  (14)

(Below, without losing generosity, we considered 
formula (14) as a precise equality).

According to (14), in the age-specific population, 
the age-specific hazard function is proportional to 
pdf, f(t), of ages at which individuals from the frac-
tion at risk will get cancer. Taking into account that 

f t dt( )
0

1
∞

∫ = , the parameter, p, can be easily obtained 
by integrating both sides of (14):

 
p h t dtU=

∞

∫ ( )
0

 (15)

On the other hand, by definition, the overall cumu-
lative unconditional hazard rate, H0, is determined as:

 
H H h t dtO U U= ∞ =

∞

∫( ) ( )
0

 (16)

where

 
H t h dU U

t
( ) ( )= ∫ τ τ

0
 (17)

is the unconditional cumulative hazard rate. Thus, 
from (15) and (16) it follows that, on the population 
level, the overall cumulative unconditional hazard, 
H0, characterizes the fraction at risk in the dichoto-
mous population and is equal to p.

Finally, by dividing both sides of (14) on p and 
substituting p on H0 we can obtain that:

 

h t

H
f tU

O

( )
( )=  (18)

The equation (18) relates the hazard function, 
hU(t), and the overall hazard, HO, on the population 
level with the pdf, f(t), on the individual level. The left 
side of (18) can be estimated from the observed data. 
We consider (18) as a basic equation for estimating the 

unknown model parameters of f(t) based on values of 
hU(t) and HO that can be estimated from the observed 
data. As we show below, the problem of estimating 
the model parameters of f(t) from the values of hU(t) 
and HO is reduced to the problem of solving the cor-
responding system of the conditional equations.

Using (1) to (4) and (18), after elementary 
transformations, one can obtain the following two 
equations:

 

h t

H H t
h tU

O U

( )

( )
( )

−
=  (19)

and

 

H

H H t
S tO

O U−
=

( )
( ) (20)

These equations can also be used for forming 
the system of the conditional equations from which 
unknown parameters of model hazard and survival 
functions can be estimated.

computing procedures for Modeling 
of cancer Hazards in Aging
Below we propose computing procedures for mod-
eling cancer hazards in aging by using the observed 
data on the population level (presented in a discrete 
tabulated form) and a theoretical form of the pdf, f(t), 
given on the individual level. In a discrete form, to 
solve the problem of modeling of cancer hazards in 
aging, the following three procedures need to be con-
secutively executed.

Procedure 1: estimation of the age-
specific hazard rates by the age-period-
cohort (APC) analysis
Let us assume that the observed numbers of cancer 
cases and the numbers of population in the equal-sized 
consecutive n age intervals, ∆ ∆ ∆i i i n’ ’(| | ; , , ..., ),= =1 2  
and m consecutive time-period intervals, 
∆ ∆ ∆i i j m’’ ’’(| | ; , , ..., ),= =1 2  are known. In cancer reg-
istries, the cancer incidences and the size of popula-
tion are usually tabulated with five-year age intervals 
and five-year timeperiod intervals (ie, ∆ = 5). Such 
tables have n rows, associated with the age  intervals, 
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and m columns, associated with the time-period inter-
vals. The estimates of the age-specific incidence 
crude rates for each i,j cell of a cancer registry table, 

,
ˆ ( )i j iI t , and their standard errors, ,

ˆ ˆ[ ( )]i j iSE I t , can be 
determined as:15

 

,
,

,

ˆ ( ) , 1, 2, ...,= =
∆

i j
i j i

i j

m
I t i n

P
 (21)

and

 

,

,
,

ˆ ˆ[ ( )] , 1, 2, ...,= =
∆

i j

i j i
i j

m
SE I t i n

P
 (22)

where ti is the midpoint of the i-th age interval 
(i = 1,2, …, n). (Here and below symbols “^”  designate 
the corresponding estimates.) In (21) and (22), mi,j 
and Pi,j are the number of cancer cases and the size 
of population in the i-th age interval, observed during 
the j-th time-period, correspondingly.

According to the log-linear age-period-cohort 
(LLAPC) model, the observed age-specific incidence 
rates can be presented as:16–18

,
ˆ ( ) ( ), 1,2, ..., , 1,2, ...,= = =i j i j l U iI t v u h t i n j m (23)

where vj and ui are the time-period and birth-cohort 
effects, correspondingly, and hU(ti) are the values of 
the unknown hazard function at age, ti, to be estimated 
from the system of the conditional equations (23). In 
(23), the index l is defined by a linear combination of 
the age and time-period indexes in the following way:

 l j i n l k= − + =( , , ..., )1 2  (24)

From system (23) it follows that, when the time-
period and birth-cohort effects are negligible (vj ≅ 1 
and ul ≅1), the best estimates of the hazard function 
values, ˆ ( )U ih t , will be the weighted means of the inci-
dence rates:

 

, ,1

,1

ˆ ( )
ˆ ( ) 1,2, ..., 1,2, ...,=

=

= = =
∑

∑

m

i j i j ij
U i m

i jj

W I t
h t i n j m

W

 (25)

where weights, Wi,j, can be calculated using formula 
(22) as:

 
, 2

,

1
1,2, ...,ˆ ˆ[ ( )]

= =i j
i j i

W i n
SE I t

 (26)

and

2

2
,1

1ˆˆ [ ( )] 1,2, ...,
ˆ ˆ1/ [ ( )]

=

= =
∑U i m

i j ij

SE h t i n
SE I t

 (27)

When the time-period and birth-cohort effects are 
significant, the estimates, ˆ ( )U ih t , can be obtained by 
the age-period-cohort (APC) analysis. Recently,19 
we proposed an efficient computational procedure 
for determining the APC effects in the frame of the 
LLAPC model and demonstrated how this procedure 
can be used in practice.

Procedure 2: estimation of the pdf, cdf, 
hazard, and survival functions on the 
individual level
To estimate f(t), we will use the equation (18) that 
presents a relationship between the values of the 
hazards of getting cancer in aging and f(t). In a dis-
crete form, the estimates ˆ ( )if t  can be obtained from 
formula (18) by substituting hU(t) and HO with their 
estimates:

 

ˆ ( )ˆ ( ) 1, 2, ...,ˆ= =U i
i

O

h t
f t i n

H
 (28)

In (28), ˆ ( )U ih t , are determined by formula (25), and 
according to (16), ˆ

OH  can be determined as:

 1
ˆˆ ( ) 1, 2, ...,

=
= ∆ =∑ n

O U ii
H h t i n (29)

Standard errors of ˆ ( )if t  can be obtained by the 
simulation experiments in the following way.14 
Assuming that the errors follow a Gaussian dis-
tribution around ˆ ( )U ih t  with known ˆˆ[ ( )]U iSE h t , 
one can simulate, via equations (28) and (29), the 
estimated values of ˆ ( )if t  for many times and then 
obtain the estimates, ˆˆ[ ( )]iSE f t , in a standard way. 
An alternative way for obtaining ˆˆ[ ( )]iSE f t  is to 
use the standard rules of error propagation.20 Our 
computational experiments showed that these two 
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approaches give nearly the same results. Below, 
ˆˆ[ ( )]iSE f t  is obtained by the standard rules of error 

propagation.20

Assuming that a correlation between errors of the 
ˆ

OH  and ˆ ( )U ih t  is negligible, and using standard rules 
of error propagation, we presented the standard errors 
of ˆ

OH  and ˆ ( )if t  as:

2 2 2

1
ˆˆ ˆ ˆ[ ] [ ( )] 1,2, ...,

=
= ∆ =∑ n

O U ii
SE H SE h t i n (30)

 

2
2 2

2
22

ˆ ˆˆ ˆ ˆ( ) [ ( )] ( )ˆˆ [ ( )] ˆ ˆ ˆ[ ( )]
1, 2, ...,

    = +      
=

U i U i O
i

O OU i

h t SE h t SE H
SE f t

H Hh t
i n

 (31)

Estimates of the cumulative distribution function 
(cdf), ˆ ( )iF t , and the estimates of their standard errors, 

ˆ ˆ[ ( )]iSE F t , can be obtained as follows:

1

1 1 1
ˆ ˆ ˆˆ ˆ( ) ( ), ( ) ( ) ( )

2 2
2, ...,

−

=

∆ ∆= = ∆ +

=
∑ i

i k ik
F t f t F t f t f t

i n  (32)

2
2 2 2

1 1

2
12 2 2

1

ˆˆ ˆ ˆ ˆ ˆ[ ( )] [ ( )], [ ( )]
4

ˆ ˆˆ ˆ[ ( )] [ ( )],
4

2, ...,

−

=

∆=

∆= ∆ +

=
∑

i

i

i ik

SE F t SE f t SE F t

SE f t SE f t

i n  (33)

where tk is the midpoint of the interval, ∆k, and ˆ ( )if t  
and ˆˆ[ ( )]iSE f t  are given by formulas (28) and (31), 
correspondingly.

Analogously, to estimate the hazard and survival 
functions on the individual level from the observed 
data in a discrete form, the systems of conditional 
equations can be constructed on the basis of the equa-
tions (19) and (20). For estimates of the hazard func-
tion on the individual level we obtained:

 

ˆ ( )ˆ( ) 1, 2, ...,ˆ ˆ ( )
= =

−
U i

i
O U i

h t
h t i n

H H t
 (34)

where ˆ
OH  is the estimate of the overall hazard given 

by formula (28). The estimate of the cumulative haz-
ard, ˆ

UH , is obtained as:

 

1

1 1 1
ˆ ˆ ˆˆ ˆ( ) ( ), ( ) ( ) ( )

2 2
2, ...,

−

=

∆ ∆= = ∆ +

=
∑ i

U U U i U k U ik
H t h t H t h t h t

i n

 (35)

 

2
2 2 2

1 1

2
12 2 2

1

ˆˆ ˆ ˆ ˆ ˆ[ ( )] [ ( )], [ ( )]
4

ˆ ˆˆ ˆ[ ( )] [ ( )]
4

2, ...,

−

=

∆=

∆= ∆ +

=
∑

U U U i

i

U k U ik

SE H t SE h t SE H t

SE h t SE h t

i n

 (36)

It is easy to show that

1
ˆ ˆˆ ˆ ( ) ( ) ( ) 2, ...,

2 = +

∆− = + ∆ =∑ n

O U i U i U kk i
H H t h t h t i n

 (37)

and
2

2 2

2 2

1

ˆˆ ˆ ˆ ˆ[ ( )] [ ( )]
4

ˆˆ [ ( )]
2, ...,

= +

∆− =

+ ∆
=

∑
O U i U i

n

U kk i

SE H H t SE h t

SE h t
i n  (38)

According to (34), using the standard rules of error 
propagation, we have:

2
2

2

2 2

22

ˆ[ ( )]ˆˆ [ ( )] ˆ ˆ[ ( )]
ˆˆ ˆ ˆ ˆ[ ( )] [ ( )]

ˆ ˆ ˆ[ ( )][ ( )]
2, ...,

U i
i

O U i

U i O U i

O U iU i

h t
SE h t

H H t

SE h t SE H H t

H H th t
i n

=
−

 − + 
−  

=  (39)

where estimates: 2 2ˆ ˆ ˆ ˆˆ ˆ( ), [ ( )], ( ), [ ( )],i i U i U ih t SE h t h t SE h t  
Ĥo − Ĥu and SÊ2[Ĥo − Ĥu(ti)] are given by formulas (34), 
(39), (25), (27), (37), and (38), correspondingly.

For estimates of the survival function on the indi-
vidual level we have:

 

ˆ
ˆ( ) 1, 2, ...,ˆ ˆ ( )

= =
−

O
i

O U i

H
S t i n

H H t
 (40)
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Note that

 
ˆ ˆ( ) 1 ( ) 1,2, ...,= − =i iS t F t i n (41)

and

 
2 2ˆˆ ˆ ˆ[ ( )] [ ( )] 1, 2, ...,= =i iSE S t SE F t i n (42)

where ˆ ( )iF t  and 2ˆ ˆ[ ( )]iSE F t  are given by formulas (32) 
and (33), correspondingly.

So, we have shown that ˆ ˆ( ), ( )i if t h t  and ˆ( )iS t  (and 
their standard errors) on the individual level can be 
simply obtained from the estimates of the cancer 
hazard function, ˆ ( )U ih t , (and their standard errors) 
determined on the population level from the observed 
data.

Procedure 3: estimation of the model pdf 
(or cdf) parameters
Based on the theoretical models of carcinogenesis, 
one might assume that the f (t) ought to fol-
low to some nonlinear (in a general case) func-
tion f  of age, t, defined with the s parameters, 
     a a a f a a a ts s1 2 1 2, , ..., : ( , , ..., ; ).  In such case, the cdf, 
F t( ),  will also be defined by the same s parameters: 
F a a a ts( , , ..., ; ).  1 2  To estimate these parameters, one 
can consider the system of conditional equations:

 1 2,
ˆ ( ) ( , ..., ; ) 1, 2, ...,i s if t f a a a t i n= =    (43)

with the weights, wi, determined as:

 
2

1
1,2, ...,ˆˆ [ ( )]

= =i

i

w i n
SE f t

 (44)

where ti is the midpoint of the i-th age interval and 
ˆ ( )if t  is the estimate of the pdf at age ti, derived from 

the observations.
Note that we have one response variable, that is 

the pdf of age, f(t), and one predictor variable, the age 
t. The predictor is assumed to be measured with no 
error, while the response data can be affected by an 
observational error. In general, to obtain the estimates 

1 2
ˆ ˆ ˆ, , ..., ,  sa a a  the model function, 1 2( , , ..., ; ),s if a a a t    
with the known observed estimates, ˆ ( ),if t  one can uti-
lize a weighted least squares method.14

The aforementioned computational procedure can 
be applied for determining parameters of different pdf 
(or cdf) with known mathematical forms.  However, 
for modeling of the cancer occurrence in aging, the 
mathematical form of the pdf (or cdf) should be cho-
sen by considering the appropriate biological con-
cepts, leading to carcinogenesis. The parameters of 
this function should have distinct biological and/or 
epidemiological meaning.

As an example, let us assume that according to the 
multiple mutation carcinogenic model, the cancer 
occurrence in aging on the individual level can be 
represent with a two- or three-parameter Weibull 
pdf:4,21,22

 
1( , ; ) exp( )r rf r t r tλ λ λ−= −  (45)

and

 
1( , ; ) ( ) exp[ ( ) ]r rf r t r t A t Aλ λ λ−= − − −  (46)

where the λ is a “scale” parameter, t denotes age, r is a 
“shape” parameter, and A is a “shift” parameter (accord-
ing to designations of (43), λ = = =  a r a A a1 2 3, and ). 
The shift parameter, A, was introduced into the car-
cinogenesis modeling more than 40 years ago,4 where 
the effective exposure period, T = t − A, was used 
to improve the quality of curve fitting for prostate 
cancer.

For two-parameter Weibull distribution, when the 
estimates of the cdf, ˆ ( )iF t , and their standard errors, 

2ˆ ˆ[ ( )]iSE F t  in the age intervals, ti (i = 1,2, …, n), are 
known from observations, the following linear sys-
tem of conditional equations with regard to unknown 
parameters, ln(λ) and r, can be written (note that here 
the response variable is ln{−ln[1−F(t)]} and the pre-
dictor is ln(t)) as:13,23

 
ˆln{ ln[1 ( )]} ln( ) ln( ) 1,2, ...,λ− − = + =i iF t r t i n

 (47)

with the weights, wi, that are presented as the inverse 
of the squares of the standard errors of the left side 
of (47):

{ }ˆ ˆ ˆln{ ln[1 ( )]} 1,2,...,i iSE SE F t i n= − − =  (48)
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2

1
1,2, ...,ˆ= =i

i

w i n
SE

 (49)

According to the standard rules of error propaga-
tion, for the standard errors of the ˆln{ ln[1 ( )]},iF t− −  
we have:

2
2

2 2

ˆ ˆ[ ( )]ˆ 1, 2, ...,ˆ ˆ[(1 ( )] ln [1 ( )]
= =

− −i

i

i i

SE F t
SE i n

F t F t
 (50)

The λ and r parameters (and their standard errors) of 
the Weibull pdf can be obtained from the system (47) 
to (50) by methods of linear regression. Note that the 
estimates of the response variable, ˆln{ ln[1 ( )]},− − iF t  
and their standard errors are derived using formulas 
(32) and (33) and eventually are obtained by means 
of the observed estimates, ˆ ˆˆ( ), [ ( )],i if t SE f t  as well as 
the value of ∆.

For three-parameter Weibull distribution, the prob-
lem is to estimate the parameters λ, r, and A from 
the observational rates (25) and their standard errors 
(27). For this purpose, instead of the system of the 
conditional equations (47) to (50), the following sys-
tem can be considered:

 
ˆln{ ln[1 ( )]} ln( ) ln( ) 1,2, ...,− − = + =i iF T r T i nλ

 (51)

with weights:

 
2

1
1,2, ...,ˆ= =iT

iT

w i n
SE

 (52)

where

2
2

2 2

ˆ ˆ[ ( )]ˆ 1, 2, ...,ˆ ˆ[(1 ( )] ln [1 ( )]iT

i

i i

SE F T
SE i n

F T F T
= =

− −
 (53)

and

 T t A i ni i= − = 1 2, , ...,  (54)

To estimate the parameters of the three-parameter 
Weibull distribution, one can use a special technique, 

analogous to one presented in MATLAB,24 as fol-
lows. For each provisional value of the shift param-
eter, A, the λ and r parameters of the Weibull pdf, as 
well as their standard errors, are obtained by methods 
of linear regression. To evaluate the quality of fitting 
of the same dataset by different regression lines, the 
Akaike’s information corrected criterion (AIC) can 
be used.25 Assuming that the scatter of points around 
the regression line follows a Gaussian distribution, 
the AIC can be defined by the following formula:

 
AIC l SS K

K K

l K
= ( ) + + +

− −
ln

( )
2

2 1

1
 (55)

where (SS) is the weighted sum of the squares of the 
residuals of the system (51) with the weights (53), 
l is the number of observed points, K = q + 1 (q is the 
number of parameters used for curve fitting). When 
fittings of the same dataset by different regression 
lines are compared, it is assumed that the curve fitting 
is better for the line with the smallest AIC.25 In our 
case, the value of the shift parameter, A, from the set 
of provisional values, providing the best fitting with 
observations, can be considered as Â.

Note that the analogous procedures can be easily 
developed when instead of the parametric form of the 
pdf, 1 2( , , ..., ; )sf a a a t   , the parametric forms of the 
hazard function, 1 2( , , ..., ; )sh a a a t   , or the survival 
function, 1 2( , , ..., ; )sS a a a t   , are used.

Application of the computing 
procedures for Modeling pancreas 
cancer Data
data preparation
The proposed computing procedures were utilized for 
modeling of pancreatic carcinogenesis using SEER9 
data collected from 1975 through 2004. Table 1 pres-
ents the number of pancreatic cancer cases collected 
in this database. Below, we consider only data for the 
ages older than 30 years, assuming that for younger 
age the data are statistically indistinguishable from 
zero. The first column of Table 1 presents the middle 
points of five-year age intervals of the human lifespan 
beginning from the age of 30 (30–100 years). The fol-
lowing six columns present a number of cases in the 
five-year time periods.

Table 2 presents the size of the population for the 
corresponding age intervals and time periods.
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Table 1. Number of pancreatic cancer cases (mi,j) observed in the i-th age intervals (i = 1, ..., 14) and the j-th time periods 
(j = 1, ..., 6).

Age interval number of pancreatic cancer cases in the time periods
Index i Middle point 1975–79 1980–84 1985–89 1990–94 1995–99 2000–04
1 32.5 21 30 32 36 28 33
2 37.5 52 67 76 79 81 93
3 42.5 107 136 149 174 186 193
4 47.5 250 261 265 273 365 447
5 52.5 496 487 396 449 601 744
6 57.5 788 821 692 663 758 939
7 62.5 990 1065 1068 866 927 1033
8 67.5 1083 1205 1311 1301 1198 1181
9 72.5 967 1148 1235 1345 1370 1328
10 77.5 767 872 1028 1122 1141 1262
11 82.5 412 573 630 649 750 863
12 87.5 216 247 294 269 336 375
13 92.5 48 76 74 69 98 105
14 97.5 8 10 19 17 16 11

Table 2. Size of population (Pi,j) in the i-th age intervals (i = 1, ..., 14) and the j-th time periods (j = 1, ..., 6).

Age interval size of population in the time periods
Index i Middle point 1975–79 1980–84 1985–89 1990–94 1995–99 2000–04
1 32.5 7291410 8654598 9515416 9996359 9504334 8923264
2 37.5 5747082 7035723 8459694 9530762 10046610 9385987
3 42.5 5058238 5617689 7020470 8558255 9432785 9851252
4 47.5 5168362 4882479 5509347 6834156 8287256 9218643
5 52.5 5383837 4982156 4712700 5319301 6702478 8165360
6 57.5 4967846 5026033 4641418 4457735 5059291 6396013
7 62.5 4170350 4494233 4521169 4284805 4136707 4686289
8 67.5 3378073 3747710 4041082 4084061 3855749 3709270
9 72.5 2564325 2881252 3171932 3460794 3528958 3352121
10 77.5 1829784 2071664 2348747 2641488 2925008 2966996
11 82.5 1220832 1310834 1485732 1718090 1978101 2199898
12 87.5 660595 735699 819341 936240 1065538 1254478
13 92.5 246941 277522 311892 373624 462990 504348
14 97.5 48511 63847 84030 98634 130432 133403

Modeling of pancreatic carcinogenesis  
in aging
To perform modeling of pancreatic cancer hazards in 
aging we consecutively completed three procedures 
of the proposed computing framework.

Procedure 1
As described in our previous work,19 for the observed 
data, presented in Tables 1 and 2, we performed 
APC analysis using the log-linear age-period-cohort 
(LLAPC) model. According to this model, an age-
specific incidence rate of a cancer can be presented 

as a product of the time-period and birth-cohort coef-
ficients, as well as an unknown age-specific hazard 
function (ie, the risk function of getting the cancer at 
a given age). We found that for the data presented in 
Tables 1 and 2 the time-period and birth-cohort effects 
are statistically insignificant (data are not shown).

Procedure 2
By neglecting the time-period and birth-cohort effects, 
we obtained ˆ ( )U ih t  and ˆˆ[ ( )]U iSE h t  by formulas (25) to 
(27). Note, in our calculations, the index, i, varied 
from i = 1, which corresponds to the age interval with 
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Table 3. estimates of the ˆ ( )
U i

h t  and ˆ ˆ ( ),
O U i

H H t−  as well as their standard errors in each of the i-th age intervals 
(i = 1, …,14).

Age interval estimates
Index i Middle point ˆ ( )

U i
h t ˆ ˆ[ ( )]

U i
SE h t ˆ ˆ ( )

O U i
H H t− ˆ ˆ ˆ[ ( )]

O U i
SE H H t−

1 32.5 6.62e-07 4.96e-08 2.72e-03 3.10e-07
2 37.5 1.77e-06 8.41e-08 2.71e-03 5.26e-07
3 42.5 4.13e-06 1.35e-07 2.70e-03 8.42e-07
4 47.5 9.26e-06 2.15e-07 2.66e-03 1.35e-06
5 52.5 1.80e-05 3.19e-07 2.60e-03 1.99e-06
6 57.5 3.05e-05 4.47e-07 2.48e-03 2.79e-06
7 62.5 4.51e-05 5.86e-07 2.29e-03 3.66e-06
8 67.5 6.38e-05 7.48e-07 2.01e-03 4.67e-06
9 72.5 7.80e-05 9.07e-07 1.66e-03 5.67e-06
10 77.5 8.37e-05 1.06e-06 1.26e-03 6.65e-06
11 82.5 7.78e-05 1.25e-06 8.52e-04 7.83e-06
12 87.5 6.32e-05 1.52e-06 5.00e-04 9.50e-06
13 92.5 4.26e-05 1.98e-06 2.36e-04 1.24e-05
14 97.5 2.58e-05 3.04e-06 6.46e-05 1.90e-05

a midpoint of 32.5 years, to i = n = 14, which corre-
sponds to the age interval with the midpoint of 97.5 
years. The obtained values of ˆ ( )U ih t  and ˆˆ[ ( )]U iSE h t  
are presented in Table 3. For ˆ

OH  and ˆ ˆ[ ]OSE H  we 
obtained the values of 2.72 ⋅ 10−3 and 2.25 ⋅ 10−5, cor-
respondingly. The differences between the overall 
cumulative hazard, HO, and the cumulative hazard 
function, HU(ti), and the standard errors of these dif-
ferences are given in the third and fourth columns of 
Table 3.

Figure 1 shows the discrete distribution of ˆ ( )U ih t  
in aging (presented by circles) with the 95% con-
fidence intervals (CI) presented by error bars. As 
can be seen from this Figure, the hazard rates on 
the population level fall in old age and has a reverse 
bathtub shape.

Procedure 3
The ˆ ˆ ˆˆ( ), ( ), ( ) and ( )i i i if t F t h t S t  were obtained by for-
mulas (28), (32), (34), and (40), correspondingly, 
while their standard errors were obtained by formulas 
(31), (33), (36), and (42). The obtained values of the
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( ), [ ( )], ( ), [ ( )], ( ), [ ( )], ( )i i i i i i if t SE f t F t SE F t h t SE h t S t  
and ˆˆ[ ( )]iSE S t  are presented in Tables 4 and 5, 
correspondingly.

To perform modeling of pancreatic cancer hazards 
in aging, we used the multiple mutation carcinogenic 
model, according to which the cancer occurrence in 
aging on the individual level can be represented with 

a two- or three-parameter Weibull pdf, described by 
formulas (45) and (46), correspondingly. Our numeri-
cal experiments suggested that, in the case of pancre-
atic cancer, the best fitting of the observed data can 
be achieved by using the three-parameter Weibull 
pdf. Therefore, we show the results of this modeling 
below (data for two-parameter Weibull pdf are not 
shown).

To estimate the λ, r, and A parameters of the three-
parameter Weibull pdf, we used the system of condi-
tional equations, presented by formulas (51) to (54). 
By varying the values of the A from 0 to 30 years 
with a one-year age interval, we obtained estimates 
of two other parameters. For each set of parame-
ters obtained in such a way, we evaluated the qual-
ity of fitting using the AIC as described previously. 
 Figure 2 shows a variation of the AIC (presented by 
open circles) with age.

As can be seen from Figure 2, the best fit-
ting was achieved for ˆ 17A = , when AIC reached 
the minimum value. For this case, we found that 

10 10 10ˆ ˆ ˆ3.55 10 ( 3.21 10 ; 3.94 10 )l uλ λ λ− − −= ⋅ = ⋅ = ⋅ ; and 
ˆ ˆ ˆ5.24( 5.21; 5.27)l ur r r= = =  where 95% confidence 
intervals (CI) are given in parenthesis. The obtained 
values of the model parameters suggest that age of 
pancreatic cancer presentation has a time shift about 
17 years ( ˆ 17A = ), and the average number of clones 
developed from the mutated cells during the first 
year after the beginning of the effective exposure 
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Figure 1. discrete distribution of the estimates of the unconditional haz-
ard function, ĥu(ti) (in person years), of pancreatic cancer in the age inter-
vals, ti.

Table 4. estimates of the f̂ (ti) and F̂(ti), as well as their standard errors in each of the i-th age intervals (i = 1, …, 14).

Age interval estimates
Index i Middle point ˆ( )

i
f t ˆˆ[ ( )]

i
SE f t ˆ ( )

i
F t ˆ ˆ[ ( )]

i
SE F t

1 32.5 2.43e-04 1.83e-05 6.09e-04 4.58e-05
2 37.5 6.52e-04 3.14e-05 2.85e-03 1.21e-04
3 42.5 1.52e-03 5.11e-05 8.28e-03 2.22e-04
4 47.5 3.40e-03 8.40e-05 2.06e-02 3.77e-04
5 52.5 6.60e-03 1.29e-04 4.56e-02 6.16e-04
6 57.5 1.12e-02 1.89e-04 9.01e-02 9.57e-04
7 62.5 1.66e-02 2.55e-04 1.60e-01 1.41e-03
8 67.5 2.35e-02 3.36e-04 2.60e-01 1.98e-03
9 72.5 2.87e-02 4.09e-04 3.90e-01 2.66e-03
10 77.5 3.07e-02 4.67e-04 5.38e-01 3.40e-03
11 82.5 2.86e-02 5.18e-04 6.87e-01 4.16e-03
12 87.5 2.32e-02 5.91e-04 8.16e-01 4.95e-03
13 92.5 1.56e-02 7.38e-04 9.13e-01 5.87e-03
14 97.5 9.50e-03 1.12e-03 9.76e-01 7.25e-03

period is 10ˆ 3.55 10 ,λ −= ⋅  as well as that for pancreatic 
cells at least five mutations are needed to became 
malignant ( ˆ 5.24r = ).

Figure 3 shows the discrete distribution of ˆ ( )if t  
(presented by open circles and error bars presenting 

their 95% CI) in aging. The solid line shows the Weibull 
curve, obtained by using 10ˆˆ 17, 3.55 10A λ −= = ⋅  and 
ˆ 5.24r = , which provide the best fit of the Weibull 
curve with ˆ ( )if t . As can be seen from this figure, 
the pdf on the individual level has a reverse bathtub 
shape, which is similar to the shape of the hazard 
rates on the population level.

Figures 4 and 5 show the estimates (presented 
by open circles) of the hazard and survival func-
tions on the individual level, obtained from the 
formulas (19) and (20) by substitution of the 
hU(t), HU(t) and HO by their discrete estimates. 
The solid lines show the modeled hazard and 
survival functions with 10ˆˆ 17, 3.55 10A λ −= = ⋅  and  
ˆ 5.24r = .

Notes
The ( )ih t  distribution was obtained from the 
observed pancreatic cancer incidence rates and 
modeled by three-parameter Weibull hazard func-
tion, ˆ 1ˆ ˆˆ ˆˆ ˆ( , , ; ) ( )rh r A t r t Aλ λ −= − ; the last point of 
this distribution (at the age interval t14 = 97.5 year) 
is omitted because of a very large error bar. The 
ˆ( )iS t  distribution was obtained from the observed 
pancreatic cancer incidence rates and modeled 
by three-parameter Weibull survival function, 

ˆˆ ˆˆ ˆˆ( , , ; ) exp[ ( ) ]rS r A t t Aλ λ= − − .
As can be seen from these figures, the modeled 

functions provide excellent fittings to the estimated 
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Figure 2. Variation of the AIC with the age (in years) for the three-param-
eter Weibull pdf modeled function, fitted by the estimates, ˆ( )if t .
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Figure 3. discrete distribution of ( )if t , of pancreatic cancer in 
the age intervals, ti, obtained from the observed pancreatic can-
cer incidence rates and modeled by three-parameter Weibull pdf, 

λ λ λ−= − − −ˆ 1ˆ ˆ ˆˆ ˆˆ ˆ( , ; ) ( ) exp[ ( ) ]r rf r t r t A t A .

Table 5. estimates of the h(t) and S(t), as well as their standard errors in each of the i-th age intervals (i = 1, …, 14).

Age interval estimates
Index i Middle point ˆ( )

i
h t ˆ ˆ[ ( )]

i
SE h t ˆ ( )

i
S t ˆˆ[ ( )]

i
SE S t

1 32.5 2.44e-04 1.82e-05 9.99e-01 4.58e-05
2 37.5 6.54e-04 3.10e-05 9.97e-01 1.21e-04
3 42.5 1.53e-03 4.99e-05 9.92e-01 2.22e-04
4 47.5 3.47e-03 8.09e-05 9.79e-01 3.77e-04
5 52.5 6.91e-03 1.23e-04 9.54e-01 6.16e-04
6 57.5 1.23e-02 1.81e-04 9.10e-01 9.57e-04
7 62.5 1.97e-02 2.58e-04 8.40e-01 1.41e-03
8 67.5 3.17e-02 3.78e-04 7.40e-01 1.98e-03
9 72.5 4.70e-02 5.69e-04 6.10e-01 2.66e-03
10 77.5 6.66e-02 9.18e-04 4.62e-01 3.40e-03
11 82.5 9.13e-02 1.69e-03 3.13e-01 4.16e-03
12 87.5 1.26e-01 3.87e-03 1.84e-01 4.95e-03
13 92.5 1.81e-01 1.27e-02 8.66e-02 5.87e-03
14 97.5 4.00e-01 1.27e-01 2.37e-02 7.25e-03

values of the hazard and survival functions on the 
individual level.

Comparison of Figures 1 and 4 showed that the 
trends of the hazards in aging on the population level 
(see Fig. 1) and on the individual level (see  Fig. 4) 

are dramatically different. Such  phenomena can be 
explained by the fact that cancer is a rare disease 
occurring in the dichotomous population, a very small 
part of which will eventually get the cancer, while the 
biggest part of the population will not get cancer.
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Figure 4. discrete distribution of the estimates of the conditional hazard 
function for pancreatic cancer (individual level), ĥ(ti) (shown by open cir-
cles), in the age intervals, ti, and their 95% CI (shown by the error bars).
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Figure 5. discrete distribution of the estimates of the conditional survival 
function for pancreatic cancer (individual level), ˆ ( )iS t , (shown by open cir-
cles), in the age intervals, ti, and their 95% CI (shown by the error bars).

conclusion
This work was inspired by the fact that the exist-
ing approaches used in carcinogenic modeling are 
focused on the ongoing processes on the individual 
level, while the observed data used in this modeling 
are obtained on the population level. Currently used 
mathematical equations relating hazard functions 
on the individual level with hazard functions on the 
population level are rather arbitrary, do not have clear 
biological/epidemiological meaning, and do not allow 
one to obtain an appropriate fitting with the observed 
data. Particularly, these equations do not answer why 
the hazard functions on the population level fall at 
old ages, while the hazard functions on the individual 
level do not fall.

In this work we analyzed the relationships between 
cancer hazards on the population and individual lev-
els using mathematical concepts (the hazard function, 
h(t), the probability density function, f(t), the survival 
function, S(t), and frailty, α) in survival analysis. 
We showed that these concepts can be adopted for 
analyzing the hazards of cancer occurrence in aging, 
assuming that the considered population is a dichoto-
mous one: a small part of this population (the fraction 
at risk) will eventually get the cancer, while the other 
part will not. We assumed that for individuals within 
the dichotomous population, α has the Bernoulli 
distribution, with parameter p. We used the model, 
hU(t) = pf(t), which is a special boundary case (when 
p ,, 1) of the general model with the Bernoulli 
frailty, SU(t) = 1 − p + pS(t). It should be mentioned 
that an analogous model was widely used in the cure 
models of survival analysis,26 in which parameter p 
and parameters of survival function, S(t), have to be 
simultaneously estimated by multivariate regression. 
However, we showed that in the considered bound-
ary case (p ,, 1), for arbitrary (parametric or non-
parametric) f(t), p is equal to the overall hazard, HO, 
and for estimating p it is not a necessity to perform 
simultaneous estimation of the parameters of the 
individual level survival function, S(t), by multivari-
ate regression. This allowed us to obtain three basic 
equations relating the unconditional (determined on 
population level) hazard function, hU(t), cumulative 
hazard  function, HU(t), and overall cumulative haz-
ard, H0, with the corresponding conditional equations 
(determined on the individual level) functions, h(t), 
f(t), and S(t), for individuals belonging to the fraction 
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at risk: (1) hU(t)/[H0 – HU(t)] = h(t); (2) hU(t)/H0 = f(t); 
and (3) [H0 – HU(t)]/H0 = S(t).

One of the main advantages of these basic equa-
tions is that they have clear epidemiological meaning. 
Specifically, the equation hU(t)/H0 = f(t) indicates that 
the values of the hazard functions on the population 
level, hU(t), are proportional to the probability den-
sity function, f(t), on the individual level, suggesting 
that the shapes of these functions should be similar. 
In addition, in this equation, the coefficient of pro-
portionality is the cumulative hazard, H0, that char-
acterizes both the fraction at risk in the dichotomous 
population and the probability, p, that an individual 
will eventually get the cancer. At the same time, the 
other equation, hU(t)/[H0 – HU(t)] = h(t), indicates that 
the relationship between cancer hazards on popula-
tion and individual levels depends on the age and may 
have different shapes. This explains why the hazard 
functions on the population level fall at old ages, 
while the hazard functions on the individual level 
may not fall.

Using the derived basic equations, we developed 
a computing framework for estimating the carcino-
genic parameters from the observed cancer incidences 
in aging. The framework includes three procedures. 
The first procedure is aimed at correcting the cancer 
incidence rates observed on the population level on 
the time-period and birth-cohort effects and estimat-
ing the corresponding cancer hazards in aging (on the 
population level). For assessing the cancer hazards 
in aging, this procedure uses the LLAPC model. In 
the present work, we have used the procedure devel-
oped in our previous work that reduces the problem 
of estimating cancer hazards in aging to the problem 
with removable interactions.19 The second procedure 
is aimed at estimating in a discrete form the pdf, cdf, 
hazard function, and survival function on the individ-
ual level from the cancer hazards in aging estimated 
by the first procedure. Finally, the third procedure is 
aimed at determining the model parameters of the 
pdf from the discrete estimates of the pdf (or cdf, or 
hazard function, or survival function) on the individ-
ual level, performed by the previous procedure. We 
showed that, in a general case, this problem can be 
solved by methods of nonlinear regression analysis.

As an example, we estimated the modeled parameters 
of pancreatic carcinogenesis, using the corresponding 
data collected by SEER9 registries from 1975 through 

2004. We showed that, in the case of pancreatic can-
cer, the time-period and birth-cohort effects can be 
neglected. Therefore, we could use the observed inci-
dence rates as the cancer hazards in aging. Then, using 
the obtained cancer hazards in aging, we estimated the 
pdf of pancreatic cancer in a discrete form. To obtain val-
ues of the carcinogenic parameters, we used the three-
parameter Weibull pdf, suggested by the Armitage-Doll 
multiple mutation model. By using a special technique, 
we reduced the nonlinear problem of estimating three 
parameters of the Weibull pdf, to the problem with 
removable interactions and estimated parameters of this 
pdf that provide an excellent fitting with the observed 
data. The estimated values of these parameters suggest 
that age of pancreatic cancer presentation has a time 
shift about 17 years, and that, for pancreatic cells, at 
least five mutations are needed to become malignant. 
Our finding of the number of mutations required for 
pancreatic cells to become malignant is consistent with 
what is known about the required number of mutations 
leading to cancer occurrence in other organ sites.27

Overall, in this work we mathematically proved 
that a simple assumption of a rareness of cancer in a 
dichotomous population (the Bernoulli frailty effect) 
is enough to explain why the observed incidence rates 
(hazard functions) on the population level fall at old 
ages, when the modeled hazard functions on the indi-
vidual level are not falling. We derived three basic 
equations that relate the observed cancer hazards in 
aging on the population level with the hazard func-
tion, the pdf, the cdf, and the survival function on the 
individual level. We used these equations to develop 
a novel computing framework for estimating the car-
cinogenic parameters from the observed cancer inci-
dences in aging. We suggest that the basic equations 
and computing framework developed in this work can 
be applied for estimating parameters of carcinogenic 
models with any given hazard function (or the pdf, or 
the cdf, or the survival function) on the individual level.
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